Package vfsgen takes an http.FileSystem (likely at `go generate` time) and generates Go code that statically implements the provided http.FileSystem. Features: - Efficient generated code without unneccessary overhead. - Uses gzip compression internally (selectively, only for files that compress well). - Enables direct access to internal gzip compressed bytes via an optional interface. - Outputs `gofmt`ed Go code. This code will generate an assets_vfsdata.go file with `var assets http.FileSystem = ...` that statically implements the contents of "assets" directory. vfsgen is great to use with go generate directives. This code can go in an assets_gen.go file, which can then be invoked via "//go:generate go run assets_gen.go". The input virtual filesystem can read directly from disk, or it can be more involved.
Package CloudForest implements ensembles of decision trees for machine learning in pure Go (golang to search engines). It allows for a number of related algorithms for classification, regression, feature selection and structure analysis on heterogeneous numerical/categorical data with missing values. These include: Breiman and Cutler's Random Forest for Classification and Regression Adaptive Boosting (AdaBoost) Classification Gradiant Boosting Tree Regression Entropy and Cost driven classification L1 regression Feature selection with artificial contrasts Proximity and model structure analysis Roughly balanced bagging for unbalanced classification The API hasn't stabilized yet and may change rapidly. Tests and benchmarks have been performed only on embargoed data sets and can not yet be released. Library Documentation is in code and can be viewed with godoc or live at: http://godoc.org/github.com/ryanbressler/CloudForest Documentation of command line utilities and file formats can be found in README.md, which can be viewed fromated on github: http://github.com/ryanbressler/CloudForest Pull requests and bug reports are welcome. CloudForest was created by Ryan Bressler and is being developed in the Shumelivich Lab at the Institute for Systems Biology for use on genomic/biomedical data with partial support from The Cancer Genome Atlas and the Inova Translational Medicine Institute. CloudForest is intended to provide fast, comprehensible building blocks that can be used to implement ensembles of decision trees. CloudForest is written in Go to allow a data scientist to develop and scale new models and analysis quickly instead of having to modify complex legacy code. Data structures and file formats are chosen with use in multi threaded and cluster environments in mind. Go's support for function types is used to provide a interface to run code as data is percolated through a tree. This method is flexible enough that it can extend the tree being analyzed. Growing a decision tree using Breiman and Cutler's method can be done in an anonymous function/closure passed to a tree's root node's Recurse method: This allows a researcher to include whatever additional analysis they need (importance scores, proximity etc) in tree growth. The same Recurse method can also be used to analyze existing forests to tabulate scores or extract structure. Utilities like leafcount and errorrate use this method to tabulate data about the tree in collection objects. Decision tree's are grown with the goal of reducing "Impurity" which is usually defined as Gini Impurity for categorical targets or mean squared error for numerical targets. CloudForest grows trees against the Target interface which allows for alternative definitions of impurity. CloudForest includes several alternative targets: Additional targets can be stacked on top of these target to add boosting functionality: Repeatedly splitting the data and searching for the best split at each node of a decision tree are the most computationally intensive parts of decision tree learning and CloudForest includes optimized code to perform these tasks. Go's slices are used extensively in CloudForest to make it simple to interact with optimized code. Many previous implementations of Random Forest have avoided reallocation by reordering data in place and keeping track of start and end indexes. In go, slices pointing at the same underlying arrays make this sort of optimization transparent. For example a function like: can return left and right slices that point to the same underlying array as the original slice of cases but these slices should not have their values changed. Functions used while searching for the best split also accepts pointers to reusable slices and structs to maximize speed by keeping memory allocations to a minimum. BestSplitAllocs contains pointers to these items and its use can be seen in functions like: For categorical predictors, BestSplit will also attempt to intelligently choose between 4 different implementations depending on user input and the number of categories. These include exhaustive, random, and iterative searches for the best combination of categories implemented with bitwise operations against int and big.Int. See BestCatSplit, BestCatSplitIter, BestCatSplitBig and BestCatSplitIterBig. All numerical predictors are handled by BestNumSplit which relies on go's sorting package. Training a Random forest is an inherently parallel process and CloudForest is designed to allow parallel implementations that can tackle large problems while keeping memory usage low by writing and using data structures directly to/from disk. Trees can be grown in separate go routines. The growforest utility provides an example of this that uses go routines and channels to grow trees in parallel and write trees to disk as the are finished by the "worker" go routines. The few summary statistics like mean impurity decrease per feature (importance) can be calculated using thread safe data structures like RunningMean. Trees can also be grown on separate machines. The .sf stochastic forest format allows several small forests to be combined by concatenation and the ForestReader and ForestWriter structs allow these forests to be accessed tree by tree (or even node by node) from disk. For data sets that are too big to fit in memory on a single machine Tree.Grow and FeatureMatrix.BestSplitter can be reimplemented to load candidate features from disk, distributed database etc. By default cloud forest uses a fast heuristic for missing values. When proposing a split on a feature with missing data the missing cases are removed and the impurity value is corrected to use three way impurity which reduces the bias towards features with lots of missing data: Missing values in the target variable are left out of impurity calculations. This provided generally good results at a fraction of the computational costs of imputing data. Optionally, feature.ImputeMissing or featurematrixImputeMissing can be called before forest growth to impute missing values to the feature mean/mode which Brieman [2] suggests as a fast method for imputing values. This forest could also be analyzed for proximity (using leafcount or tree.GetLeaves) to do the more accurate proximity weighted imputation Brieman describes. Experimental support is provided for 3 way splitting which splits missing cases onto a third branch. [2] This has so far yielded mixed results in testing. At some point in the future support may be added for local imputing of missing values during tree growth as described in [3] [1] http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm#missing1 [2] https://code.google.com/p/rf-ace/ [3] http://projecteuclid.org/DPubS?verb=Display&version=1.0&service=UI&handle=euclid.aoas/1223908043&page=record In CloudForest data is stored using the FeatureMatrix struct which contains Features. The Feature struct implements storage and methods for both categorical and numerical data and calculations of impurity etc and the search for the best split. The Target interface abstracts the methods of Feature that are needed for a feature to be predictable. This allows for the implementation of alternative types of regression and classification. Trees are built from Nodes and Splitters and stored within a Forest. Tree has a Grow implements Brieman and Cutler's method (see extract above) for growing a tree. A GrowForest method is also provided that implements the rest of the method including sampling cases but it may be faster to grow the forest to disk as in the growforest utility. Prediction and Voting is done using Tree.Vote and CatBallotBox and NumBallotBox which implement the VoteTallyer interface.
Package promptui is a library providing a simple interface to create command-line prompts for go. It can be easily integrated into spf13/cobra, urfave/cli or any cli go application. promptui has two main input modes: Prompt provides a single line for user input. It supports optional live validation, confirmation and masking the input. Select provides a list of options to choose from. It supports pagination, search, detailed view and custom templates. This is an example for the Prompt mode of promptui. In this example, a prompt is created with a validator function that validates the given value to make sure its a number. If successful, it will output the chosen number in a formatted message. This is an example for the Select mode of promptui. In this example, a select is created with the days of the week as its items. When an item is selected, the selected day will be displayed in a formatted message.
