Package payment contains a simplified API of go-perun.
Open Source Business Management Framework Nervatura is a business management framework. It can handle any type of business related information, starting from customer details, up to shipping, stock or payment information. Developed as open-source project and can be used freely under the scope of LGPLv3 License. The framework is based on Nervatura Object Model (https://nervatura.github.io/nervatura/docs/model) specification. It is a general open-data model, which can store all information generated in the operation of a usual corporation. The Nervatura service is small and fast. A single ~6 MB file contains all the necessary dependencies. The framework includes: • CLI API (https://nervatura.github.io/nervatura/docs/service/cli#cli-api) (command line) • CGO API (https://nervatura.github.io/nervatura/docs/service/cli#cgo-api) (C shared library) • standard HTTP OPEN API (https://nervatura.github.io/nervatura/docs/service/api) for client communication • HTTP/2-based gRPC API (https://nervatura.github.io/nervatura/docs/service/grpc) for server-side communication • JWT generation, external token validation, SSL/TLS support and other HTTP security settings (https://github.com/nervatura/nervatura-service/blob/master/.env.example) • built-in database drivers for postgres, mysql, mssql, sqlite databases • a basic report generation library for creating simple PDF documents (eg. order, invoice, etc.) or CSV data files • sample report templates and REPORT EDITOR (https://nervatura.github.io/nervatura/docs/client/program/editor) GUI • CLIENT (https://nervatura.github.io/nervatura/docs/client) Web Component application and a basic **ADMIN** interface The client and report interface supports multilingualism (https://nervatura.github.io/nervatura/docs/start/customization#customize-the-appearance). The framework can be easily extended with additional interfaces and functions in the any languages. https://nervatura.github.io/nervatura/docs/install https://nervatura.github.io/nervatura/docs/start More info see http://www.nervatura.com.
Golang bindings for the Mpesa Payment API (see https://openapiportal.m-pesa.com), to easily make your MPESA payments ready to GO.
Package cadence and its subdirectories contain the Cadence client side framework. The Cadence service is a task orchestrator for your application’s tasks. Applications using Cadence can execute a logical flow of tasks, especially long-running business logic, asynchronously or synchronously. They can also scale at runtime on distributed systems. A quick example illustrates its use case. Consider Uber Eats where Cadence manages the entire business flow from placing an order, accepting it, handling shopping cart processes (adding, updating, and calculating cart items), entering the order in a pipeline (for preparing food and coordinating delivery), to scheduling delivery as well as handling payments. Cadence consists of a programming framework (or client library) and a managed service (or backend). The framework enables developers to author and coordinate tasks in Go code. The root cadence package contains common data structures. The subpackages are: The Cadence hosted service brokers and persists events generated during workflow execution. Worker nodes owned and operated by customers execute the coordination and task logic. To facilitate the implementation of worker nodes Cadence provides a client-side library for the Go language. In Cadence, you can code the logical flow of events separately as a workflow and code business logic as activities. The workflow identifies the activities and sequences them, while an activity executes the logic. Dynamic workflow execution graphs - Determine the workflow execution graphs at runtime based on the data you are processing. Cadence does not pre-compute the execution graphs at compile time or at workflow start time. Therefore, you have the ability to write workflows that can dynamically adjust to the amount of data they are processing. If you need to trigger 10 instances of an activity to efficiently process all the data in one run, but only 3 for a subsequent run, you can do that. Child Workflows - Orchestrate the execution of a workflow from within another workflow. Cadence will return the results of the child workflow execution to the parent workflow upon completion of the child workflow. No polling is required in the parent workflow to monitor status of the child workflow, making the process efficient and fault tolerant. Durable Timers - Implement delayed execution of tasks in your workflows that are robust to worker failures. Cadence provides two easy to use APIs, **workflow.Sleep** and **workflow.Timer**, for implementing time based events in your workflows. Cadence ensures that the timer settings are persisted and the events are generated even if workers executing the workflow crash. Signals - Modify/influence the execution path of a running workflow by pushing additional data directly to the workflow using a signal. Via the Signal facility, Cadence provides a mechanism to consume external events directly in workflow code. Task routing - Efficiently process large amounts of data using a Cadence workflow, by caching the data locally on a worker and executing all activities meant to process that data on that same worker. Cadence enables you to choose the worker you want to execute a certain activity by scheduling that activity execution in the worker's specific task-list. Unique workflow ID enforcement - Use business entity IDs for your workflows and let Cadence ensure that only one workflow is running for a particular entity at a time. Cadence implements an atomic "uniqueness check" and ensures that no race conditions are possible that would result in multiple workflow executions for the same workflow ID. Therefore, you can implement your code to attempt to start a workflow without checking if the ID is already in use, even in the cases where only one active execution per workflow ID is desired. Perpetual/ContinueAsNew workflows - Run periodic tasks as a single perpetually running workflow. With the "ContinueAsNew" facility, Cadence allows you to leverage the "unique workflow ID enforcement" feature for periodic workflows. Cadence will complete the current execution and start the new execution atomically, ensuring you get to keep your workflow ID. By starting a new execution Cadence also ensures that workflow execution history does not grow indefinitely for perpetual workflows. At-most once activity execution - Execute non-idempotent activities as part of your workflows. Cadence will not automatically retry activities on failure. For every activity execution Cadence will return a success result, a failure result, or a timeout to the workflow code and let the workflow code determine how each one of those result types should be handled. Asynch Activity Completion - Incorporate human input or thrid-party service asynchronous callbacks into your workflows. Cadence allows a workflow to pause execution on an activity and wait for an external actor to resume it with a callback. During this pause the activity does not have any actively executing code, such as a polling loop, and is merely an entry in the Cadence datastore. Therefore, the workflow is unaffected by any worker failures happening over the duration of the pause. Activity Heartbeating - Detect unexpected failures/crashes and track progress in long running activities early. By configuring your activity to report progress periodically to the Cadence server, you can detect a crash that occurs 10 minutes into an hour-long activity execution much sooner, instead of waiting for the 60-minute execution timeout. The recorded progress before the crash gives you sufficient information to determine whether to restart the activity from the beginning or resume it from the point of failure. Timeouts for activities and workflow executions - Protect against stuck and unresponsive activities and workflows with appropriate timeout values. Cadence requires that timeout values are provided for every activity or workflow invocation. There is no upper bound on the timeout values, so you can set timeouts that span days, weeks, or even months. Visibility - Get a list of all your active and/or completed workflow. Explore the execution history of a particular workflow execution. Cadence provides a set of visibility APIs that allow you, the workflow owner, to monitor past and current workflow executions. Debuggability - Replay any workflow execution history locally under a debugger. The Cadence client library provides an API to allow you to capture a stack trace from any failed workflow execution history.
Package be2bill implements client access to the Be2bill merchant API defined at http://developer.be2bill.com/API. Every initial transaction is made using a secure form. The Form Client API exposes methods that return the HTML code for payment or authorization buttons. The first step is to build a client for the given environment, using your credentials: To build a payment form button, call: Authorization form buttons are created similarly, except that the method to call is `BuildAuthorizationFormButton` that takes the same parameters. An authorization must be captured using the `Capture` method of the Direct Link Client API. All operations that do not require interactive data input from the client can be made using HTTP POST calls to the be2bill servers. The Direct Link Client API is an abstraction layer for these calls. Just like the Form Client API, the first step is to build a client for the given environment, using your credentials: Then, for example to capture a previously authorized transaction, call: Please note that access to the Direct Link Client API is not enabled by default. This service can only be activated by your account manager based on specific criteria. Please contact him or the support team for more information.
Package be2bill implements client access to the Be2bill merchant API defined at http://developer.be2bill.com/API. Every initial transaction is made using a secure form. The Form Client API exposes methods that return the HTML code for payment or authorization buttons. The first step is to build a client for the given environment, using your credentials: To build a payment form button, call: Authorization form buttons are created similarly, except that the method to call is `BuildAuthorizationFormButton` that takes the same parameters. An authorization must be captured using the `Capture` method of the Direct Link Client API. All operations that do not require interactive data input from the client can be made using HTTP POST calls to the be2bill servers. The Direct Link Client API is an abstraction layer for these calls. Just like the Form Client API, the first step is to build a client for the given environment, using your credentials: Then, for example to capture a previously authorized transaction, call: Please note that access to the Direct Link Client API is not enabled by default. This service can only be activated by your account manager based on specific criteria. Please contact him or the support team for more information.
