Package mysql provides a MySQL driver for Go's database/sql package. The driver should be used via the database/sql package: See https://github.com/go-sql-driver/mysql#usage for details
Package mysql implements gdb.Driver, which supports operations for database MySQL.
Package nrmysql instruments https://github.com/go-sql-driver/mysql. Use this package to instrument your MySQL calls without having to manually create DatastoreSegments. This is done in a two step process: 1. Use this package's driver in place of the mysql driver. If your code is using sql.Open like this: Then change the side-effect import to this package, and open "nrmysql" instead: 2. Provide a context containing a newrelic.Transaction to all exec and query methods on sql.DB, sql.Conn, sql.Tx, and sql.Stmt. This requires using the context methods ExecContext, QueryContext, and QueryRowContext in place of Exec, Query, and QueryRow respectively. For example, instead of the following: Do this: A working example is shown here: https://github.com/newrelic/go-agent/tree/master/v3/integrations/nrmysql/example/main.go
Go MySQL Driver - A MySQL-Driver for Go's database/sql package
Package mysql provides a MySQL driver for Go's database/sql package. The driver should be used via the database/sql package: See https://github.com/go-sql-driver/mysql#usage for details
Package mysql provides a MySQL driver for Go's database/sql package. The driver should be used via the database/sql package: See https://github.com/go-sql-driver/mysql#usage for details
Create MYSQL dumps in Go without the 'mysqldump' CLI as a dependancy. This example uses the mymysql driver (example 7 https://github.com/ziutek/mymysql) to connect to a mysql instance.
Package bolt implements a low-level key/value store in pure Go. It supports fully serializable transactions, ACID semantics, and lock-free MVCC with multiple readers and a single writer. Bolt can be used for projects that want a simple data store without the need to add large dependencies such as Postgres or MySQL. Bolt is a single-level, zero-copy, B+tree data store. This means that Bolt is optimized for fast read access and does not require recovery in the event of a system crash. Transactions which have not finished committing will simply be rolled back in the event of a crash. The design of Bolt is based on Howard Chu's LMDB database project. Bolt currently works on Windows, Mac OS X, and Linux. There are only a few types in Bolt: DB, Bucket, Tx, and Cursor. The DB is a collection of buckets and is represented by a single file on disk. A bucket is a collection of unique keys that are associated with values. Transactions provide either read-only or read-write access to the database. Read-only transactions can retrieve key/value pairs and can use Cursors to iterate over the dataset sequentially. Read-write transactions can create and delete buckets and can insert and remove keys. Only one read-write transaction is allowed at a time. The database uses a read-only, memory-mapped data file to ensure that applications cannot corrupt the database, however, this means that keys and values returned from Bolt cannot be changed. Writing to a read-only byte slice will cause Go to panic. Keys and values retrieved from the database are only valid for the life of the transaction. When used outside the transaction, these byte slices can point to different data or can point to invalid memory which will cause a panic.
Copyright (c) 2013 Contributors. See the list of contributors in the CONTRIBUTORS file for details. This software is licensed under a MIT style license available in the LICENSE file.
package bbolt implements a low-level key/value store in pure Go. It supports fully serializable transactions, ACID semantics, and lock-free MVCC with multiple readers and a single writer. Bolt can be used for projects that want a simple data store without the need to add large dependencies such as Postgres or MySQL. Bolt is a single-level, zero-copy, B+tree data store. This means that Bolt is optimized for fast read access and does not require recovery in the event of a system crash. Transactions which have not finished committing will simply be rolled back in the event of a crash. The design of Bolt is based on Howard Chu's LMDB database project. Bolt currently works on Windows, Mac OS X, and Linux. There are only a few types in Bolt: DB, Bucket, Tx, and Cursor. The DB is a collection of buckets and is represented by a single file on disk. A bucket is a collection of unique keys that are associated with values. Transactions provide either read-only or read-write access to the database. Read-only transactions can retrieve key/value pairs and can use Cursors to iterate over the dataset sequentially. Read-write transactions can create and delete buckets and can insert and remove keys. Only one read-write transaction is allowed at a time. The database uses a read-only, memory-mapped data file to ensure that applications cannot corrupt the database, however, this means that keys and values returned from Bolt cannot be changed. Writing to a read-only byte slice will cause Go to panic. Keys and values retrieved from the database are only valid for the life of the transaction. When used outside the transaction, these byte slices can point to different data or can point to invalid memory which will cause a panic.