Package sdk is the official AWS SDK for the Go programming language. The AWS SDK for Go provides APIs and utilities that developers can use to build Go applications that use AWS services, such as Amazon Elastic Compute Cloud (Amazon EC2) and Amazon Simple Storage Service (Amazon S3). The SDK removes the complexity of coding directly against a web service interface. It hides a lot of the lower-level plumbing, such as authentication, request retries, and error handling. The SDK also includes helpful utilities on top of the AWS APIs that add additional capabilities and functionality. For example, the Amazon S3 Download and Upload Manager will automatically split up large objects into multiple parts and transfer them concurrently. See the s3manager package documentation for more information. https://docs.aws.amazon.com/sdk-for-go/api/service/s3/s3manager/ Checkout the Getting Started Guide and API Reference Docs detailed the SDK's components and details on each AWS client the SDK supports. The Getting Started Guide provides examples and detailed description of how to get setup with the SDK. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/welcome.html The API Reference Docs include a detailed breakdown of the SDK's components such as utilities and AWS clients. Use this as a reference of the Go types included with the SDK, such as AWS clients, API operations, and API parameters. https://docs.aws.amazon.com/sdk-for-go/api/ The SDK is composed of two main components, SDK core, and service clients. The SDK core packages are all available under the aws package at the root of the SDK. Each client for a supported AWS service is available within its own package under the service folder at the root of the SDK. aws - SDK core, provides common shared types such as Config, Logger, and utilities to make working with API parameters easier. awserr - Provides the error interface that the SDK will use for all errors that occur in the SDK's processing. This includes service API response errors as well. The Error type is made up of a code and message. Cast the SDK's returned error type to awserr.Error and call the Code method to compare returned error to specific error codes. See the package's documentation for additional values that can be extracted such as RequestId. credentials - Provides the types and built in credentials providers the SDK will use to retrieve AWS credentials to make API requests with. Nested under this folder are also additional credentials providers such as stscreds for assuming IAM roles, and ec2rolecreds for EC2 Instance roles. endpoints - Provides the AWS Regions and Endpoints metadata for the SDK. Use this to lookup AWS service endpoint information such as which services are in a region, and what regions a service is in. Constants are also provided for all region identifiers, e.g UsWest2RegionID for "us-west-2". session - Provides initial default configuration, and load configuration from external sources such as environment and shared credentials file. request - Provides the API request sending, and retry logic for the SDK. This package also includes utilities for defining your own request retryer, and configuring how the SDK processes the request. service - Clients for AWS services. All services supported by the SDK are available under this folder. The SDK includes the Go types and utilities you can use to make requests to AWS service APIs. Within the service folder at the root of the SDK you'll find a package for each AWS service the SDK supports. All service clients follows a common pattern of creation and usage. When creating a client for an AWS service you'll first need to have a Session value constructed. The Session provides shared configuration that can be shared between your service clients. When service clients are created you can pass in additional configuration via the aws.Config type to override configuration provided by in the Session to create service client instances with custom configuration. Once the service's client is created you can use it to make API requests the AWS service. These clients are safe to use concurrently. In the AWS SDK for Go, you can configure settings for service clients, such as the log level and maximum number of retries. Most settings are optional; however, for each service client, you must specify a region and your credentials. The SDK uses these values to send requests to the correct AWS region and sign requests with the correct credentials. You can specify these values as part of a session or as environment variables. See the SDK's configuration guide for more information. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html See the session package documentation for more information on how to use Session with the SDK. https://docs.aws.amazon.com/sdk-for-go/api/aws/session/ See the Config type in the aws package for more information on configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config When using the SDK you'll generally need your AWS credentials to authenticate with AWS services. The SDK supports multiple methods of supporting these credentials. By default the SDK will source credentials automatically from its default credential chain. See the session package for more information on this chain, and how to configure it. The common items in the credential chain are the following: Environment Credentials - Set of environment variables that are useful when sub processes are created for specific roles. Shared Credentials file (~/.aws/credentials) - This file stores your credentials based on a profile name and is useful for local development. EC2 Instance Role Credentials - Use EC2 Instance Role to assign credentials to application running on an EC2 instance. This removes the need to manage credential files in production. Credentials can be configured in code as well by setting the Config's Credentials value to a custom provider or using one of the providers included with the SDK to bypass the default credential chain and use a custom one. This is helpful when you want to instruct the SDK to only use a specific set of credentials or providers. This example creates a credential provider for assuming an IAM role, "myRoleARN" and configures the S3 service client to use that role for API requests. See the credentials package documentation for more information on credential providers included with the SDK, and how to customize the SDK's usage of credentials. https://docs.aws.amazon.com/sdk-for-go/api/aws/credentials The SDK has support for the shared configuration file (~/.aws/config). This support can be enabled by setting the environment variable, "AWS_SDK_LOAD_CONFIG=1", or enabling the feature in code when creating a Session via the Option's SharedConfigState parameter. In addition to the credentials you'll need to specify the region the SDK will use to make AWS API requests to. In the SDK you can specify the region either with an environment variable, or directly in code when a Session or service client is created. The last value specified in code wins if the region is specified multiple ways. To set the region via the environment variable set the "AWS_REGION" to the region you want to the SDK to use. Using this method to set the region will allow you to run your application in multiple regions without needing additional code in the application to select the region. The endpoints package includes constants for all regions the SDK knows. The values are all suffixed with RegionID. These values are helpful, because they reduce the need to type the region string manually. To set the region on a Session use the aws package's Config struct parameter Region to the AWS region you want the service clients created from the session to use. This is helpful when you want to create multiple service clients, and all of the clients make API requests to the same region. See the endpoints package for the AWS Regions and Endpoints metadata. https://docs.aws.amazon.com/sdk-for-go/api/aws/endpoints/ In addition to setting the region when creating a Session you can also set the region on a per service client bases. This overrides the region of a Session. This is helpful when you want to create service clients in specific regions different from the Session's region. See the Config type in the aws package for more information and additional options such as setting the Endpoint, and other service client configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config Once the client is created you can make an API request to the service. Each API method takes a input parameter, and returns the service response and an error. The SDK provides methods for making the API call in multiple ways. In this list we'll use the S3 ListObjects API as an example for the different ways of making API requests. ListObjects - Base API operation that will make the API request to the service. ListObjectsRequest - API methods suffixed with Request will construct the API request, but not send it. This is also helpful when you want to get a presigned URL for a request, and share the presigned URL instead of your application making the request directly. ListObjectsPages - Same as the base API operation, but uses a callback to automatically handle pagination of the API's response. ListObjectsWithContext - Same as base API operation, but adds support for the Context pattern. This is helpful for controlling the canceling of in flight requests. See the Go standard library context package for more information. This method also takes request package's Option functional options as the variadic argument for modifying how the request will be made, or extracting information from the raw HTTP response. ListObjectsPagesWithContext - same as ListObjectsPages, but adds support for the Context pattern. Similar to ListObjectsWithContext this method also takes the request package's Option function option types as the variadic argument. In addition to the API operations the SDK also includes several higher level methods that abstract checking for and waiting for an AWS resource to be in a desired state. In this list we'll use WaitUntilBucketExists to demonstrate the different forms of waiters. WaitUntilBucketExists. - Method to make API request to query an AWS service for a resource's state. Will return successfully when that state is accomplished. WaitUntilBucketExistsWithContext - Same as WaitUntilBucketExists, but adds support for the Context pattern. In addition these methods take request package's WaiterOptions to configure the waiter, and how underlying request will be made by the SDK. The API method will document which error codes the service might return for the operation. These errors will also be available as const strings prefixed with "ErrCode" in the service client's package. If there are no errors listed in the API's SDK documentation you'll need to consult the AWS service's API documentation for the errors that could be returned. Pagination helper methods are suffixed with "Pages", and provide the functionality needed to round trip API page requests. Pagination methods take a callback function that will be called for each page of the API's response. Waiter helper methods provide the functionality to wait for an AWS resource state. These methods abstract the logic needed to to check the state of an AWS resource, and wait until that resource is in a desired state. The waiter will block until the resource is in the state that is desired, an error occurs, or the waiter times out. If a resource times out the error code returned will be request.WaiterResourceNotReadyErrorCode. This example shows a complete working Go file which will upload a file to S3 and use the Context pattern to implement timeout logic that will cancel the request if it takes too long. This example highlights how to use sessions, create a service client, make a request, handle the error, and process the response.