package stripeutil provides some utility functions and data structures for working with the Stripe API for builing a SaaS application. This provides simple ways of creating Customers and Subscriptions, and storing them in a user defined data store along with their PaymentMethods and Invoices. This also provides a simple way of handling webhook events that are emitted from Stripe. stripeutil.Stripe is the main way to interact with the Stripe API. This is supposed to be used along with the stripeutil.Store interface which allows for storing the resources retrieved from Stripe. Below is a brief example as to how this library would be used to implement a subscription flow, the above code will first lookup the customer via the given stripeutil.Store implementation we pass. If a customer cannot be found then one is created in Stripe with the given email address and subsequently stored, before being returned. After this, we then retrieve the given payment method from Stripe, and pass this, along with the customer to the Subscribe call. We also specify the request parameters we wish to have set when creating a subscription in Stripe. Under the hood, stripeutil.Stripe will do the following when Subscribe is called, - Retrieve the subscription for the given customer from the underlying store - Attach the given payment method to the given customer - Update the customer's default payment method to what was given - Store the given payment method in the underlying store - Return the subscription for the given customer, if one was found otherwise... - ...a new subscription is created for the customer, and returned if the invoice status is valid And below is how a cancellation flow of a subscription would work with this library, with the above, we lookup the customer similar to how we did before, and pass them to the Unsubscribe call. This will update the customer's subscription to cancel at the end period, and update the subscription in the underlying store. However, if the customer's subscription cannot be found in the underlying store, or is not valid then nothing happens and nil is returned. stripeutil.Store is an interface that allows for storing the resources retrieved from Stripe. An implementation of this interface for PostgreSQL comes with this library out of the box. stripeutil.Stripe, depends on this interface for storing the customer, invoice, and subscription invoices during the Subscribe flow. stripeutil.Stripe is what is primarily used for interfacing with the Stripe API. This depends on the stripeutil.Store interface, as previously mentioned, for storing the resources retrieved from Stripe. stripeutil.Params allows for specifying the request parameters to set in the body of the request sent to Stripe. This is encoded to x-www-url-formencoded, when sent in a request, for example, would be encoded to, stripeutil.Stripe has a Post method that accepts a stripeutil.Params argument, this can be used for making more explicit calls to Stripe, the returned *http.Response can be used as usual. stripeutil.Client is a thin HTTP client for the Stripe API. All HTTP requests made through this client will be configured to talk to Stripe. This is embedded inside of stripeutil.Stripe so you can do stuff like, for example, to get the customers you have. A new client can be created via stripeutil.NewClient, and through this you can configured which version of the Stripe API to use, If using an older/newer version of the Stripe API this way then it is highly recommended that you do not use stripeutil.Stripe and instead perform all interactions via stripeutil.Client. This is because stripeutil.Stripe relies on the stripe/stripe-go SDK, so the versions may not match if you do this.
Open Source Business Management Framework Nervatura is a business management framework. It can handle any type of business related information, starting from customer details, up to shipping, stock or payment information. Developed as open-source project and can be used freely under the scope of LGPLv3 License (http://www.gnu.org/licenses/lgpl.html). The framework is based on Nervatura Object Model (https://nervatura.github.io/nervatura/model) specification. It is a general open-data model, which can store all information generated in the operation of a usual corporation. The Nervatura service is small and fast. A single ~6 MB file contains all the necessary dependencies. The framework includes: • CLI (command line) API • standard HTTP RESTful API (https://nervatura.github.io/nervatura/api) for client communication • HTTP/2-based gRPC API (https://nervatura.github.io/nervatura/grpc) for server-side communication • JWT generation, external token validation, SSL/TLS support and other HTTP security settings (https://github.com/nervatura/nervatura-service/blob/master/.env.example) • built-in database drivers for postgres, mysql, sqlite databases • a basic report generation library for creating simple PDF documents (eg. order, invoice, etc.) or CSV data files • sample report templates and Report Editor (https://nervatura.github.io/nervatura/docs/editor) GUI • PWA Client (https://nervatura.github.io/nervatura/docs) application and a basic Admin interface The client and report interface supports multilingualism (https://nervatura.github.io/nervatura/#customize-the-appearance). The framework can be easily extended with additional interfaces and functions in the supported languages (https://grpc.io/docs/languages/): C#, C++, Dart, Go, Java, Kotlin, Node, Objective-C, PHP, Python, Ruby https://nervatura.github.io/nervatura/#installation https://nervatura.github.io/nervatura/#quick-start More info see http://www.nervatura.com.
Package cadence and its subdirectories contain the Cadence client side framework. The Cadence service is a task orchestrator for your application’s tasks. Applications using Cadence can execute a logical flow of tasks, especially long-running business logic, asynchronously or synchronously. They can also scale at runtime on distributed systems. A quick example illustrates its use case. Consider Uber Eats where Cadence manages the entire business flow from placing an order, accepting it, handling shopping cart processes (adding, updating, and calculating cart items), entering the order in a pipeline (for preparing food and coordinating delivery), to scheduling delivery as well as handling payments. Cadence consists of a programming framework (or client library) and a managed service (or backend). The framework enables developers to author and coordinate tasks in Go code. The root cadence package contains common data structures. The subpackages are: The Cadence hosted service brokers and persists events generated during workflow execution. Worker nodes owned and operated by customers execute the coordination and task logic. To facilitate the implementation of worker nodes Cadence provides a client-side library for the Go language. In Cadence, you can code the logical flow of events separately as a workflow and code business logic as activities. The workflow identifies the activities and sequences them, while an activity executes the logic. Dynamic workflow execution graphs - Determine the workflow execution graphs at runtime based on the data you are processing. Cadence does not pre-compute the execution graphs at compile time or at workflow start time. Therefore, you have the ability to write workflows that can dynamically adjust to the amount of data they are processing. If you need to trigger 10 instances of an activity to efficiently process all the data in one run, but only 3 for a subsequent run, you can do that. Child Workflows - Orchestrate the execution of a workflow from within another workflow. Cadence will return the results of the child workflow execution to the parent workflow upon completion of the child workflow. No polling is required in the parent workflow to monitor status of the child workflow, making the process efficient and fault tolerant. Durable Timers - Implement delayed execution of tasks in your workflows that are robust to worker failures. Cadence provides two easy to use APIs, **workflow.Sleep** and **workflow.Timer**, for implementing time based events in your workflows. Cadence ensures that the timer settings are persisted and the events are generated even if workers executing the workflow crash. Signals - Modify/influence the execution path of a running workflow by pushing additional data directly to the workflow using a signal. Via the Signal facility, Cadence provides a mechanism to consume external events directly in workflow code. Task routing - Efficiently process large amounts of data using a Cadence workflow, by caching the data locally on a worker and executing all activities meant to process that data on that same worker. Cadence enables you to choose the worker you want to execute a certain activity by scheduling that activity execution in the worker's specific task-list. Unique workflow ID enforcement - Use business entity IDs for your workflows and let Cadence ensure that only one workflow is running for a particular entity at a time. Cadence implements an atomic "uniqueness check" and ensures that no race conditions are possible that would result in multiple workflow executions for the same workflow ID. Therefore, you can implement your code to attempt to start a workflow without checking if the ID is already in use, even in the cases where only one active execution per workflow ID is desired. Perpetual/ContinueAsNew workflows - Run periodic tasks as a single perpetually running workflow. With the "ContinueAsNew" facility, Cadence allows you to leverage the "unique workflow ID enforcement" feature for periodic workflows. Cadence will complete the current execution and start the new execution atomically, ensuring you get to keep your workflow ID. By starting a new execution Cadence also ensures that workflow execution history does not grow indefinitely for perpetual workflows. At-most once activity execution - Execute non-idempotent activities as part of your workflows. Cadence will not automatically retry activities on failure. For every activity execution Cadence will return a success result, a failure result, or a timeout to the workflow code and let the workflow code determine how each one of those result types should be handled. Asynch Activity Completion - Incorporate human input or thrid-party service asynchronous callbacks into your workflows. Cadence allows a workflow to pause execution on an activity and wait for an external actor to resume it with a callback. During this pause the activity does not have any actively executing code, such as a polling loop, and is merely an entry in the Cadence datastore. Therefore, the workflow is unaffected by any worker failures happening over the duration of the pause. Activity Heartbeating - Detect unexpected failures/crashes and track progress in long running activities early. By configuring your activity to report progress periodically to the Cadence server, you can detect a crash that occurs 10 minutes into an hour-long activity execution much sooner, instead of waiting for the 60-minute execution timeout. The recorded progress before the crash gives you sufficient information to determine whether to restart the activity from the beginning or resume it from the point of failure. Timeouts for activities and workflow executions - Protect against stuck and unresponsive activities and workflows with appropriate timeout values. Cadence requires that timeout values are provided for every activity or workflow invocation. There is no upper bound on the timeout values, so you can set timeouts that span days, weeks, or even months. Visibility - Get a list of all your active and/or completed workflow. Explore the execution history of a particular workflow execution. Cadence provides a set of visibility APIs that allow you, the workflow owner, to monitor past and current workflow executions. Debuggability - Replay any workflow execution history locally under a debugger. The Cadence client library provides an API to allow you to capture a stack trace from any failed workflow execution history.