Package mysql implements a storage interface for Aries (aries-framework-go).
Package mysql provides a MySQL driver for Go's database/sql package. The driver should be used via the database/sql package: See https://github.com/go-sql-driver/mysql#usage for details
Package mysql provides a MySQL driver for Go's database/sql package. The driver should be used via the database/sql package: See https://github.com/go-sql-driver/mysql#usage for details
Package mysql provides a MySQL driver for Go's database/sql package. The driver should be used via the database/sql package: See https://github.com/go-sql-driver/mysql#usage for details
package bbolt implements a low-level key/value store in pure Go. It supports fully serializable transactions, ACID semantics, and lock-free MVCC with multiple readers and a single writer. Bolt can be used for projects that want a simple data store without the need to add large dependencies such as Postgres or MySQL. Bolt is a single-level, zero-copy, B+tree data store. This means that Bolt is optimized for fast read access and does not require recovery in the event of a system crash. Transactions which have not finished committing will simply be rolled back in the event of a crash. The design of Bolt is based on Howard Chu's LMDB database project. Bolt currently works on Windows, Mac OS X, and Linux. There are only a few types in Bolt: DB, Bucket, Tx, and Cursor. The DB is a collection of buckets and is represented by a single file on disk. A bucket is a collection of unique keys that are associated with values. Transactions provide either read-only or read-write access to the database. Read-only transactions can retrieve key/value pairs and can use Cursors to iterate over the dataset sequentially. Read-write transactions can create and delete buckets and can insert and remove keys. Only one read-write transaction is allowed at a time. The database uses a read-only, memory-mapped data file to ensure that applications cannot corrupt the database, however, this means that keys and values returned from Bolt cannot be changed. Writing to a read-only byte slice will cause Go to panic. Keys and values retrieved from the database are only valid for the life of the transaction. When used outside the transaction, these byte slices can point to different data or can point to invalid memory which will cause a panic.
package bbolt implements a low-level key/value store in pure Go. It supports fully serializable transactions, ACID semantics, and lock-free MVCC with multiple readers and a single writer. Bolt can be used for projects that want a simple data store without the need to add large dependencies such as Postgres or MySQL. Bolt is a single-level, zero-copy, B+tree data store. This means that Bolt is optimized for fast read access and does not require recovery in the event of a system crash. Transactions which have not finished committing will simply be rolled back in the event of a crash. The design of Bolt is based on Howard Chu's LMDB database project. Bolt currently works on Windows, Mac OS X, and Linux. There are only a few types in Bolt: DB, Bucket, Tx, and Cursor. The DB is a collection of buckets and is represented by a single file on disk. A bucket is a collection of unique keys that are associated with values. Transactions provide either read-only or read-write access to the database. Read-only transactions can retrieve key/value pairs and can use Cursors to iterate over the dataset sequentially. Read-write transactions can create and delete buckets and can insert and remove keys. Only one read-write transaction is allowed at a time. The database uses a read-only, memory-mapped data file to ensure that applications cannot corrupt the database, however, this means that keys and values returned from Bolt cannot be changed. Writing to a read-only byte slice will cause Go to panic. Keys and values retrieved from the database are only valid for the life of the transaction. When used outside the transaction, these byte slices can point to different data or can point to invalid memory which will cause a panic.