Package sdk is the official AWS SDK for the Go programming language. The AWS SDK for Go provides APIs and utilities that developers can use to build Go applications that use AWS services, such as Amazon Elastic Compute Cloud (Amazon EC2) and Amazon Simple Storage Service (Amazon S3). The SDK removes the complexity of coding directly against a web service interface. It hides a lot of the lower-level plumbing, such as authentication, request retries, and error handling. The SDK also includes helpful utilities on top of the AWS APIs that add additional capabilities and functionality. For example, the Amazon S3 Download and Upload Manager will automatically split up large objects into multiple parts and transfer them concurrently. See the s3manager package documentation for more information. https://docs.aws.amazon.com/sdk-for-go/api/service/s3/s3manager/ Checkout the Getting Started Guide and API Reference Docs detailed the SDK's components and details on each AWS client the SDK supports. The Getting Started Guide provides examples and detailed description of how to get setup with the SDK. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/welcome.html The API Reference Docs include a detailed breakdown of the SDK's components such as utilities and AWS clients. Use this as a reference of the Go types included with the SDK, such as AWS clients, API operations, and API parameters. https://docs.aws.amazon.com/sdk-for-go/api/ The SDK is composed of two main components, SDK core, and service clients. The SDK core packages are all available under the aws package at the root of the SDK. Each client for a supported AWS service is available within its own package under the service folder at the root of the SDK. aws - SDK core, provides common shared types such as Config, Logger, and utilities to make working with API parameters easier. awserr - Provides the error interface that the SDK will use for all errors that occur in the SDK's processing. This includes service API response errors as well. The Error type is made up of a code and message. Cast the SDK's returned error type to awserr.Error and call the Code method to compare returned error to specific error codes. See the package's documentation for additional values that can be extracted such as RequestId. credentials - Provides the types and built in credentials providers the SDK will use to retrieve AWS credentials to make API requests with. Nested under this folder are also additional credentials providers such as stscreds for assuming IAM roles, and ec2rolecreds for EC2 Instance roles. endpoints - Provides the AWS Regions and Endpoints metadata for the SDK. Use this to lookup AWS service endpoint information such as which services are in a region, and what regions a service is in. Constants are also provided for all region identifiers, e.g UsWest2RegionID for "us-west-2". session - Provides initial default configuration, and load configuration from external sources such as environment and shared credentials file. request - Provides the API request sending, and retry logic for the SDK. This package also includes utilities for defining your own request retryer, and configuring how the SDK processes the request. service - Clients for AWS services. All services supported by the SDK are available under this folder. The SDK includes the Go types and utilities you can use to make requests to AWS service APIs. Within the service folder at the root of the SDK you'll find a package for each AWS service the SDK supports. All service clients follows a common pattern of creation and usage. When creating a client for an AWS service you'll first need to have a Session value constructed. The Session provides shared configuration that can be shared between your service clients. When service clients are created you can pass in additional configuration via the aws.Config type to override configuration provided by in the Session to create service client instances with custom configuration. Once the service's client is created you can use it to make API requests the AWS service. These clients are safe to use concurrently. In the AWS SDK for Go, you can configure settings for service clients, such as the log level and maximum number of retries. Most settings are optional; however, for each service client, you must specify a region and your credentials. The SDK uses these values to send requests to the correct AWS region and sign requests with the correct credentials. You can specify these values as part of a session or as environment variables. See the SDK's configuration guide for more information. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html See the session package documentation for more information on how to use Session with the SDK. https://docs.aws.amazon.com/sdk-for-go/api/aws/session/ See the Config type in the aws package for more information on configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config When using the SDK you'll generally need your AWS credentials to authenticate with AWS services. The SDK supports multiple methods of supporting these credentials. By default the SDK will source credentials automatically from its default credential chain. See the session package for more information on this chain, and how to configure it. The common items in the credential chain are the following: Environment Credentials - Set of environment variables that are useful when sub processes are created for specific roles. Shared Credentials file (~/.aws/credentials) - This file stores your credentials based on a profile name and is useful for local development. EC2 Instance Role Credentials - Use EC2 Instance Role to assign credentials to application running on an EC2 instance. This removes the need to manage credential files in production. Credentials can be configured in code as well by setting the Config's Credentials value to a custom provider or using one of the providers included with the SDK to bypass the default credential chain and use a custom one. This is helpful when you want to instruct the SDK to only use a specific set of credentials or providers. This example creates a credential provider for assuming an IAM role, "myRoleARN" and configures the S3 service client to use that role for API requests. See the credentials package documentation for more information on credential providers included with the SDK, and how to customize the SDK's usage of credentials. https://docs.aws.amazon.com/sdk-for-go/api/aws/credentials The SDK has support for the shared configuration file (~/.aws/config). This support can be enabled by setting the environment variable, "AWS_SDK_LOAD_CONFIG=1", or enabling the feature in code when creating a Session via the Option's SharedConfigState parameter. In addition to the credentials you'll need to specify the region the SDK will use to make AWS API requests to. In the SDK you can specify the region either with an environment variable, or directly in code when a Session or service client is created. The last value specified in code wins if the region is specified multiple ways. To set the region via the environment variable set the "AWS_REGION" to the region you want to the SDK to use. Using this method to set the region will allow you to run your application in multiple regions without needing additional code in the application to select the region. The endpoints package includes constants for all regions the SDK knows. The values are all suffixed with RegionID. These values are helpful, because they reduce the need to type the region string manually. To set the region on a Session use the aws package's Config struct parameter Region to the AWS region you want the service clients created from the session to use. This is helpful when you want to create multiple service clients, and all of the clients make API requests to the same region. See the endpoints package for the AWS Regions and Endpoints metadata. https://docs.aws.amazon.com/sdk-for-go/api/aws/endpoints/ In addition to setting the region when creating a Session you can also set the region on a per service client bases. This overrides the region of a Session. This is helpful when you want to create service clients in specific regions different from the Session's region. See the Config type in the aws package for more information and additional options such as setting the Endpoint, and other service client configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config Once the client is created you can make an API request to the service. Each API method takes a input parameter, and returns the service response and an error. The SDK provides methods for making the API call in multiple ways. In this list we'll use the S3 ListObjects API as an example for the different ways of making API requests. ListObjects - Base API operation that will make the API request to the service. ListObjectsRequest - API methods suffixed with Request will construct the API request, but not send it. This is also helpful when you want to get a presigned URL for a request, and share the presigned URL instead of your application making the request directly. ListObjectsPages - Same as the base API operation, but uses a callback to automatically handle pagination of the API's response. ListObjectsWithContext - Same as base API operation, but adds support for the Context pattern. This is helpful for controlling the canceling of in flight requests. See the Go standard library context package for more information. This method also takes request package's Option functional options as the variadic argument for modifying how the request will be made, or extracting information from the raw HTTP response. ListObjectsPagesWithContext - same as ListObjectsPages, but adds support for the Context pattern. Similar to ListObjectsWithContext this method also takes the request package's Option function option types as the variadic argument. In addition to the API operations the SDK also includes several higher level methods that abstract checking for and waiting for an AWS resource to be in a desired state. In this list we'll use WaitUntilBucketExists to demonstrate the different forms of waiters. WaitUntilBucketExists. - Method to make API request to query an AWS service for a resource's state. Will return successfully when that state is accomplished. WaitUntilBucketExistsWithContext - Same as WaitUntilBucketExists, but adds support for the Context pattern. In addition these methods take request package's WaiterOptions to configure the waiter, and how underlying request will be made by the SDK. The API method will document which error codes the service might return for the operation. These errors will also be available as const strings prefixed with "ErrCode" in the service client's package. If there are no errors listed in the API's SDK documentation you'll need to consult the AWS service's API documentation for the errors that could be returned. Pagination helper methods are suffixed with "Pages", and provide the functionality needed to round trip API page requests. Pagination methods take a callback function that will be called for each page of the API's response. Waiter helper methods provide the functionality to wait for an AWS resource state. These methods abstract the logic needed to to check the state of an AWS resource, and wait until that resource is in a desired state. The waiter will block until the resource is in the state that is desired, an error occurs, or the waiter times out. If a resource times out the error code returned will be request.WaiterResourceNotReadyErrorCode. This example shows a complete working Go file which will upload a file to S3 and use the Context pattern to implement timeout logic that will cancel the request if it takes too long. This example highlights how to use sessions, create a service client, make a request, handle the error, and process the response.