Package cadence and its subdirectories contain the Cadence client side framework. The Cadence service is a task orchestrator for your application’s tasks. Applications using Cadence can execute a logical flow of tasks, especially long-running business logic, asynchronously or synchronously. They can also scale at runtime on distributed systems. A quick example illustrates its use case. Consider Uber Eats where Cadence manages the entire business flow from placing an order, accepting it, handling shopping cart processes (adding, updating, and calculating cart items), entering the order in a pipeline (for preparing food and coordinating delivery), to scheduling delivery as well as handling payments. Cadence consists of a programming framework (or client library) and a managed service (or backend). The framework enables developers to author and coordinate tasks in Go code. The root cadence package contains common data structures. The subpackages are: The Cadence hosted service brokers and persists events generated during workflow execution. Worker nodes owned and operated by customers execute the coordination and task logic. To facilitate the implementation of worker nodes Cadence provides a client-side library for the Go language. In Cadence, you can code the logical flow of events separately as a workflow and code business logic as activities. The workflow identifies the activities and sequences them, while an activity executes the logic. Dynamic workflow execution graphs - Determine the workflow execution graphs at runtime based on the data you are processing. Cadence does not pre-compute the execution graphs at compile time or at workflow start time. Therefore, you have the ability to write workflows that can dynamically adjust to the amount of data they are processing. If you need to trigger 10 instances of an activity to efficiently process all the data in one run, but only 3 for a subsequent run, you can do that. Child Workflows - Orchestrate the execution of a workflow from within another workflow. Cadence will return the results of the child workflow execution to the parent workflow upon completion of the child workflow. No polling is required in the parent workflow to monitor status of the child workflow, making the process efficient and fault tolerant. Durable Timers - Implement delayed execution of tasks in your workflows that are robust to worker failures. Cadence provides two easy to use APIs, **workflow.Sleep** and **workflow.Timer**, for implementing time based events in your workflows. Cadence ensures that the timer settings are persisted and the events are generated even if workers executing the workflow crash. Signals - Modify/influence the execution path of a running workflow by pushing additional data directly to the workflow using a signal. Via the Signal facility, Cadence provides a mechanism to consume external events directly in workflow code. Task routing - Efficiently process large amounts of data using a Cadence workflow, by caching the data locally on a worker and executing all activities meant to process that data on that same worker. Cadence enables you to choose the worker you want to execute a certain activity by scheduling that activity execution in the worker's specific task-list. Unique workflow ID enforcement - Use business entity IDs for your workflows and let Cadence ensure that only one workflow is running for a particular entity at a time. Cadence implements an atomic "uniqueness check" and ensures that no race conditions are possible that would result in multiple workflow executions for the same workflow ID. Therefore, you can implement your code to attempt to start a workflow without checking if the ID is already in use, even in the cases where only one active execution per workflow ID is desired. Perpetual/ContinueAsNew workflows - Run periodic tasks as a single perpetually running workflow. With the "ContinueAsNew" facility, Cadence allows you to leverage the "unique workflow ID enforcement" feature for periodic workflows. Cadence will complete the current execution and start the new execution atomically, ensuring you get to keep your workflow ID. By starting a new execution Cadence also ensures that workflow execution history does not grow indefinitely for perpetual workflows. At-most once activity execution - Execute non-idempotent activities as part of your workflows. Cadence will not automatically retry activities on failure. For every activity execution Cadence will return a success result, a failure result, or a timeout to the workflow code and let the workflow code determine how each one of those result types should be handled. Asynch Activity Completion - Incorporate human input or thrid-party service asynchronous callbacks into your workflows. Cadence allows a workflow to pause execution on an activity and wait for an external actor to resume it with a callback. During this pause the activity does not have any actively executing code, such as a polling loop, and is merely an entry in the Cadence datastore. Therefore, the workflow is unaffected by any worker failures happening over the duration of the pause. Activity Heartbeating - Detect unexpected failures/crashes and track progress in long running activities early. By configuring your activity to report progress periodically to the Cadence server, you can detect a crash that occurs 10 minutes into an hour-long activity execution much sooner, instead of waiting for the 60-minute execution timeout. The recorded progress before the crash gives you sufficient information to determine whether to restart the activity from the beginning or resume it from the point of failure. Timeouts for activities and workflow executions - Protect against stuck and unresponsive activities and workflows with appropriate timeout values. Cadence requires that timeout values are provided for every activity or workflow invocation. There is no upper bound on the timeout values, so you can set timeouts that span days, weeks, or even months. Visibility - Get a list of all your active and/or completed workflow. Explore the execution history of a particular workflow execution. Cadence provides a set of visibility APIs that allow you, the workflow owner, to monitor past and current workflow executions. Debuggability - Replay any workflow execution history locally under a debugger. The Cadence client library provides an API to allow you to capture a stack trace from any failed workflow execution history.
Package paypal defines types and operations used to access the Paypal API The following authorization operations are defined for Payment: authorization: lookup, capture, reauthorize, and void authorized payments The following billing-agreement operations are defined for payments: The following billing-plan operations are defined for payments: The following capture operations are defined for Payment: capture: lookup and refund captured payments The following identity operations are defined The following oreder operations are defined for Payment: order: manage orders The following payment operations are defined for Payment: payment: create,execute, update and lookup payments The following refund operations are defined for Payment: refund: lookup refund details Once a Payment is executed it becomes a Sale The following sale operations are defined for Payment: sale: lookup and refund completed payments
Package cadence and its subdirectories contain the Cadence client side framework. The Cadence service is a task orchestrator for your application’s tasks. Applications using Cadence can execute a logical flow of tasks, especially long-running business logic, asynchronously or synchronously. They can also scale at runtime on distributed systems. A quick example illustrates its use case. Consider Uber Eats where Cadence manages the entire business flow from placing an order, accepting it, handling shopping cart processes (adding, updating, and calculating cart items), entering the order in a pipeline (for preparing food and coordinating delivery), to scheduling delivery as well as handling payments. Cadence consists of a programming framework (or client library) and a managed service (or backend). The framework enables developers to author and coordinate tasks in Go code. The root cadence package contains common data structures. The subpackages are: The Cadence hosted service brokers and persists events generated during workflow execution. Worker nodes owned and operated by customers execute the coordination and task logic. To facilitate the implementation of worker nodes Cadence provides a client-side library for the Go language. In Cadence, you can code the logical flow of events separately as a workflow and code business logic as activities. The workflow identifies the activities and sequences them, while an activity executes the logic. Dynamic workflow execution graphs - Determine the workflow execution graphs at runtime based on the data you are processing. Cadence does not pre-compute the execution graphs at compile time or at workflow start time. Therefore, you have the ability to write workflows that can dynamically adjust to the amount of data they are processing. If you need to trigger 10 instances of an activity to efficiently process all the data in one run, but only 3 for a subsequent run, you can do that. Child Workflows - Orchestrate the execution of a workflow from within another workflow. Cadence will return the results of the child workflow execution to the parent workflow upon completion of the child workflow. No polling is required in the parent workflow to monitor status of the child workflow, making the process efficient and fault tolerant. Durable Timers - Implement delayed execution of tasks in your workflows that are robust to worker failures. Cadence provides two easy to use APIs, **workflow.Sleep** and **workflow.Timer**, for implementing time based events in your workflows. Cadence ensures that the timer settings are persisted and the events are generated even if workers executing the workflow crash. Signals - Modify/influence the execution path of a running workflow by pushing additional data directly to the workflow using a signal. Via the Signal facility, Cadence provides a mechanism to consume external events directly in workflow code. Task routing - Efficiently process large amounts of data using a Cadence workflow, by caching the data locally on a worker and executing all activities meant to process that data on that same worker. Cadence enables you to choose the worker you want to execute a certain activity by scheduling that activity execution in the worker's specific task-list. Unique workflow ID enforcement - Use business entity IDs for your workflows and let Cadence ensure that only one workflow is running for a particular entity at a time. Cadence implements an atomic "uniqueness check" and ensures that no race conditions are possible that would result in multiple workflow executions for the same workflow ID. Therefore, you can implement your code to attempt to start a workflow without checking if the ID is already in use, even in the cases where only one active execution per workflow ID is desired. Perpetual/ContinueAsNew workflows - Run periodic tasks as a single perpetually running workflow. With the "ContinueAsNew" facility, Cadence allows you to leverage the "unique workflow ID enforcement" feature for periodic workflows. Cadence will complete the current execution and start the new execution atomically, ensuring you get to keep your workflow ID. By starting a new execution Cadence also ensures that workflow execution history does not grow indefinitely for perpetual workflows. At-most once activity execution - Execute non-idempotent activities as part of your workflows. Cadence will not automatically retry activities on failure. For every activity execution Cadence will return a success result, a failure result, or a timeout to the workflow code and let the workflow code determine how each one of those result types should be handled. Asynch Activity Completion - Incorporate human input or thrid-party service asynchronous callbacks into your workflows. Cadence allows a workflow to pause execution on an activity and wait for an external actor to resume it with a callback. During this pause the activity does not have any actively executing code, such as a polling loop, and is merely an entry in the Cadence datastore. Therefore, the workflow is unaffected by any worker failures happening over the duration of the pause. Activity Heartbeating - Detect unexpected failures/crashes and track progress in long running activities early. By configuring your activity to report progress periodically to the Cadence server, you can detect a crash that occurs 10 minutes into an hour-long activity execution much sooner, instead of waiting for the 60-minute execution timeout. The recorded progress before the crash gives you sufficient information to determine whether to restart the activity from the beginning or resume it from the point of failure. Timeouts for activities and workflow executions - Protect against stuck and unresponsive activities and workflows with appropriate timeout values. Cadence requires that timeout values are provided for every activity or workflow invocation. There is no upper bound on the timeout values, so you can set timeouts that span days, weeks, or even months. Visibility - Get a list of all your active and/or completed workflow. Explore the execution history of a particular workflow execution. Cadence provides a set of visibility APIs that allow you, the workflow owner, to monitor past and current workflow executions. Debuggability - Replay any workflow execution history locally under a debugger. The Cadence client library provides an API to allow you to capture a stack trace from any failed workflow execution history.
Package dpo provides functionality for interacting with DPO Group's payment gateway from Go applications. Currently the module only supports performing payments through DPOs verify token workflow. You are recommended to set the user agent for the client to some string that identifies your application. The dpo package exposes errors that are thrown from DPO API.
Package paddle is an HTTP API client for the Paddle payment processing service. This package is unmaintained. It does not receive support or security updates. Please do not attempt to use it in production.
