Package ivs provides the API client, operations, and parameter types for Amazon Interactive Video Service. The Amazon Interactive Video Service (IVS) API is REST compatible, using a standard HTTP API and an Amazon Web Services EventBridge event stream for responses. JSON is used for both requests and responses, including errors. The API is an Amazon Web Services regional service. For a list of supported regions and Amazon IVS HTTPS service endpoints, see the Amazon IVS pagein the Amazon Web Services General Reference. All API request parameters and URLs are case sensitive. For a summary of notable documentation changes in each release, see Document History. Allowed Header Values Accept: application/json Accept-Encoding: gzip, deflate Content-Type: application/json Key Concepts Channel — Stores configuration data related to your live stream. You first create a channel and then use the channel’s stream key to start your live stream. Stream key — An identifier assigned by Amazon IVS when you create a channel, which is then used to authorize streaming. Treat the stream key like a secret, since it allows anyone to stream to the channel. Playback key pair — Video playback may be restricted using playback-authorization tokens, which use public-key encryption. A playback key pair is the public-private pair of keys used to sign and validate the playback-authorization token. Recording configuration — Stores configuration related to recording a live stream and where to store the recorded content. Multiple channels can reference the same recording configuration. Playback restriction policy — Restricts playback by countries and/or origin sites. For more information about your IVS live stream, also see Getting Started with IVS Low-Latency Streaming. A tag is a metadata label that you assign to an Amazon Web Services resource. A tag comprises a key and a value, both set by you. For example, you might set a tag as topic:nature to label a particular video category. See Best practices and strategies in Tagging Amazon Web Services Resources and Tag Editor for details, including restrictions that apply to tags and "Tag naming limits and requirements"; Amazon IVS has no service-specific constraints beyond what is documented there. Tags can help you identify and organize your Amazon Web Services resources. For example, you can use the same tag for different resources to indicate that they are related. You can also use tags to manage access (see Access Tags). The Amazon IVS API has these tag-related operations: TagResource, UntagResource, and ListTagsForResource. The following resources support tagging: Channels, Stream Keys, Playback Key Pairs, and Recording Configurations. At most 50 tags can be applied to a resource. Note the differences between these concepts: Authentication is about verifying identity. You need to be authenticated to sign Amazon IVS API requests. Authorization is about granting permissions. Your IAM roles need to have permissions for Amazon IVS API requests. In addition, authorization is needed to view Amazon IVS private channels. (Private channels are channels that are enabled for "playback authorization.") All Amazon IVS API requests must be authenticated with a signature. The Amazon Web Services Command-Line Interface (CLI) and Amazon IVS Player SDKs take care of signing the underlying API calls for you. However, if your application calls the Amazon IVS API directly, it’s your responsibility to sign the requests. You generate a signature using valid Amazon Web Services credentials that have permission to perform the requested action. For example, you must sign PutMetadata requests with a signature generated from a user account that has the ivs:PutMetadata permission. For more information: Authentication and generating signatures — See Authenticating Requests (Amazon Web Services Signature Version 4)in the Amazon Web Services General Reference. Managing Amazon IVS permissions — See Identity and Access Managementon the Security page of the Amazon IVS User Guide. Amazon Resource Names (ARNs) ARNs uniquely identify AWS resources. An ARN is required when you need to specify a resource unambiguously across all of AWS, such as in IAM policies and API calls. For more information, see Amazon Resource Namesin the AWS General Reference.
Package player : supports playing videos via different players: Web (HTML), MPV and later other video players
Package gupnp provides an API and GUI to control DLNA/UPnP devices like network TV and radio. Its goal is to locate media servers (with files) and media players. You can then send commands to players (volume, pause...) and let them play the selected music or video content. Can also be used as just a limited remote controler for supported renderers. A database of multimedia content, that other devices can play media from. Plays stuff, that is it makes sound and in required cases shows moving images. A device that works as a remote control, can play stop, skip, pause, change loudness, brightness etcetera. The manager keeps a server and a renderer as current target devices to use for fast user actions.
Package nook provides a comprehensive collection of character information from the video game series, Animal Crossing. This package focuses on organizing and classifying characters into two main categories: residents and villagers. Residents are essential characters in the game world, playing unique roles and often serving as quest givers. They cannot be invited as homeowners to the player's town, city, or island. Examples of residents include Isabelle, Tom Nook, and Guliver. Villagers, on the other hand, form the larger world population and can be invited to stay in the player's town, city, or island. They possess distinct personalities, homes, and can receive gifts. Alfonso, Tabby, and Eggbert are among the charming villagers you may encounter. To manage the vast number of characters in the series and potential naming overlaps, this package thoughtfully categorizes characters based on their animal type. For example, the name Petunia is shared by both a Cow and a Rhinoceros character, while Snooty is the name of both a wolf character and a personality type.
Package govidious implements a wrapper over the Invidious REST API v1, which is described in these documents: For each of the endpoints listed in those links, this module provides an API function which: Takes as many input arguments as needed depending on the endpoint. For example, the "/api/v1/stat" endpoint is represented by the "Stat()" API function which takes no arguments, while the "/api/v1/search" endpoint is represented by the "Search()" API function which takes many arguments (search query, date, duration, ...). Returns a structure that matches the JSON response associated to each endpoint. In order to use this package first create a new "InvidiousV1" instance using the "New()" function: ...then, simply call, on that object, the desired API function(s): For example, to get the URL of the most watched video featuring "kittens playing golf", you would do this: Notice that both URLs ("youtubeUrl" and "invidiousUrl") can be used on a web browser to actually watch the video. The main difference is that: Using "youtubeUrl" establishes a direct connection with YouTube servers. Using "invidiousUrl" might or might not establish a direct connection with YouTube servers, depending on how the Invidious server is configured. If you don't want to leave any trace of YouTube servers, make sure you use "InvidiousUrl" on an Invidious server configured to proxy video files. Another thing you can do with this URL ("youtubeUrl" or "invidiousUrl") is to use the "mpv" player to start watching the video directly, without needing a web browser. Under the hood, "mpv" uses "youtube-dl" (another program) to parse the web page, find the URL of the video file (which might change depending on the options you call "mpv" with, such as the desired quality) and download it. Well... the good news is that you don't need "mpv" nor "youtube-dl" to do all of this as the Invidious API can also be used to find out the URL of the video file once you have the "videoId". First, you obtain all the associated data of the desired video: ...then you inspect the returned structure to find the URL of the video with the desired quality level: There are many other things you can do with this package, such as listing all the videos from a given channel, retrieving the subtitles associated to a video, etc... Check the documentation of each function (and the name of the fields of the structures they return) for more details.