Package sdk is the official AWS SDK for the Go programming language. The AWS SDK for Go provides APIs and utilities that developers can use to build Go applications that use AWS services, such as Amazon Elastic Compute Cloud (Amazon EC2) and Amazon Simple Storage Service (Amazon S3). The SDK removes the complexity of coding directly against a web service interface. It hides a lot of the lower-level plumbing, such as authentication, request retries, and error handling. The SDK also includes helpful utilities on top of the AWS APIs that add additional capabilities and functionality. For example, the Amazon S3 Download and Upload Manager will automatically split up large objects into multiple parts and transfer them concurrently. See the s3manager package documentation for more information. https://docs.aws.amazon.com/sdk-for-go/api/service/s3/s3manager/ Checkout the Getting Started Guide and API Reference Docs detailed the SDK's components and details on each AWS client the SDK supports. The Getting Started Guide provides examples and detailed description of how to get setup with the SDK. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/welcome.html The API Reference Docs include a detailed breakdown of the SDK's components such as utilities and AWS clients. Use this as a reference of the Go types included with the SDK, such as AWS clients, API operations, and API parameters. https://docs.aws.amazon.com/sdk-for-go/api/ The SDK is composed of two main components, SDK core, and service clients. The SDK core packages are all available under the aws package at the root of the SDK. Each client for a supported AWS service is available within its own package under the service folder at the root of the SDK. aws - SDK core, provides common shared types such as Config, Logger, and utilities to make working with API parameters easier. awserr - Provides the error interface that the SDK will use for all errors that occur in the SDK's processing. This includes service API response errors as well. The Error type is made up of a code and message. Cast the SDK's returned error type to awserr.Error and call the Code method to compare returned error to specific error codes. See the package's documentation for additional values that can be extracted such as RequestId. credentials - Provides the types and built in credentials providers the SDK will use to retrieve AWS credentials to make API requests with. Nested under this folder are also additional credentials providers such as stscreds for assuming IAM roles, and ec2rolecreds for EC2 Instance roles. endpoints - Provides the AWS Regions and Endpoints metadata for the SDK. Use this to lookup AWS service endpoint information such as which services are in a region, and what regions a service is in. Constants are also provided for all region identifiers, e.g UsWest2RegionID for "us-west-2". session - Provides initial default configuration, and load configuration from external sources such as environment and shared credentials file. request - Provides the API request sending, and retry logic for the SDK. This package also includes utilities for defining your own request retryer, and configuring how the SDK processes the request. service - Clients for AWS services. All services supported by the SDK are available under this folder. The SDK includes the Go types and utilities you can use to make requests to AWS service APIs. Within the service folder at the root of the SDK you'll find a package for each AWS service the SDK supports. All service clients follows a common pattern of creation and usage. When creating a client for an AWS service you'll first need to have a Session value constructed. The Session provides shared configuration that can be shared between your service clients. When service clients are created you can pass in additional configuration via the aws.Config type to override configuration provided by in the Session to create service client instances with custom configuration. Once the service's client is created you can use it to make API requests the AWS service. These clients are safe to use concurrently. In the AWS SDK for Go, you can configure settings for service clients, such as the log level and maximum number of retries. Most settings are optional; however, for each service client, you must specify a region and your credentials. The SDK uses these values to send requests to the correct AWS region and sign requests with the correct credentials. You can specify these values as part of a session or as environment variables. See the SDK's configuration guide for more information. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html See the session package documentation for more information on how to use Session with the SDK. https://docs.aws.amazon.com/sdk-for-go/api/aws/session/ See the Config type in the aws package for more information on configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config When using the SDK you'll generally need your AWS credentials to authenticate with AWS services. The SDK supports multiple methods of supporting these credentials. By default the SDK will source credentials automatically from its default credential chain. See the session package for more information on this chain, and how to configure it. The common items in the credential chain are the following: Environment Credentials - Set of environment variables that are useful when sub processes are created for specific roles. Shared Credentials file (~/.aws/credentials) - This file stores your credentials based on a profile name and is useful for local development. EC2 Instance Role Credentials - Use EC2 Instance Role to assign credentials to application running on an EC2 instance. This removes the need to manage credential files in production. Credentials can be configured in code as well by setting the Config's Credentials value to a custom provider or using one of the providers included with the SDK to bypass the default credential chain and use a custom one. This is helpful when you want to instruct the SDK to only use a specific set of credentials or providers. This example creates a credential provider for assuming an IAM role, "myRoleARN" and configures the S3 service client to use that role for API requests. See the credentials package documentation for more information on credential providers included with the SDK, and how to customize the SDK's usage of credentials. https://docs.aws.amazon.com/sdk-for-go/api/aws/credentials The SDK has support for the shared configuration file (~/.aws/config). This support can be enabled by setting the environment variable, "AWS_SDK_LOAD_CONFIG=1", or enabling the feature in code when creating a Session via the Option's SharedConfigState parameter. In addition to the credentials you'll need to specify the region the SDK will use to make AWS API requests to. In the SDK you can specify the region either with an environment variable, or directly in code when a Session or service client is created. The last value specified in code wins if the region is specified multiple ways. To set the region via the environment variable set the "AWS_REGION" to the region you want to the SDK to use. Using this method to set the region will allow you to run your application in multiple regions without needing additional code in the application to select the region. The endpoints package includes constants for all regions the SDK knows. The values are all suffixed with RegionID. These values are helpful, because they reduce the need to type the region string manually. To set the region on a Session use the aws package's Config struct parameter Region to the AWS region you want the service clients created from the session to use. This is helpful when you want to create multiple service clients, and all of the clients make API requests to the same region. See the endpoints package for the AWS Regions and Endpoints metadata. https://docs.aws.amazon.com/sdk-for-go/api/aws/endpoints/ In addition to setting the region when creating a Session you can also set the region on a per service client bases. This overrides the region of a Session. This is helpful when you want to create service clients in specific regions different from the Session's region. See the Config type in the aws package for more information and additional options such as setting the Endpoint, and other service client configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config Once the client is created you can make an API request to the service. Each API method takes a input parameter, and returns the service response and an error. The SDK provides methods for making the API call in multiple ways. In this list we'll use the S3 ListObjects API as an example for the different ways of making API requests. ListObjects - Base API operation that will make the API request to the service. ListObjectsRequest - API methods suffixed with Request will construct the API request, but not send it. This is also helpful when you want to get a presigned URL for a request, and share the presigned URL instead of your application making the request directly. ListObjectsPages - Same as the base API operation, but uses a callback to automatically handle pagination of the API's response. ListObjectsWithContext - Same as base API operation, but adds support for the Context pattern. This is helpful for controlling the canceling of in flight requests. See the Go standard library context package for more information. This method also takes request package's Option functional options as the variadic argument for modifying how the request will be made, or extracting information from the raw HTTP response. ListObjectsPagesWithContext - same as ListObjectsPages, but adds support for the Context pattern. Similar to ListObjectsWithContext