Package cadence and its subdirectories contain the Cadence client side framework. The Cadence service is a task orchestrator for your application’s tasks. Applications using Cadence can execute a logical flow of tasks, especially long-running business logic, asynchronously or synchronously. They can also scale at runtime on distributed systems. A quick example illustrates its use case. Consider Uber Eats where Cadence manages the entire business flow from placing an order, accepting it, handling shopping cart processes (adding, updating, and calculating cart items), entering the order in a pipeline (for preparing food and coordinating delivery), to scheduling delivery as well as handling payments. Cadence consists of a programming framework (or client library) and a managed service (or backend). The framework enables developers to author and coordinate tasks in Go code. The root cadence package contains common data structures. The subpackages are: The Cadence hosted service brokers and persists events generated during workflow execution. Worker nodes owned and operated by customers execute the coordination and task logic. To facilitate the implementation of worker nodes Cadence provides a client-side library for the Go language. In Cadence, you can code the logical flow of events separately as a workflow and code business logic as activities. The workflow identifies the activities and sequences them, while an activity executes the logic. Dynamic workflow execution graphs - Determine the workflow execution graphs at runtime based on the data you are processing. Cadence does not pre-compute the execution graphs at compile time or at workflow start time. Therefore, you have the ability to write workflows that can dynamically adjust to the amount of data they are processing. If you need to trigger 10 instances of an activity to efficiently process all the data in one run, but only 3 for a subsequent run, you can do that. Child Workflows - Orchestrate the execution of a workflow from within another workflow. Cadence will return the results of the child workflow execution to the parent workflow upon completion of the child workflow. No polling is required in the parent workflow to monitor status of the child workflow, making the process efficient and fault tolerant. Durable Timers - Implement delayed execution of tasks in your workflows that are robust to worker failures. Cadence provides two easy to use APIs, **workflow.Sleep** and **workflow.Timer**, for implementing time based events in your workflows. Cadence ensures that the timer settings are persisted and the events are generated even if workers executing the workflow crash. Signals - Modify/influence the execution path of a running workflow by pushing additional data directly to the workflow using a signal. Via the Signal facility, Cadence provides a mechanism to consume external events directly in workflow code. Task routing - Efficiently process large amounts of data using a Cadence workflow, by caching the data locally on a worker and executing all activities meant to process that data on that same worker. Cadence enables you to choose the worker you want to execute a certain activity by scheduling that activity execution in the worker's specific task-list. Unique workflow ID enforcement - Use business entity IDs for your workflows and let Cadence ensure that only one workflow is running for a particular entity at a time. Cadence implements an atomic "uniqueness check" and ensures that no race conditions are possible that would result in multiple workflow executions for the same workflow ID. Therefore, you can implement your code to attempt to start a workflow without checking if the ID is already in use, even in the cases where only one active execution per workflow ID is desired. Perpetual/ContinueAsNew workflows - Run periodic tasks as a single perpetually running workflow. With the "ContinueAsNew" facility, Cadence allows you to leverage the "unique workflow ID enforcement" feature for periodic workflows. Cadence will complete the current execution and start the new execution atomically, ensuring you get to keep your workflow ID. By starting a new execution Cadence also ensures that workflow execution history does not grow indefinitely for perpetual workflows. At-most once activity execution - Execute non-idempotent activities as part of your workflows. Cadence will not automatically retry activities on failure. For every activity execution Cadence will return a success result, a failure result, or a timeout to the workflow code and let the workflow code determine how each one of those result types should be handled. Asynch Activity Completion - Incorporate human input or thrid-party service asynchronous callbacks into your workflows. Cadence allows a workflow to pause execution on an activity and wait for an external actor to resume it with a callback. During this pause the activity does not have any actively executing code, such as a polling loop, and is merely an entry in the Cadence datastore. Therefore, the workflow is unaffected by any worker failures happening over the duration of the pause. Activity Heartbeating - Detect unexpected failures/crashes and track progress in long running activities early. By configuring your activity to report progress periodically to the Cadence server, you can detect a crash that occurs 10 minutes into an hour-long activity execution much sooner, instead of waiting for the 60-minute execution timeout. The recorded progress before the crash gives you sufficient information to determine whether to restart the activity from the beginning or resume it from the point of failure. Timeouts for activities and workflow executions - Protect against stuck and unresponsive activities and workflows with appropriate timeout values. Cadence requires that timeout values are provided for every activity or workflow invocation. There is no upper bound on the timeout values, so you can set timeouts that span days, weeks, or even months. Visibility - Get a list of all your active and/or completed workflow. Explore the execution history of a particular workflow execution. Cadence provides a set of visibility APIs that allow you, the workflow owner, to monitor past and current workflow executions. Debuggability - Replay any workflow execution history locally under a debugger. The Cadence client library provides an API to allow you to capture a stack trace from any failed workflow execution history.
Package cadence and its subdirectories contain the Cadence client side framework. The Cadence service is a task orchestrator for your application’s tasks. Applications using Cadence can execute a logical flow of tasks, especially long-running business logic, asynchronously or synchronously. They can also scale at runtime on distributed systems. A quick example illustrates its use case. Consider Uber Eats where Cadence manages the entire business flow from placing an order, accepting it, handling shopping cart processes (adding, updating, and calculating cart items), entering the order in a pipeline (for preparing food and coordinating delivery), to scheduling delivery as well as handling payments. Cadence consists of a programming framework (or client library) and a managed service (or backend). The framework enables developers to author and coordinate tasks in Go code. The root cadence package contains common data structures. The subpackages are: The Cadence hosted service brokers and persists events generated during workflow execution. Worker nodes owned and operated by customers execute the coordination and task logic. To facilitate the implementation of worker nodes Cadence provides a client-side library for the Go language. In Cadence, you can code the logical flow of events separately as a workflow and code business logic as activities. The workflow identifies the activities and sequences them, while an activity executes the logic. Dynamic workflow execution graphs - Determine the workflow execution graphs at runtime based on the data you are processing. Cadence does not pre-compute the execution graphs at compile time or at workflow start time. Therefore, you have the ability to write workflows that can dynamically adjust to the amount of data they are processing. If you need to trigger 10 instances of an activity to efficiently process all the data in one run, but only 3 for a subsequent run, you can do that. Child Workflows - Orchestrate the execution of a workflow from within another workflow. Cadence will return the results of the child workflow execution to the parent workflow upon completion of the child workflow. No polling is required in the parent workflow to monitor status of the child workflow, making the process efficient and fault tolerant. Durable Timers - Implement delayed execution of tasks in your workflows that are robust to worker failures. Cadence provides two easy to use APIs, **workflow.Sleep** and **workflow.Timer**, for implementing time based events in your workflows. Cadence ensures that the timer settings are persisted and the events are generated even if workers executing the workflow crash. Signals - Modify/influence the execution path of a running workflow by pushing additional data directly to the workflow using a signal. Via the Signal facility, Cadence provides a mechanism to consume external events directly in workflow code. Task routing - Efficiently process large amounts of data using a Cadence workflow, by caching the data locally on a worker and executing all activities meant to process that data on that same worker. Cadence enables you to choose the worker you want to execute a certain activity by scheduling that activity execution in the worker's specific task-list. Unique workflow ID enforcement - Use business entity IDs for your workflows and let Cadence ensure that only one workflow is running for a particular entity at a time. Cadence implements an atomic "uniqueness check" and ensures that no race conditions are possible that would result in multiple workflow executions for the same workflow ID. Therefore, you can implement your code to attempt to start a workflow without checking if the ID is already in use, even in the cases where only one active execution per workflow ID is desired. Perpetual/ContinueAsNew workflows - Run periodic tasks as a single perpetually running workflow. With the "ContinueAsNew" facility, Cadence allows you to leverage the "unique workflow ID enforcement" feature for periodic workflows. Cadence will complete the current execution and start the new execution atomically, ensuring you get to keep your workflow ID. By starting a new execution Cadence also ensures that workflow execution history does not grow indefinitely for perpetual workflows. At-most once activity execution - Execute non-idempotent activities as part of your workflows. Cadence will not automatically retry activities on failure. For every activity execution Cadence will return a success result, a failure result, or a timeout to the workflow code and let the workflow code determine how each one of those result types should be handled. Asynch Activity Completion - Incorporate human input or thrid-party service asynchronous callbacks into your workflows. Cadence allows a workflow to pause execution on an activity and wait for an external actor to resume it with a callback. During this pause the activity does not have any actively executing code, such as a polling loop, and is merely an entry in the Cadence datastore. Therefore, the workflow is unaffected by any worker failures happening over the duration of the pause. Activity Heartbeating - Detect unexpected failures/crashes and track progress in long running activities early. By configuring your activity to report progress periodically to the Cadence server, you can detect a crash that occurs 10 minutes into an hour-long activity execution much sooner, instead of waiting for the 60-minute execution timeout. The recorded progress before the crash gives you sufficient information to determine whether to restart the activity from the beginning or resume it from the point of failure. Timeouts for activities and workflow executions - Protect against stuck and unresponsive activities and workflows with appropriate timeout values. Cadence requires that timeout values are provided for every activity or workflow invocation. There is no upper bound on the timeout values, so you can set timeouts that span days, weeks, or even months. Visibility - Get a list of all your active and/or completed workflow. Explore the execution history of a particular workflow execution. Cadence provides a set of visibility APIs that allow you, the workflow owner, to monitor past and current workflow executions. Debuggability - Replay any workflow execution history locally under a debugger. The Cadence client library provides an API to allow you to capture a stack trace from any failed workflow execution history.