SQL Schema migration tool for Go. Key features: To install the library and command line program, use the following: The main command is called sql-migrate. Each command requires a configuration file (which defaults to dbconfig.yml, but can be specified with the -config flag). This config file should specify one or more environments: The `table` setting is optional and will default to `gorp_migrations`. The environment that will be used can be specified with the -env flag (defaults to development). Use the --help flag in combination with any of the commands to get an overview of its usage: The up command applies all available migrations. By contrast, down will only apply one migration by default. This behavior can be changed for both by using the -limit parameter. The redo command will unapply the last migration and reapply it. This is useful during development, when you're writing migrations. Use the status command to see the state of the applied migrations: If you are using MySQL, you must append ?parseTime=true to the datasource configuration. For example: See https://github.com/go-sql-driver/mysql#parsetime for more information. Import sql-migrate into your application: Set up a source of migrations, this can be from memory, from a set of files or from bindata (more on that later): Then use the Exec function to upgrade your database: Note that n can be greater than 0 even if there is an error: any migration that succeeded will remain applied even if a later one fails. The full set of capabilities can be found in the API docs below. Migrations are defined in SQL files, which contain a set of SQL statements. Special comments are used to distinguish up and down migrations. You can put multiple statements in each block, as long as you end them with a semicolon (;). If you have complex statements which contain semicolons, use StatementBegin and StatementEnd to indicate boundaries: The order in which migrations are applied is defined through the filename: sql-migrate will sort migrations based on their name. It's recommended to use an increasing version number or a timestamp as the first part of the filename. Normally each migration is run within a transaction in order to guarantee that it is fully atomic. However some SQL commands (for example creating an index concurrently in PostgreSQL) cannot be executed inside a transaction. In order to execute such a command in a migration, the migration can be run using the notransaction option: If you like your Go applications self-contained (that is: a single binary): use packr (https://github.com/gobuffalo/packr) to embed the migration files. Just write your migration files as usual, as a set of SQL files in a folder. Use the PackrMigrationSource in your application to find the migrations: If you already have a box and would like to use a subdirectory: As an alternative, but slightly less maintained, you can use bindata (https://github.com/shuLhan/go-bindata) to embed the migration files. Just write your migration files as usual, as a set of SQL files in a folder. Then use bindata to generate a .go file with the migrations embedded: The resulting bindata.go file will contain your migrations. Remember to regenerate your bindata.go file whenever you add/modify a migration (go generate will help here, once it arrives). Use the AssetMigrationSource in your application to find the migrations: Both Asset and AssetDir are functions provided by bindata. Then proceed as usual. Adding a new migration source means implementing MigrationSource. The resulting slice of migrations will be executed in the given order, so it should usually be sorted by the Id field.
Package rds provides the API client, operations, and parameter types for Amazon Relational Database Service. Amazon Relational Database Service (Amazon RDS) is a web service that makes it easier to set up, operate, and scale a relational database in the cloud. It provides cost-efficient, resizeable capacity for an industry-standard relational database and manages common database administration tasks, freeing up developers to focus on what makes their applications and businesses unique. Amazon RDS gives you access to the capabilities of a MySQL, MariaDB, PostgreSQL, Microsoft SQL Server, Oracle, Db2, or Amazon Aurora database server. These capabilities mean that the code, applications, and tools you already use today with your existing databases work with Amazon RDS without modification. Amazon RDS automatically backs up your database and maintains the database software that powers your DB instance. Amazon RDS is flexible: you can scale your DB instance's compute resources and storage capacity to meet your application's demand. As with all Amazon Web Services, there are no up-front investments, and you pay only for the resources you use. This interface reference for Amazon RDS contains documentation for a programming or command line interface you can use to manage Amazon RDS. Amazon RDS is asynchronous, which means that some interfaces might require techniques such as polling or callback functions to determine when a command has been applied. In this reference, the parameter descriptions indicate whether a command is applied immediately, on the next instance reboot, or during the maintenance window. The reference structure is as follows, and we list following some related topics from the user guide. Amazon RDS API Reference For the alphabetical list of API actions, see API Actions. For the alphabetical list of data types, see Data Types. For a list of common query parameters, see Common Parameters. For descriptions of the error codes, see Common Errors. Amazon RDS User Guide For a summary of the Amazon RDS interfaces, see Available RDS Interfaces. For more information about how to use the Query API, see Using the Query API.
Watermill is a Golang library for working efficiently with message streams. It is intended for building event driven applications, enabling event sourcing, RPC over messages, sagas and basically whatever else comes to your mind. You can use conventional pub/sub implementations like Kafka or RabbitMQ, but also HTTP or MySQL binlog if that fits your use case. Website with detailed documentation: https://watermill.io/ Getting started guide: https://watermill.io/docs/getting-started/
Package godb ... Author: go_developer@163.com<张德满> Description: 数据库连接配置定义 File: config.go Version: 1.0.0 Date: 2020/07/18 20:41:13 Package godb ... Author: go_developer@163.com<张德满> Description: 基于 gorm 封装 db client, 并结合 gin 框架 File: database.go Version: 1.0.0 Date: 2020/07/18 21:13:27 Package godb ... Author: go_developer@163.com<张德满> Description: 集成至gin的sql日志 File: log.go Version: 1.0.0 Date: 2020/07/19 16:26:51