this method also takes the request package's Option function option types as the variadic argument. In addition to the API operations the SDK also includes several higher level methods that abstract checking for and waiting for an AWS resource to be in a desired state. In this list we'll use WaitUntilBucketExists to demonstrate the different forms of waiters. WaitUntilBucketExists. - Method to make API request to query an AWS service for a resource's state. Will return successfully when that state is accomplished. WaitUntilBucketExistsWithContext - Same as WaitUntilBucketExists, but adds support for the Context pattern. In addition these methods take request package's WaiterOptions to configure the waiter, and how underlying request will be made by the SDK. The API method will document which error codes the service might return for the operation. These errors will also be available as const strings prefixed with "ErrCode" in the service client's package. If there are no errors listed in the API's SDK documentation you'll need to consult the AWS service's API documentation for the errors that could be returned. Pagination helper methods are suffixed with "Pages", and provide the functionality needed to round trip API page requests. Pagination methods take a callback function that will be called for each page of the API's response. Waiter helper methods provide the functionality to wait for an AWS resource state. These methods abstract the logic needed to to check the state of an AWS resource, and wait until that resource is in a desired state. The waiter will block until the resource is in the state that is desired, an error occurs, or the waiter times out. If a resource times out the error code returned will be request.WaiterResourceNotReadyErrorCode. This example shows a complete working Go file which will upload a file to S3 and use the Context pattern to implement timeout logic that will cancel the request if it takes too long. This example highlights how to use sessions, create a service client, make a request, handle the error, and process the response.
Package CloudForest implements ensembles of decision trees for machine learning in pure Go (golang to search engines). It allows for a number of related algorithms for classification, regression, feature selection and structure analysis on heterogeneous numerical/categorical data with missing values. These include: Breiman and Cutler's Random Forest for Classification and Regression Adaptive Boosting (AdaBoost) Classification Gradiant Boosting Tree Regression Entropy and Cost driven classification L1 regression Feature selection with artificial contrasts Proximity and model structure analysis Roughly balanced bagging for unbalanced classification The API hasn't stabilized yet and may change rapidly. Tests and benchmarks have been performed only on embargoed data sets and can not yet be released. Library Documentation is in code and can be viewed with godoc or live at: http://godoc.org/github.com/ryanbressler/CloudForest Documentation of command line utilities and file formats can be found in README.md, which can be viewed fromated on github: http://github.com/ryanbressler/CloudForest Pull requests and bug reports are welcome. CloudForest was created by Ryan Bressler and is being developed in the Shumelivich Lab at the Institute for Systems Biology for use on genomic/biomedical data with partial support from The Cancer Genome Atlas and the Inova Translational Medicine Institute. CloudForest is intended to provide fast, comprehensible building blocks that can be used to implement ensembles of decision trees. CloudForest is written in Go to allow a data scientist to develop and scale new models and analysis quickly instead of having to modify complex legacy code. Data structures and file formats are chosen with use in multi threaded and cluster environments in mind. Go's support for function types is used to provide a interface to run code as data is percolated through a tree. This method is flexible enough that it can extend the tree being analyzed. Growing a decision tree using Breiman and Cutler's method can be done in an anonymous function/closure passed to a tree's root node's Recurse method: This allows a researcher to include whatever additional analysis they need (importance scores, proximity etc) in tree growth. The same Recurse method can also be used to analyze existing forests to tabulate scores or extract structure. Utilities like leafcount and errorrate use this method to tabulate data about the tree in collection objects. Decision tree's are grown with the goal of reducing "Impurity" which is usually defined as Gini Impurity for categorical targets or mean squared error for numerical targets. CloudForest grows trees against the Target interface which allows for alternative definitions of impurity. CloudForest includes several alternative targets: Additional targets can be stacked on top of these target to add boosting functionality: Repeatedly splitting the data and searching for the best split at each node of a decision tree are the most computationally intensive parts of decision tree learning and CloudForest includes optimized code to perform these tasks. Go's slices are used extensively in CloudForest to make it simple to interact with optimized code. Many previous implementations of Random Forest have avoided reallocation by reordering data in place and keeping track of start and end indexes. In go, slices pointing at the same underlying arrays make this sort of optimization transparent. For example a function like: can return left and right slices that point to the same underlying array as the original slice of cases but these slices should not have their values changed. Functions used while searching for the best split also accepts pointers to reusable slices and structs to maximize speed by keeping memory allocations to a minimum. BestSplitAllocs contains pointers to these items and its use can be seen in functions like: For categorical predictors, BestSplit will also attempt to intelligently choose between 4 different implementations depending on user input and the number of categories. These include exhaustive, random, and iterative searches for the best combination of categories implemented with bitwise operations against int and big.Int. See BestCatSplit, BestCatSplitIter, BestCatSplitBig and BestCatSplitIterBig. All numerical predictors are handled by BestNumSplit which relies on go's sorting package. Training a Random forest is an inherently parallel process and CloudForest is designed to allow parallel implementations that can tackle large problems while keeping memory usage low by writing and using data structures directly to/from disk. Trees can be grown in separate go routines. The growforest utility provides an example of this that uses go routines and channels to grow trees in parallel and write trees to disk as the are finished by the "worker" go routines. The few summary statistics like mean impurity decrease per feature (importance) can be calculated using thread safe data structures like RunningMean. Trees can also be grown on separate machines. The .sf stochastic forest format allows several small forests to be combined by concatenation and the ForestReader and ForestWriter structs allow these forests to be accessed tree by tree (or even node by node) from disk. For data sets that are too big to fit in memory on a single machine Tree.Grow and FeatureMatrix.BestSplitter can be reimplemented to load candidate features from disk, distributed database etc. By default cloud forest uses a fast heuristic for missing values. When proposing a split on a feature with missing data the missing cases are removed and the impurity value is corrected to use three way impurity which reduces the bias towards features with lots of missing data: Missing values in the target variable are left out of impurity calculations. This provided generally good results at a fraction of the computational costs of imputing data. Optionally, feature.ImputeMissing or featurematrixImputeMissing can be called before forest growth to impute missing values to the feature mean/mode which Brieman [2] suggests as a fast method for imputing values. This forest could also be analyzed for proximity (using leafcount or tree.GetLeaves) to do the more accurate proximity weighted imputation Brieman describes. Experimental support is provided for 3 way splitting which splits missing cases onto a third branch. [2] This has so far yielded mixed results in testing. At some point in the future support may be added for local imputing of missing values during tree growth as described in [3] [1] http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm#missing1 [2] https://code.google.com/p/rf-ace/ [3] http://projecteuclid.org/DPubS?verb=Display&version=1.0&service=UI&handle=euclid.aoas/1223908043&page=record In CloudForest data is stored using the FeatureMatrix struct which contains Features. The Feature struct implements storage and methods for both categorical and numerical data and calculations of impurity etc and the search for the best split. The Target interface abstracts the methods of Feature that are needed for a feature to be predictable. This allows for the implementation of alternative types of regression and classification. Trees are built from Nodes and Splitters and stored within a Forest. Tree has a Grow implements Brieman and Cutler's method (see extract above) for growing a tree. A GrowForest method is also provided that implements the rest of the method including sampling cases but it may be faster to grow the forest to disk as in the growforest utility. Prediction and Voting is done using Tree.Vote and CatBallotBox and NumBallotBox which implement the VoteTallyer interface.