Package cadence and its subdirectories contain the Cadence client side framework. The Cadence service is a task orchestrator for your application’s tasks. Applications using Cadence can execute a logical flow of tasks, especially long-running business logic, asynchronously or synchronously. They can also scale at runtime on distributed systems. A quick example illustrates its use case. Consider Uber Eats where Cadence manages the entire business flow from placing an order, accepting it, handling shopping cart processes (adding, updating, and calculating cart items), entering the order in a pipeline (for preparing food and coordinating delivery), to scheduling delivery as well as handling payments. Cadence consists of a programming framework (or client library) and a managed service (or backend). The framework enables developers to author and coordinate tasks in Go code. The root cadence package contains common data structures. The subpackages are: The Cadence hosted service brokers and persists events generated during workflow execution. Worker nodes owned and operated by customers execute the coordination and task logic. To facilitate the implementation of worker nodes Cadence provides a client-side library for the Go language. In Cadence, you can code the logical flow of events separately as a workflow and code business logic as activities. The workflow identifies the activities and sequences them, while an activity executes the logic. Dynamic workflow execution graphs - Determine the workflow execution graphs at runtime based on the data you are processing. Cadence does not pre-compute the execution graphs at compile time or at workflow start time. Therefore, you have the ability to write workflows that can dynamically adjust to the amount of data they are processing. If you need to trigger 10 instances of an activity to efficiently process all the data in one run, but only 3 for a subsequent run, you can do that. Child Workflows - Orchestrate the execution of a workflow from within another workflow. Cadence will return the results of the child workflow execution to the parent workflow upon completion of the child workflow. No polling is required in the parent workflow to monitor status of the child workflow, making the process efficient and fault tolerant. Durable Timers - Implement delayed execution of tasks in your workflows that are robust to worker failures. Cadence provides two easy to use APIs, **workflow.Sleep** and **workflow.Timer**, for implementing time based events in your workflows. Cadence ensures that the timer settings are persisted and the events are generated even if workers executing the workflow crash. Signals - Modify/influence the execution path of a running workflow by pushing additional data directly to the workflow using a signal. Via the Signal facility, Cadence provides a mechanism to consume external events directly in workflow code. Task routing - Efficiently process large amounts of data using a Cadence workflow, by caching the data locally on a worker and executing all activities meant to process that data on that same worker. Cadence enables you to choose the worker you want to execute a certain activity by scheduling that activity execution in the worker's specific task-list. Unique workflow ID enforcement - Use business entity IDs for your workflows and let Cadence ensure that only one workflow is running for a particular entity at a time. Cadence implements an atomic "uniqueness check" and ensures that no race conditions are possible that would result in multiple workflow executions for the same workflow ID. Therefore, you can implement your code to attempt to start a workflow without checking if the ID is already in use, even in the cases where only one active execution per workflow ID is desired. Perpetual/ContinueAsNew workflows - Run periodic tasks as a single perpetually running workflow. With the "ContinueAsNew" facility, Cadence allows you to leverage the "unique workflow ID enforcement" feature for periodic workflows. Cadence will complete the current execution and start the new execution atomically, ensuring you get to keep your workflow ID. By starting a new execution Cadence also ensures that workflow execution history does not grow indefinitely for perpetual workflows. At-most once activity execution - Execute non-idempotent activities as part of your workflows. Cadence will not automatically retry activities on failure. For every activity execution Cadence will return a success result, a failure result, or a timeout to the workflow code and let the workflow code determine how each one of those result types should be handled. Asynch Activity Completion - Incorporate human input or thrid-party service asynchronous callbacks into your workflows. Cadence allows a workflow to pause execution on an activity and wait for an external actor to resume it with a callback. During this pause the activity does not have any actively executing code, such as a polling loop, and is merely an entry in the Cadence datastore. Therefore, the workflow is unaffected by any worker failures happening over the duration of the pause. Activity Heartbeating - Detect unexpected failures/crashes and track progress in long running activities early. By configuring your activity to report progress periodically to the Cadence server, you can detect a crash that occurs 10 minutes into an hour-long activity execution much sooner, instead of waiting for the 60-minute execution timeout. The recorded progress before the crash gives you sufficient information to determine whether to restart the activity from the beginning or resume it from the point of failure. Timeouts for activities and workflow executions - Protect against stuck and unresponsive activities and workflows with appropriate timeout values. Cadence requires that timeout values are provided for every activity or workflow invocation. There is no upper bound on the timeout values, so you can set timeouts that span days, weeks, or even months. Visibility - Get a list of all your active and/or completed workflow. Explore the execution history of a particular workflow execution. Cadence provides a set of visibility APIs that allow you, the workflow owner, to monitor past and current workflow executions. Debuggability - Replay any workflow execution history locally under a debugger. The Cadence client library provides an API to allow you to capture a stack trace from any failed workflow execution history.
Package cadence and its subdirectories contain the Cadence client side framework. The Cadence service is a task orchestrator for your application’s tasks. Applications using Cadence can execute a logical flow of tasks, especially long-running business logic, asynchronously or synchronously. They can also scale at runtime on distributed systems. A quick example illustrates its use case. Consider Uber Eats where Cadence manages the entire business flow from placing an order, accepting it, handling shopping cart processes (adding, updating, and calculating cart items), entering the order in a pipeline (for preparing food and coordinating delivery), to scheduling delivery as well as handling payments. Cadence consists of a programming framework (or client library) and a managed service (or backend). The framework enables developers to author and coordinate tasks in Go code. The root cadence package contains common data structures. The subpackages are: The Cadence hosted service brokers and persists events generated during workflow execution. Worker nodes owned and operated by customers execute the coordination and task logic. To facilitate the implementation of worker nodes Cadence provides a client-side library for the Go language. In Cadence, you can code the logical flow of events separately as a workflow and code business logic as activities. The workflow identifies the activities and sequences them, while an activity executes the logic. Dynamic workflow execution graphs - Determine the workflow execution graphs at runtime based on the data you are processing. Cadence does not pre-compute the execution graphs at compile time or at workflow start time. Therefore, you have the ability to write workflows that can dynamically adjust to the amount of data they are processing. If you need to trigger 10 instances of an activity to efficiently process all the data in one run, but only 3 for a subsequent run, you can do that. Child Workflows - Orchestrate the execution of a workflow from within another workflow. Cadence will return the results of the child workflow execution to the parent workflow upon completion of the child workflow. No polling is required in the parent workflow to monitor status of the child workflow, making the process efficient and fault tolerant. Durable Timers - Implement delayed execution of tasks in your workflows that are robust to worker failures. Cadence provides two easy to use APIs, **workflow.Sleep** and **workflow.Timer**, for implementing time based events in your workflows. Cadence ensures that the timer settings are persisted and the events are generated even if workers executing the workflow crash. Signals - Modify/influence the execution path of a running workflow by pushing additional data directly to the workflow using a signal. Via the Signal facility, Cadence provides a mechanism to consume external events directly in workflow code. Task routing - Efficiently process large amounts of data using a Cadence workflow, by caching the data locally on a worker and executing all activities meant to process that data on that same worker. Cadence enables you to choose the worker you want to execute a certain activity by scheduling that activity execution in the worker's specific task-list. Unique workflow ID enforcement - Use business entity IDs for your workflows and let Cadence ensure that only one workflow is running for a particular entity at a time. Cadence implements an atomic "uniqueness check" and ensures that no race conditions are possible that would result in multiple workflow executions for the same workflow ID. Therefore, you can implement your code to attempt to start a workflow without checking if the ID is already in use, even in the cases where only one active execution per workflow ID is desired. Perpetual/ContinueAsNew workflows - Run periodic tasks as a single perpetually running workflow. With the "ContinueAsNew" facility, Cadence allows you to leverage the "unique workflow ID enforcement" feature for periodic workflows. Cadence will complete the current execution and start the new execution atomically, ensuring you get to keep your workflow ID. By starting a new execution Cadence also ensures that workflow execution history does not grow indefinitely for perpetual workflows. At-most once activity execution - Execute non-idempotent activities as part of your workflows. Cadence will not automatically retry activities on failure. For every activity execution Cadence will return a success result, a failure result, or a timeout to the workflow code and let the workflow code determine how each one of those result types should be handled. Asynch Activity Completion - Incorporate human input or thrid-party service asynchronous callbacks into your workflows. Cadence allows a workflow to pause execution on an activity and wait for an external actor to resume it with a callback. During this pause the activity does not have any actively executing code, such as a polling loop, and is merely an entry in the Cadence datastore. Therefore, the workflow is unaffected by any worker failures happening over the duration of the pause. Activity Heartbeating - Detect unexpected failures/crashes and track progress in long running activities early. By configuring your activity to report progress periodically to the Cadence server, you can detect a crash that occurs 10 minutes into an hour-long activity execution much sooner, instead of waiting for the 60-minute execution timeout. The recorded progress before the crash gives you sufficient information to determine whether to restart the activity from the beginning or resume it from the point of failure. Timeouts for activities and workflow executions - Protect against stuck and unresponsive activities and workflows with appropriate timeout values. Cadence requires that timeout values are provided for every activity or workflow invocation. There is no upper bound on the timeout values, so you can set timeouts that span days, weeks, or even months. Visibility - Get a list of all your active and/or completed workflow. Explore the execution history of a particular workflow execution. Cadence provides a set of visibility APIs that allow you, the workflow owner, to monitor past and current workflow executions. Debuggability - Replay any workflow execution history locally under a debugger. The Cadence client library provides an API to allow you to capture a stack trace from any failed workflow execution history.
Package beanstream supplies the 3 APIs for processing payments: Each API has its own Passcode and processes against your Merchant ID. To start using an API you must create a Gateway and supply it the configuration it needs to run: The above values use a Beanstream Test account. To Create a new payment (credit card, cash, cheque...) use the Payments API and supply it with a PaymentRrequest: For more details visit the documentation for each particular API.
Package paddle is an HTTP API client for the Paddle payment processing service. This package is unmaintained. It does not receive support or security updates. Please do not attempt to use it in production.