Package promptui is a library providing a simple interface to create command-line prompts for go. It can be easily integrated into spf13/cobra, urfave/cli or any cli go application. promptui has two main input modes: Prompt provides a single line for user input. It supports optional live validation, confirmation and masking the input. Select provides a list of options to choose from. It supports pagination, search, detailed view and custom templates. This is an example for the Prompt mode of promptui. In this example, a prompt is created with a validator function that validates the given value to make sure its a number. If successful, it will output the chosen number in a formatted message. This is an example for the Select mode of promptui. In this example, a select is created with the days of the week as its items. When an item is selected, the selected day will be displayed in a formatted message.
Package promptui is a library providing a simple interface to create command-line prompts for go. It can be easily integrated into spf13/cobra, urfave/cli or any cli go application. promptui has two main input modes: Prompt provides a single line for user input. It supports optional live validation, confirmation and masking the input. Select provides a list of options to choose from. It supports pagination, search, detailed view and custom templates. This is an example for the Prompt mode of promptui. In this example, a prompt is created with a validator function that validates the given value to make sure its a number. If successful, it will output the chosen number in a formatted message. This is an example for the Select mode of promptui. In this example, a select is created with the days of the week as its items. When an item is selected, the selected day will be displayed in a formatted message.
Package promptui is a library providing a simple interface to create command-line prompts for go. It can be easily integrated into spf13/cobra, urfave/cli or any cli go application. promptui has two main input modes: Prompt provides a single line for user input. It supports optional live validation, confirmation and masking the input. Select provides a list of options to choose from. It supports pagination, search, detailed view and custom templates. This is an example for the Prompt mode of promptui. In this example, a prompt is created with a validator function that validates the given value to make sure its a number. If successful, it will output the chosen number in a formatted message. This is an example for the Select mode of promptui. In this example, a select is created with the days of the week as its items. When an item is selected, the selected day will be displayed in a formatted message.
Package promptui is a library providing a simple interface to create command-line prompts for go. It can be easily integrated into spf13/cobra, urfave/cli or any cli go application. promptui has two main input modes: Prompt provides a single line for user input. It supports optional live validation, confirmation and masking the input. Select provides a list of options to choose from. It supports pagination, search, detailed view and custom templates. This is an example for the Prompt mode of promptui. In this example, a prompt is created with a validator function that validates the given value to make sure its a number. If successful, it will output the chosen number in a formatted message. This is an example for the Select mode of promptui. In this example, a select is created with the days of the week as its items. When an item is selected, the selected day will be displayed in a formatted message.
Package sdk is the official AWS SDK for the Go programming language. The AWS SDK for Go provides APIs and utilities that developers can use to build Go applications that use AWS services, such as Amazon Elastic Compute Cloud (Amazon EC2) and Amazon Simple Storage Service (Amazon S3). The SDK removes the complexity of coding directly against a web service interface. It hides a lot of the lower-level plumbing, such as authentication, request retries, and error handling. The SDK also includes helpful utilities on top of the AWS APIs that add additional capabilities and functionality. For example, the Amazon S3 Download and Upload Manager will automatically split up large objects into multiple parts and transfer them concurrently. See the s3manager package documentation for more information. https://docs.aws.amazon.com/sdk-for-go/api/service/s3/s3manager/ Checkout the Getting Started Guide and API Reference Docs detailed the SDK's components and details on each AWS client the SDK supports. The Getting Started Guide provides examples and detailed description of how to get setup with the SDK. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/welcome.html The API Reference Docs include a detailed breakdown of the SDK's components such as utilities and AWS clients. Use this as a reference of the Go types included with the SDK, such as AWS clients, API operations, and API parameters. https://docs.aws.amazon.com/sdk-for-go/api/ The SDK is composed of two main components, SDK core, and service clients. The SDK core packages are all available under the aws package at the root of the SDK. Each client for a supported AWS service is available within its own package under the service folder at the root of the SDK. aws - SDK core, provides common shared types such as Config, Logger, and utilities to make working with API parameters easier. awserr - Provides the error interface that the SDK will use for all errors that occur in the SDK's processing. This includes service API response errors as well. The Error type is made up of a code and message. Cast the SDK's returned error type to awserr.Error and call the Code method to compare returned error to specific error codes. See the package's documentation for additional values that can be extracted such as RequestId. credentials - Provides the types and built in credentials providers the SDK will use to retrieve AWS credentials to make API requests with. Nested under this folder are also additional credentials providers such as stscreds for assuming IAM roles, and ec2rolecreds for EC2 Instance roles. endpoints - Provides the AWS Regions and Endpoints metadata for the SDK. Use this to lookup AWS service endpoint information such as which services are in a region, and what regions a service is in. Constants are also provided for all region identifiers, e.g UsWest2RegionID for "us-west-2". session - Provides initial default configuration, and load configuration from external sources such as environment and shared credentials file. request - Provides the API request sending, and retry logic for the SDK. This package also includes utilities for defining your own request retryer, and configuring how the SDK processes the request. service - Clients for AWS services. All services supported by the SDK are available under this folder. The SDK includes the Go types and utilities you can use to make requests to AWS service APIs. Within the service folder at the root of the SDK you'll find a package for each AWS service the SDK supports. All service clients follows a common pattern of creation and usage. When creating a client for an AWS service you'll first need to have a Session value constructed. The Session provides shared configuration that can be shared between your service clients. When service clients are created you can pass in additional configuration via the aws.Config type to override configuration provided by in the Session to create service client instances with custom configuration. Once the service's client is created you can use it to make API requests the AWS service. These clients are safe to use concurrently. In the AWS SDK for Go, you can configure settings for service clients, such as the log level and maximum number of retries. Most settings are optional; however, for each service client, you must specify a region and your credentials. The SDK uses these values to send requests to the correct AWS region and sign requests with the correct credentials. You can specify these values as part of a session or as environment variables. See the SDK's configuration guide for more information. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html See the session package documentation for more information on how to use Session with the SDK. https://docs.aws.amazon.com/sdk-for-go/api/aws/session/ See the Config type in the aws package for more information on configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config When using the SDK you'll generally need your AWS credentials to authenticate with AWS services. The SDK supports multiple methods of supporting these credentials. By default the SDK will source credentials automatically from its default credential chain. See the session package for more information on this chain, and how to configure it. The common items in the credential chain are the following: Environment Credentials - Set of environment variables that are useful when sub processes are created for specific roles. Shared Credentials file (~/.aws/credentials) - This file stores your credentials based on a profile name and is useful for local development. EC2 Instance Role Credentials - Use EC2 Instance Role to assign credentials to application running on an EC2 instance. This removes the need to manage credential files in production. Credentials can be configured in code as well by setting the Config's Credentials value to a custom provider or using one of the providers included with the SDK to bypass the default credential chain and use a custom one. This is helpful when you want to instruct the SDK to only use a specific set of credentials or providers. This example creates a credential provider for assuming an IAM role, "myRoleARN" and configures the