Package cadence and its subdirectories contain the Cadence client side framework. The Cadence service is a task orchestrator for your application’s tasks. Applications using Cadence can execute a logical flow of tasks, especially long-running business logic, asynchronously or synchronously. They can also scale at runtime on distributed systems. A quick example illustrates its use case. Consider Uber Eats where Cadence manages the entire business flow from placing an order, accepting it, handling shopping cart processes (adding, updating, and calculating cart items), entering the order in a pipeline (for preparing food and coordinating delivery), to scheduling delivery as well as handling payments. Cadence consists of a programming framework (or client library) and a managed service (or backend). The framework enables developers to author and coordinate tasks in Go code. The root cadence package contains common data structures. The subpackages are: The Cadence hosted service brokers and persists events generated during workflow execution. Worker nodes owned and operated by customers execute the coordination and task logic. To facilitate the implementation of worker nodes Cadence provides a client-side library for the Go language. In Cadence, you can code the logical flow of events separately as a workflow and code business logic as activities. The workflow identifies the activities and sequences them, while an activity executes the logic. Dynamic workflow execution graphs - Determine the workflow execution graphs at runtime based on the data you are processing. Cadence does not pre-compute the execution graphs at compile time or at workflow start time. Therefore, you have the ability to write workflows that can dynamically adjust to the amount of data they are processing. If you need to trigger 10 instances of an activity to efficiently process all the data in one run, but only 3 for a subsequent run, you can do that. Child Workflows - Orchestrate the execution of a workflow from within another workflow. Cadence will return the results of the child workflow execution to the parent workflow upon completion of the child workflow. No polling is required in the parent workflow to monitor status of the child workflow, making the process efficient and fault tolerant. Durable Timers - Implement delayed execution of tasks in your workflows that are robust to worker failures. Cadence provides two easy to use APIs, **workflow.Sleep** and **workflow.Timer**, for implementing time based events in your workflows. Cadence ensures that the timer settings are persisted and the events are generated even if workers executing the workflow crash. Signals - Modify/influence the execution path of a running workflow by pushing additional data directly to the workflow using a signal. Via the Signal facility, Cadence provides a mechanism to consume external events directly in workflow code. Task routing - Efficiently process large amounts of data using a Cadence workflow, by caching the data locally on a worker and executing all activities meant to process that data on that same worker. Cadence enables you to choose the worker you want to execute a certain activity by scheduling that activity execution in the worker's specific task-list. Unique workflow ID enforcement - Use business entity IDs for your workflows and let Cadence ensure that only one workflow is running for a particular entity at a time. Cadence implements an atomic "uniqueness check" and ensures that no race conditions are possible that would result in multiple workflow executions for the same workflow ID. Therefore, you can implement your code to attempt to start a workflow without checking if the ID is already in use, even in the cases where only one active execution per workflow ID is desired. Perpetual/ContinueAsNew workflows - Run periodic tasks as a single perpetually running workflow. With the "ContinueAsNew" facility, Cadence allows you to leverage the "unique workflow ID enforcement" feature for periodic workflows. Cadence will complete the current execution and start the new execution atomically, ensuring you get to keep your workflow ID. By starting a new execution Cadence also ensures that workflow execution history does not grow indefinitely for perpetual workflows. At-most once activity execution - Execute non-idempotent activities as part of your workflows. Cadence will not automatically retry activities on failure. For every activity execution Cadence will return a success result, a failure result, or a timeout to the workflow code and let the workflow code determine how each one of those result types should be handled. Asynch Activity Completion - Incorporate human input or thrid-party service asynchronous callbacks into your workflows. Cadence allows a workflow to pause execution on an activity and wait for an external actor to resume it with a callback. During this pause the activity does not have any actively executing code, such as a polling loop, and is merely an entry in the Cadence datastore. Therefore, the workflow is unaffected by any worker failures happening over the duration of the pause. Activity Heartbeating - Detect unexpected failures/crashes and track progress in long running activities early. By configuring your activity to report progress periodically to the Cadence server, you can detect a crash that occurs 10 minutes into an hour-long activity execution much sooner, instead of waiting for the 60-minute execution timeout. The recorded progress before the crash gives you sufficient information to determine whether to restart the activity from the beginning or resume it from the point of failure. Timeouts for activities and workflow executions - Protect against stuck and unresponsive activities and workflows with appropriate timeout values. Cadence requires that timeout values are provided for every activity or workflow invocation. There is no upper bound on the timeout values, so you can set timeouts that span days, weeks, or even months. Visibility - Get a list of all your active and/or completed workflow. Explore the execution history of a particular workflow execution. Cadence provides a set of visibility APIs that allow you, the workflow owner, to monitor past and current workflow executions. Debuggability - Replay any workflow execution history locally under a debugger. The Cadence client library provides an API to allow you to capture a stack trace from any failed workflow execution history.
Package cadence and its subdirectories contain the Cadence client side framework. The Cadence service is a task orchestrator for your application’s tasks. Applications using Cadence can execute a logical flow of tasks, especially long-running business logic, asynchronously or synchronously. They can also scale at runtime on distributed systems. A quick example illustrates its use case. Consider Uber Eats where Cadence manages the entire business flow from placing an order, accepting it, handling shopping cart processes (adding, updating, and calculating cart items), entering the order in a pipeline (for preparing food and coordinating delivery), to scheduling delivery as well as handling payments. Cadence consists of a programming framework (or client library) and a managed service (or backend). The framework enables developers to author and coordinate tasks in Go code. The root cadence package contains common data structures. The subpackages are: The Cadence hosted service brokers and persists events generated during workflow execution. Worker nodes owned and operated by customers execute the coordination and task logic. To facilitate the implementation of worker nodes Cadence provides a client-side library for the Go language. In Cadence, you can code the logical flow of events separately as a workflow and code business logic as activities. The workflow identifies the activities and sequences them, while an activity executes the logic. Dynamic workflow execution graphs - Determine the workflow execution graphs at runtime based on the data you are processing. Cadence does not pre-compute the execution graphs at compile time or at workflow start time. Therefore, you have the ability to write workflows that can dynamically adjust to the amount of data they are processing. If you need to trigger 10 instances of an activity to efficiently process all the data in one run, but only 3 for a subsequent run, you can do that. Child Workflows - Orchestrate the execution of a workflow from within another workflow. Cadence will return the results of the child workflow execution to the parent workflow upon completion of the child workflow. No polling is required in the parent workflow to monitor status of the child workflow, making the process efficient and fault tolerant. Durable Timers - Implement delayed execution of tasks in your workflows that are robust to worker failures. Cadence provides two easy to use APIs, **workflow.Sleep** and **workflow.Timer**, for implementing time based events in your workflows. Cadence ensures that the timer settings are persisted and the events are generated even if workers executing the workflow crash. Signals - Modify/influence the execution path of a running workflow by pushing additional data directly to the workflow using a signal. Via the Signal facility, Cadence provides a mechanism to consume external events directly in workflow code. Task routing - Efficiently process large amounts of data using a Cadence workflow, by caching the data locally on a worker and executing all activities meant to process that data on that same worker. Cadence enables you to choose the worker you want to execute a certain activity by scheduling that activity execution in the worker's specific task-list. Unique workflow ID enforcement - Use business entity IDs for your workflows and let Cadence ensure that only one workflow is running for a particular entity at a time. Cadence implements an atomic "uniqueness check" and ensures that no race conditions are possible that would result in multiple workflow executions for the same workflow ID. Therefore, you can implement your code to attempt to start a workflow without checking if the ID is already in use, even in the cases where only one active execution per workflow ID is desired. Perpetual/ContinueAsNew workflows - Run periodic tasks as a single perpetually running workflow. With the "ContinueAsNew" facility, Cadence allows you to leverage the "unique workflow ID enforcement" feature for periodic workflows. Cadence will complete the current execution and start the new execution atomically, ensuring you get to keep your workflow ID. By starting a new execution Cadence also ensures that workflow execution history does not grow indefinitely for perpetual workflows. At-most once activity execution - Execute non-idempotent activities as part of your workflows. Cadence will not automatically retry activities on failure. For every activity execution Cadence will return a success result, a failure result, or a timeout to the workflow code and let the workflow code determine how each one of those result types should be handled. Asynch Activity Completion - Incorporate human input or thrid-party service asynchronous callbacks into your workflows. Cadence allows a workflow to pause execution on an activity and wait for an external actor to resume it with a callback. During this pause the activity does not have any actively executing code, such as a polling loop, and is merely an entry in the Cadence datastore. Therefore, the workflow is unaffected by any worker failures happening over the duration of the pause. Activity Heartbeating - Detect unexpected failures/crashes and track progress in long running activities early. By configuring your activity to report progress periodically to the Cadence server, you can detect a crash that occurs 10 minutes into an hour-long activity execution much sooner, instead of waiting for the 60-minute execution timeout. The recorded progress before the crash gives you sufficient information to determine whether to restart the activity from the beginning or resume it from the point of failure. Timeouts for activities and workflow executions - Protect against stuck and unresponsive activities and workflows with appropriate timeout values. Cadence requires that timeout values are provided for every activity or workflow invocation. There is no upper bound on the timeout values, so you can set timeouts that span days, weeks, or even months. Visibility - Get a list of all your active and/or completed workflow. Explore the execution history of a particular workflow execution. Cadence provides a set of visibility APIs that allow you, the workflow owner, to monitor past and current workflow executions. Debuggability - Replay any workflow execution history locally under a debugger. The Cadence client library provides an API to allow you to capture a stack trace from any failed workflow execution history.
Package beanstream supplies the 3 APIs for processing payments: Each API has its own Passcode and processes against your Merchant ID. To start using an API you must create a Gateway and supply it the configuration it needs to run: The above values use a Beanstream Test account. To Create a new payment (credit card, cash, cheque...) use the Payments API and supply it with a PaymentRrequest: For more details visit the documentation for each particular API.
Package cadence and its subdirectories contain the Cadence client side framework. The Cadence service is a task orchestrator for your application’s tasks. Applications using Cadence can execute a logical flow of tasks, especially long-running business logic, asynchronously or synchronously. They can also scale at runtime on distributed systems. A quick example illustrates its use case. Consider Uber Eats where Cadence manages the entire business flow from placing an order, accepting it, handling shopping cart processes (adding, updating, and calculating cart items), entering the order in a pipeline (for preparing food and coordinating delivery), to scheduling delivery as well as handling payments. Cadence consists of a programming framework (or client library) and a managed service (or backend). The framework enables developers to author and coordinate tasks in Go code. The root cadence package contains common data structures. The subpackages are: The Cadence hosted service brokers and persists events generated during workflow execution. Worker nodes owned and operated by customers execute the coordination and task logic. To facilitate the implementation of worker nodes Cadence provides a client-side library for the Go language. In Cadence, you can code the logical flow of events separately as a workflow and code business logic as activities. The workflow identifies the activities and sequences them, while an activity executes the logic. Dynamic workflow execution graphs - Determine the workflow execution graphs at runtime based on the data you are processing. Cadence does not pre-compute the execution graphs at compile time or at workflow start time. Therefore, you have the ability to write workflows that can dynamically adjust to the amount of data they are processing. If you need to trigger 10 instances of an activity to efficiently process all the data in one run, but only 3 for a subsequent run, you can do that. Child Workflows - Orchestrate the execution of a workflow from within another workflow. Cadence will return the results of the child workflow execution to the parent workflow upon completion of the child workflow. No polling is required in the parent workflow to monitor status of the child workflow, making the process efficient and fault tolerant. Durable Timers - Implement delayed execution of tasks in your workflows that are robust to worker failures. Cadence provides two easy to use APIs, **workflow.Sleep** and **workflow.Timer**, for implementing time based events in your workflows. Cadence ensures that the timer settings are persisted and the events are generated even if workers executing the workflow crash. Signals - Modify/influence the execution path of a running workflow by pushing additional data directly to the workflow using a signal. Via the Signal facility, Cadence provides a mechanism to consume external events directly in workflow code. Task routing - Efficiently process large amounts of data using a Cadence workflow, by caching the data locally on a worker and executing all activities meant to process that data on that same worker. Cadence enables you to choose the worker you want to execute a certain activity by scheduling that activity execution in the worker's specific task-list. Unique workflow ID enforcement - Use business entity IDs for your workflows and let Cadence ensure that only one workflow is running for a particular entity at a time. Cadence implements an atomic "uniqueness check" and ensures that no race conditions are possible that would result in multiple workflow executions for the same workflow ID. Therefore, you can implement your code to attempt to start a workflow without checking if the ID is already in use, even in the cases where only one active execution per workflow ID is desired. Perpetual/ContinueAsNew workflows - Run periodic tasks as a single perpetually running workflow. With the "ContinueAsNew" facility, Cadence allows you to leverage the "unique workflow ID enforcement" feature for periodic workflows. Cadence will complete the current execution and start the new execution atomically, ensuring you get to keep your workflow ID. By starting a new execution Cadence also ensures that workflow execution history does not grow indefinitely for perpetual workflows. At-most once activity execution - Execute non-idempotent activities as part of your workflows. Cadence will not automatically retry activities on failure. For every activity execution Cadence will return a success result, a failure result, or a timeout to the workflow code and let the workflow code determine how each one of those result types should be handled. Asynch Activity Completion - Incorporate human input or thrid-party service asynchronous callbacks into your workflows. Cadence allows a workflow to pause execution on an activity and wait for an external actor to resume it with a callback. During this pause the activity does not have any actively executing code, such as a polling loop, and is merely an entry in the Cadence datastore. Therefore, the workflow is unaffected by any worker failures happening over the duration of the pause. Activity Heartbeating - Detect unexpected failures/crashes and track progress in long running activities early. By configuring your activity to report progress periodically to the Cadence server, you can detect a crash that occurs 10 minutes into an hour-long activity execution much sooner, instead of waiting for the 60-minute execution timeout. The recorded progress before the crash gives you sufficient information to determine whether to restart the activity from the beginning or resume it from the point of failure. Timeouts for activities and workflow executions - Protect against stuck and unresponsive activities and workflows with appropriate timeout values. Cadence requires that timeout values are provided for every activity or workflow invocation. There is no upper bound on the timeout values, so you can set timeouts that span days, weeks, or even months. Visibility - Get a list of all your active and/or completed workflow. Explore the execution history of a particular workflow execution. Cadence provides a set of visibility APIs that allow you, the workflow owner, to monitor past and current workflow executions. Debuggability - Replay any workflow execution history locally under a debugger. The Cadence client library provides an API to allow you to capture a stack trace from any failed workflow execution history.
Package cadence and its subdirectories contain the Cadence client side framework. The Cadence service is a task orchestrator for your application’s tasks. Applications using Cadence can execute a logical flow of tasks, especially long-running business logic, asynchronously or synchronously. They can also scale at runtime on distributed systems. A quick example illustrates its use case. Consider Uber Eats where Cadence manages the entire business flow from placing an order, accepting it, handling shopping cart processes (adding, updating, and calculating cart items), entering the order in a pipeline (for preparing food and coordinating delivery), to scheduling delivery as well as handling payments. Cadence consists of a programming framework (or client library) and a managed service (or backend). The framework enables developers to author and coordinate tasks in Go code. The root cadence package contains common data structures. The subpackages are: The Cadence hosted service brokers and persists events generated during workflow execution. Worker nodes owned and operated by customers execute the coordination and task logic. To facilitate the implementation of worker nodes Cadence provides a client-side library for the Go language. In Cadence, you can code the logical flow of events separately as a workflow and code business logic as activities. The workflow identifies the activities and sequences them, while an activity executes the logic. Dynamic workflow execution graphs - Determine the workflow execution graphs at runtime based on the data you are processing. Cadence does not pre-compute the execution graphs at compile time or at workflow start time. Therefore, you have the ability to write workflows that can dynamically adjust to the amount of data they are processing. If you need to trigger 10 instances of an activity to efficiently process all the data in one run, but only 3 for a subsequent run, you can do that. Child Workflows - Orchestrate the execution of a workflow from within another workflow. Cadence will return the results of the child workflow execution to the parent workflow upon completion of the child workflow. No polling is required in the parent workflow to monitor status of the child workflow, making the process efficient and fault tolerant. Durable Timers - Implement delayed execution of tasks in your workflows that are robust to worker failures. Cadence provides two easy to use APIs, **workflow.Sleep** and **workflow.Timer**, for implementing time based events in your workflows. Cadence ensures that the timer settings are persisted and the events are generated even if workers executing the workflow crash. Signals - Modify/influence the execution path of a running workflow by pushing additional data directly to the workflow using a signal. Via the Signal facility, Cadence provides a mechanism to consume external events directly in workflow code. Task routing - Efficiently process large amounts of data using a Cadence workflow, by caching the data locally on a worker and executing all activities meant to process that data on that same worker. Cadence enables you to choose the worker you want to execute a certain activity by scheduling that activity execution in the worker's specific task-list. Unique workflow ID enforcement - Use business entity IDs for your workflows and let Cadence ensure that only one workflow is running for a particular entity at a time. Cadence implements an atomic "uniqueness check" and ensures that no race conditions are possible that would result in multiple workflow executions for the same workflow ID. Therefore, you can implement your code to attempt to start a workflow without checking if the ID is already in use, even in the cases where only one active execution per workflow ID is desired. Perpetual/ContinueAsNew workflows - Run periodic tasks as a single perpetually running workflow. With the "ContinueAsNew" facility, Cadence allows you to leverage the "unique workflow ID enforcement" feature for periodic workflows. Cadence will complete the current execution and start the new execution atomically, ensuring you get to keep your workflow ID. By starting a new execution Cadence also ensures that workflow execution history does not grow indefinitely for perpetual workflows. At-most once activity execution - Execute non-idempotent activities as part of your workflows. Cadence will not automatically retry activities on failure. For every activity execution Cadence will return a success result, a failure result, or a timeout to the workflow code and let the workflow code determine how each one of those result types should be handled. Asynch Activity Completion - Incorporate human input or thrid-party service asynchronous callbacks into your workflows. Cadence allows a workflow to pause execution on an activity and wait for an external actor to resume it with a callback. During this pause the activity does not have any actively executing code, such as a polling loop, and is merely an entry in the Cadence datastore. Therefore, the workflow is unaffected by any worker failures happening over the duration of the pause. Activity Heartbeating - Detect unexpected failures/crashes and track progress in long running activities early. By configuring your activity to report progress periodically to the Cadence server, you can detect a crash that occurs 10 minutes into an hour-long activity execution much sooner, instead of waiting for the 60-minute execution timeout. The recorded progress before the crash gives you sufficient information to determine whether to restart the activity from the beginning or resume it from the point of failure. Timeouts for activities and workflow executions - Protect against stuck and unresponsive activities and workflows with appropriate timeout values. Cadence requires that timeout values are provided for every activity or workflow invocation. There is no upper bound on the timeout values, so you can set timeouts that span days, weeks, or even months. Visibility - Get a list of all your active and/or completed workflow. Explore the execution history of a particular workflow execution. Cadence provides a set of visibility APIs that allow you, the workflow owner, to monitor past and current workflow executions. Debuggability - Replay any workflow execution history locally under a debugger. The Cadence client library provides an API to allow you to capture a stack trace from any failed workflow execution history.
Package cadence and its subdirectories contain the Cadence client side framework. The Cadence service is a task orchestrator for your application’s tasks. Applications using Cadence can execute a logical flow of tasks, especially long-running business logic, asynchronously or synchronously. They can also scale at runtime on distributed systems. A quick example illustrates its use case. Consider Uber Eats where Cadence manages the entire business flow from placing an order, accepting it, handling shopping cart processes (adding, updating, and calculating cart items), entering the order in a pipeline (for preparing food and coordinating delivery), to scheduling delivery as well as handling payments. Cadence consists of a programming framework (or client library) and a managed service (or backend). The framework enables developers to author and coordinate tasks in Go code. The root cadence package contains common data structures. The subpackages are: The Cadence hosted service brokers and persists events generated during workflow execution. Worker nodes owned and operated by customers execute the coordination and task logic. To facilitate the implementation of worker nodes Cadence provides a client-side library for the Go language. In Cadence, you can code the logical flow of events separately as a workflow and code business logic as activities. The workflow identifies the activities and sequences them, while an activity executes the logic. Dynamic workflow execution graphs - Determine the workflow execution graphs at runtime based on the data you are processing. Cadence does not pre-compute the execution graphs at compile time or at workflow start time. Therefore, you have the ability to write workflows that can dynamically adjust to the amount of data they are processing. If you need to trigger 10 instances of an activity to efficiently process all the data in one run, but only 3 for a subsequent run, you can do that. Child Workflows - Orchestrate the execution of a workflow from within another workflow. Cadence will return the results of the child workflow execution to the parent workflow upon completion of the child workflow. No polling is required in the parent workflow to monitor status of the child workflow, making the process efficient and fault tolerant. Durable Timers - Implement delayed execution of tasks in your workflows that are robust to worker failures. Cadence provides two easy to use APIs, **workflow.Sleep** and **workflow.Timer**, for implementing time based events in your workflows. Cadence ensures that the timer settings are persisted and the events are generated even if workers executing the workflow crash. Signals - Modify/influence the execution path of a running workflow by pushing additional data directly to the workflow using a signal. Via the Signal facility, Cadence provides a mechanism to consume external events directly in workflow code. Task routing - Efficiently process large amounts of data using a Cadence workflow, by caching the data locally on a worker and executing all activities meant to process that data on that same worker. Cadence enables you to choose the worker you want to execute a certain activity by scheduling that activity execution in the worker's specific task-list. Unique workflow ID enforcement - Use business entity IDs for your workflows and let Cadence ensure that only one workflow is running for a particular entity at a time. Cadence implements an atomic "uniqueness check" and ensures that no race conditions are possible that would result in multiple workflow executions for the same workflow ID. Therefore, you can implement your code to attempt to start a workflow without checking if the ID is already in use, even in the cases where only one active execution per workflow ID is desired. Perpetual/ContinueAsNew workflows - Run periodic tasks as a single perpetually running workflow. With the "ContinueAsNew" facility, Cadence allows you to leverage the "unique workflow ID enforcement" feature for periodic workflows. Cadence will complete the current execution and start the new execution atomically, ensuring you get to keep your workflow ID. By starting a new execution Cadence also ensures that workflow execution history does not grow indefinitely for perpetual workflows. At-most once activity execution - Execute non-idempotent activities as part of your workflows. Cadence will not automatically retry activities on failure. For every activity execution Cadence will return a success result, a failure result, or a timeout to the workflow code and let the workflow code determine how each one of those result types should be handled. Asynch Activity Completion - Incorporate human input or thrid-party service asynchronous callbacks into your workflows. Cadence allows a workflow to pause execution on an activity and wait for an external actor to resume it with a callback. During this pause the activity does not have any actively executing code, such as a polling loop, and is merely an entry in the Cadence datastore. Therefore, the workflow is unaffected by any worker failures happening over the duration of the pause. Activity Heartbeating - Detect unexpected failures/crashes and track progress in long running activities early. By configuring your activity to report progress periodically to the Cadence server, you can detect a crash that occurs 10 minutes into an hour-long activity execution much sooner, instead of waiting for the 60-minute execution timeout. The recorded progress before the crash gives you sufficient information to determine whether to restart the activity from the beginning or resume it from the point of failure. Timeouts for activities and workflow executions - Protect against stuck and unresponsive activities and workflows with appropriate timeout values. Cadence requires that timeout values are provided for every activity or workflow invocation. There is no upper bound on the timeout values, so you can set timeouts that span days, weeks, or even months. Visibility - Get a list of all your active and/or completed workflow. Explore the execution history of a particular workflow execution. Cadence provides a set of visibility APIs that allow you, the workflow owner, to monitor past and current workflow executions. Debuggability - Replay any workflow execution history locally under a debugger. The Cadence client library provides an API to allow you to capture a stack trace from any failed workflow execution history.
Package cadence and its subdirectories contain the Cadence client side framework. The Cadence service is a task orchestrator for your application’s tasks. Applications using Cadence can execute a logical flow of tasks, especially long-running business logic, asynchronously or synchronously. They can also scale at runtime on distributed systems. A quick example illustrates its use case. Consider Uber Eats where Cadence manages the entire business flow from placing an order, accepting it, handling shopping cart processes (adding, updating, and calculating cart items), entering the order in a pipeline (for preparing food and coordinating delivery), to scheduling delivery as well as handling payments. Cadence consists of a programming framework (or client library) and a managed service (or backend). The framework enables developers to author and coordinate tasks in Go code. The root cadence package contains common data structures. The subpackages are: The Cadence hosted service brokers and persists events generated during workflow execution. Worker nodes owned and operated by customers execute the coordination and task logic. To facilitate the implementation of worker nodes Cadence provides a client-side library for the Go language. In Cadence, you can code the logical flow of events separately as a workflow and code business logic as activities. The workflow identifies the activities and sequences them, while an activity executes the logic. Dynamic workflow execution graphs - Determine the workflow execution graphs at runtime based on the data you are processing. Cadence does not pre-compute the execution graphs at compile time or at workflow start time. Therefore, you have the ability to write workflows that can dynamically adjust to the amount of data they are processing. If you need to trigger 10 instances of an activity to efficiently process all the data in one run, but only 3 for a subsequent run, you can do that. Child Workflows - Orchestrate the execution of a workflow from within another workflow. Cadence will return the results of the child workflow execution to the parent workflow upon completion of the child workflow. No polling is required in the parent workflow to monitor status of the child workflow, making the process efficient and fault tolerant. Durable Timers - Implement delayed execution of tasks in your workflows that are robust to worker failures. Cadence provides two easy to use APIs, **workflow.Sleep** and **workflow.Timer**, for implementing time based events in your workflows. Cadence ensures that the timer settings are persisted and the events are generated even if workers executing the workflow crash. Signals - Modify/influence the execution path of a running workflow by pushing additional data directly to the workflow using a signal. Via the Signal facility, Cadence provides a mechanism to consume external events directly in workflow code. Task routing - Efficiently process large amounts of data using a Cadence workflow, by caching the data locally on a worker and executing all activities meant to process that data on that same worker. Cadence enables you to choose the worker you want to execute a certain activity by scheduling that activity execution in the worker's specific task-list. Unique workflow ID enforcement - Use business entity IDs for your workflows and let Cadence ensure that only one workflow is running for a particular entity at a time. Cadence implements an atomic "uniqueness check" and ensures that no race conditions are possible that would result in multiple workflow executions for the same workflow ID. Therefore, you can implement your code to attempt to start a workflow without checking if the ID is already in use, even in the cases where only one active execution per workflow ID is desired. Perpetual/ContinueAsNew workflows - Run periodic tasks as a single perpetually running workflow. With the "ContinueAsNew" facility, Cadence allows you to leverage the "unique workflow ID enforcement" feature for periodic workflows. Cadence will complete the current execution and start the new execution atomically, ensuring you get to keep your workflow ID. By starting a new execution Cadence also ensures that workflow execution history does not grow indefinitely for perpetual workflows. At-most once activity execution - Execute non-idempotent activities as part of your workflows. Cadence will not automatically retry activities on failure. For every activity execution Cadence will return a success result, a failure result, or a timeout to the workflow code and let the workflow code determine how each one of those result types should be handled. Asynch Activity Completion - Incorporate human input or thrid-party service asynchronous callbacks into your workflows. Cadence allows a workflow to pause execution on an activity and wait for an external actor to resume it with a callback. During this pause the activity does not have any actively executing code, such as a polling loop, and is merely an entry in the Cadence datastore. Therefore, the workflow is unaffected by any worker failures happening over the duration of the pause. Activity Heartbeating - Detect unexpected failures/crashes and track progress in long running activities early. By configuring your activity to report progress periodically to the Cadence server, you can detect a crash that occurs 10 minutes into an hour-long activity execution much sooner, instead of waiting for the 60-minute execution timeout. The recorded progress before the crash gives you sufficient information to determine whether to restart the activity from the beginning or resume it from the point of failure. Timeouts for activities and workflow executions - Protect against stuck and unresponsive activities and workflows with appropriate timeout values. Cadence requires that timeout values are provided for every activity or workflow invocation. There is no upper bound on the timeout values, so you can set timeouts that span days, weeks, or even months. Visibility - Get a list of all your active and/or completed workflow. Explore the execution history of a particular workflow execution. Cadence provides a set of visibility APIs that allow you, the workflow owner, to monitor past and current workflow executions. Debuggability - Replay any workflow execution history locally under a debugger. The Cadence client library provides an API to allow you to capture a stack trace from any failed workflow execution history.
Package coveralls provide functions to interact with Coveralls API
Package beanstream supplies the 3 APIs for processing payments: Each API has its own Passcode and processes against your Merchant ID. To start using an API you must create a Gateway and supply it the configuration it needs to run: The above values use a Beanstream Test account. To Create a new payment (credit card, cash, cheque...) use the Payments API and supply it with a PaymentRrequest: For more details visit the documentation for each particular API.
Package qiwi implements QIWI API as a client library. Behind this library there are two main structures: Payment which carries all our requests and RSP responses and Notify which holds inbound requests from RSP. For payment sessions are CardRequest, ApplePay and GooglePay methods of Payments are available. Example to process ApplePay payment You may pass hook payload to NewNotify function, or use NotifyParseHTTPRequest which works directly for http.Request the Notify object will be returned with the payment status. Example of receiving Notify from incoming http.Request Or you may process received data by yourself and pass the payload to NewNotify QIWI uses ISO8601 (2021-07-29T16:30:00+03:00) time format, so use a build-in Time custom time type