S3 service client to use that role for API requests. See the credentials package documentation for more information on credential providers included with the SDK, and how to customize the SDK's usage of credentials. https://docs.aws.amazon.com/sdk-for-go/api/aws/credentials The SDK has support for the shared configuration file (~/.aws/config). This support can be enabled by setting the environment variable, "AWS_SDK_LOAD_CONFIG=1", or enabling the feature in code when creating a Session via the Option's SharedConfigState parameter. In addition to the credentials you'll need to specify the region the SDK will use to make AWS API requests to. In the SDK you can specify the region either with an environment variable, or directly in code when a Session or service client is created. The last value specified in code wins if the region is specified multiple ways. To set the region via the environment variable set the "AWS_REGION" to the region you want to the SDK to use. Using this method to set the region will allow you to run your application in multiple regions without needing additional code in the application to select the region. The endpoints package includes constants for all regions the SDK knows. The values are all suffixed with RegionID. These values are helpful, because they reduce the need to type the region string manually. To set the region on a Session use the aws package's Config struct parameter Region to the AWS region you want the service clients created from the session to use. This is helpful when you want to create multiple service clients, and all of the clients make API requests to the same region. See the endpoints package for the AWS Regions and Endpoints metadata. https://docs.aws.amazon.com/sdk-for-go/api/aws/endpoints/ In addition to setting the region when creating a Session you can also set the region on a per service client bases. This overrides the region of a Session. This is helpful when you want to create service clients in specific regions different from the Session's region. See the Config type in the aws package for more information and additional options such as setting the Endpoint, and other service client configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config Once the client is created you can make an API request to the service. Each API method takes a input parameter, and returns the service response and an error. The SDK provides methods for making the API call in multiple ways. In this list we'll use the S3 ListObjects API as an example for the different ways of making API requests. ListObjects - Base API operation that will make the API request to the service. ListObjectsRequest - API methods suffixed with Request will construct the API request, but not send it. This is also helpful when you want to get a presigned URL for a request, and share the presigned URL instead of your application making the request directly. ListObjectsPages - Same as the base API operation, but uses a callback to automatically handle pagination of the API's response. ListObjectsWithContext - Same as base API operation, but adds support for the Context pattern. This is helpful for controlling the canceling of in flight requests. See the Go standard library context package for more information. This method also takes request package's Option functional options as the variadic argument for modifying how the request will be made, or extracting information from the raw HTTP response. ListObjectsPagesWithContext - same as ListObjectsPages, but adds support for the Context pattern. Similar to ListObjectsWithContext this method also takes the request package's Option function option types as the variadic argument. In addition to the API operations the SDK also includes several higher level methods that abstract checking for and waiting for an AWS resource to be in a desired state. In this list we'll use WaitUntilBucketExists to demonstrate the different forms of waiters. WaitUntilBucketExists. - Method to make API request to query an AWS service for a resource's state. Will return successfully when that state is accomplished. WaitUntilBucketExistsWithContext - Same as WaitUntilBucketExists, but adds support for the Context pattern. In addition these methods take request package's WaiterOptions to configure the waiter, and how underlying request will be made by the SDK. The API method will document which error codes the service might return for the operation. These errors will also be available as const strings prefixed with "ErrCode" in the service client's package. If there are no errors listed in the API's SDK documentation you'll need to consult the AWS service's API documentation for the errors that could be returned. Pagination helper methods are suffixed with "Pages", and provide the functionality needed to round trip API page requests. Pagination methods take a callback function that will be called for each page of the API's response. Waiter helper methods provide the functionality to wait for an AWS resource state. These methods abstract the logic needed to to check the state of an AWS resource, and wait until that resource is in a desired state. The waiter will block until the resource is in the state that is desired, an error occurs, or the waiter times out. If a resource times out the error code returned will be request.WaiterResourceNotReadyErrorCode. This example shows a complete working Go file which will upload a file to S3 and use the Context pattern to implement timeout logic that will cancel the request if it takes too long. This example highlights how to use sessions, create a service client, make a request, handle the error, and process the response.
Package sdk is the official AWS SDK for the Go programming language. The AWS SDK for Go provides APIs and utilities that developers can use to build Go applications that use AWS services, such as Amazon Elastic Compute Cloud (Amazon EC2) and Amazon Simple Storage Service (Amazon S3). The SDK removes the complexity of coding directly against a web service interface. It hides a lot of the lower-level plumbing, such as authentication, request retries, and error handling. The SDK also includes helpful utilities on top of the AWS APIs that add additional capabilities and functionality. For example, the Amazon S3 Download and Upload Manager will automatically split up large objects into multiple parts and transfer them concurrently. See the s3manager package documentation for more information. https://docs.aws.amazon.com/sdk-for-go/api/service/s3/s3manager/ Checkout the Getting Started Guide and API Reference Docs detailed the SDK's components and details on each AWS client the SDK supports. The Getting Started Guide provides examples and detailed description of how to get setup with the SDK. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/welcome.html The API Reference Docs include a detailed breakdown of the SDK's components such as utilities and AWS clients. Use this as a reference of the Go types included with the SDK, such as AWS clients, API operations, and API parameters. https://docs.aws.amazon.com/sdk-for-go/api/ The SDK is composed of two main components, SDK core, and service clients. The SDK core packages are all available under the aws package at the root of the SDK. Each client for a supported AWS service is available within its own package under the service folder at the root of the SDK. aws - SDK core, provides common shared types such as Config, Logger, and utilities to make working with API parameters easier. awserr - Provides the error interface that the SDK will use for all errors that occur in the SDK's processing. This includes service API response errors as well. The Error type is made up of a code and message. Cast the SDK's returned error type to awserr.Error and call the Code method to compare returned error to specific error codes. See the package's documentation for additional values that can be extracted such as RequestId. credentials - Provides the types and built in credentials providers the SDK will use to retrieve AWS credentials to make API requests with. Nested under this folder are also additional credentials providers such as stscreds for assuming IAM roles, and ec2rolecreds for EC2 Instance roles. endpoints - Provides the AWS Regions and Endpoints metadata for the SDK. Use this to lookup AWS service endpoint information such as which services are in a region, and what regions a service is in. Constants are also provided for all region identifiers, e.g UsWest2RegionID for "us-west-2". session - Provides initial default configuration, and load configuration from external sources such as environment and shared credentials file. request - Provides the API request sending, and retry logic for the SDK. This package also includes utilities for defining your own request retryer, and configuring how the SDK processes the request. service - Clients for AWS services. All services supported by the SDK are available under this folder. The SDK includes the Go types and utilities you can use to make requests to AWS service APIs. Within the service folder at the root of the SDK you'll find a package for each AWS service the SDK supports. All service clients follows a common pattern of creation and usage. When creating a client for an AWS service you'll first need to have a Session value constructed. The Session provides shared configuration that can be shared between your service clients. When service clients are created you can pass in additional configuration via the aws.Config type to override configuration provided by in the Session to create service client instances with custom configuration. Once the service's client is created you can use it to make API requests the AWS service. These clients are safe to use concurrently. In the AWS SDK for Go, you can configure settings for service clients, such as the log level and maximum number of retries. Most settings are optional; however, for each service client, you must specify a region and your credentials. The SDK uses these values to send requests to the correct AWS region and sign requests with the correct credentials. You can specify these values as part of a session or as environment variables. See the SDK's configuration guide for more information. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html See the session package documentation for more information on how to use Session with the SDK. https://docs.aws.amazon.com/sdk-for-go/api/aws/session/ See the Config type in the aws package for more information on configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config When using the SDK you'll generally need your AWS credentials to authenticate with AWS services. The SDK supports multiple methods of supporting these credentials. By default the SDK will source credentials automatically from its default credential chain. See the session package for more information on this chain, and how to configure it. The common items in the credential chain are the following: Environment Credentials - Set of environment variables that are useful when sub processes are created for specific roles. Shared Credentials file (~/.aws/credentials) - This file stores your credentials based on a profile name and is useful for local development. EC2 Instance Role Credentials - Use EC2 Instance Role to assign credentials to application running on an EC2 instance. This removes the need to manage credential files in production. Credentials can be configured in code as well by setting the Config's Credentials value to a custom provider or using one of the providers included with the SDK to bypass the default credential chain and use a custom one. This is helpful when you want to instruct the SDK to only use a specific set of credentials or providers. This example creates a credential provider for assuming an IAM role, "myRoleARN" and configures the S3 service client to use that role for API requests. See the credentials package documentation for more information on credential providers included with the SDK, and how to customize the SDK's usage of credentials. https://docs.aws.amazon.com/sdk-for-go/api/aws/credentials The SDK has support for the shared configuration file (~/.aws/config). This support can be enabled by setting the environment variable, "AWS_SDK_LOAD_CONFIG=1", or enabling the feature in code when creating a Session via the Option's SharedConfigState parameter. In addition to the credentials you'll need to specify the region the SDK will use to make AWS API requests to. In the SDK you can specify the region either with an environment variable, or directly in code when a Session or service client is created. The last value specified in code wins if the region is specified multiple ways. To set the region via the environment variable set the "AWS_REGION" to the region you want to the SDK to use. Using this method to set the region will allow you to run your application in multiple regions without needing additional code in the application to select the region. The endpoints package includes constants for all regions the SDK knows. The values are all suffixed with RegionID. These values are helpful, because they reduce the need to type the region string manually. To set the region on a Session use the aws package's Config struct parameter Region to the AWS region you want the service clients created from the session to use. This is helpful when you want to create multiple service clients, and all of the clients make API requests to the same region. See the endpoints package for the AWS Regions and Endpoints metadata. https://docs.aws.amazon.com/sdk-for-go/api/aws/endpoints/ In addition to setting the region when creating a Session you can also set the region on a per service client bases. This overrides the region of a Session. This is helpful when you want to create service clients in specific regions different from the Session's region. See the Config type in the aws package for more information and additional options such as setting the Endpoint, and other service client configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config Once the client is created you can make an API request to the service. Each API method takes a input parameter, and returns the service response and an error. The SDK provides methods for making the API call in multiple ways. In this list we'll use the S3 ListObjects API as an example for the different ways of making API requests. ListObjects - Base API operation that will make the API request to the service. ListObjectsRequest - API methods suffixed with Request will construct the API request, but not send it. This is also helpful when you want to get a presigned URL for a request, and share the presigned URL instead of your application making the request directly. ListObjectsPages - Same as the base API operation, but uses a callback to automatically handle pagination of the API's response. ListObjectsWithContext - Same as base API operation, but adds support for the Context pattern. This is helpful for controlling the canceling of in flight requests. See the Go standard library context package for more information. This method also takes request package's Option functional options as the variadic argument for modifying how the request will be made, or extracting information from the raw HTTP response. ListObjectsPagesWithContext - same as ListObjectsPages, but adds support for the Context pattern. Similar to ListObjectsWithContext this method also takes the request package's Option function option types as the variadic argument. In addition to the API operations the SDK also includes several higher level methods that abstract checking for and waiting for an AWS resource to be in a desired state. In this list we'll use WaitUntilBucketExists to demonstrate the different forms of waiters. WaitUntilBucketExists. - Method to make API request to query an AWS service for a resource's state. Will return successfully when that state is accomplished. WaitUntilBucketExistsWithContext - Same as WaitUntilBucketExists, but adds support for the Context pattern. In addition these methods take request package's WaiterOptions to configure the waiter, and how underlying request will be made by the SDK. The API method will document which error codes the service might return for the operation. These errors will also be available as const strings prefixed with "ErrCode" in the service client's package. If there are no errors listed in the API's SDK documentation you'll need to consult the AWS service's API documentation for the errors that could be returned. Pagination helper methods are suffixed with "Pages", and provide the functionality needed to round trip API page requests. Pagination methods take a callback function that will be called for each page of the API's response. Waiter helper methods provide the functionality to wait for an AWS resource state. These methods abstract the logic needed to to check the state of an AWS resource, and wait until that resource is in a desired state. The waiter will block until the resource is in the state that is desired, an error occurs, or the waiter times out. If a resource times out the error code returned will be request.WaiterResourceNotReadyErrorCode. This example shows a complete working Go file which will upload a file to S3 and use the Context pattern to implement timeout logic that will cancel the request if it takes too long. This example highlights how to use sessions, create a service client, make a request, handle the error, and process the response.
Package promptui is a library providing a simple interface to create command-line prompts for go. It can be easily integrated into spf13/cobra, urfave/cli or any cli go application. promptui has two main input modes: Prompt provides a single line for user input. It supports optional live validation, confirmation and masking the input. Select provides a list of options to choose from. It supports pagination, search, detailed view and custom templates. This is an example for the Prompt mode of promptui. In this example, a prompt is created with a validator function that validates the given value to make sure its a number. If successful, it will output the chosen number in a formatted message. This is an example for the Select mode of promptui. In this example, a select is created with the days of the week as its items. When an item is selected, the selected day will be displayed in a formatted message.
Package sdk is the official AWS SDK for the Go programming language. The AWS SDK for Go provides APIs and utilities that developers can use to build Go applications that use AWS services, such as Amazon Elastic Compute Cloud (Amazon EC2) and Amazon Simple Storage Service (Amazon S3). The SDK removes the complexity of coding directly against a web service interface. It hides a lot of the lower-level plumbing, such as authentication, request retries, and error handling. The SDK also includes helpful utilities on top of the AWS APIs that add additional capabilities and functionality. For example, the Amazon S3 Download and Upload Manager will automatically split up large objects into multiple parts and transfer them concurrently. See the s3manager package documentation for more information. https://docs.aws.amazon.com/sdk-for-go/api/service/s3/s3manager/ Checkout the Getting Started Guide and API Reference Docs detailed the SDK's components and details on each AWS client the SDK supports. The Getting Started Guide provides examples and detailed description of how to get setup with the SDK. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/welcome.html The API Reference Docs include a detailed breakdown of the SDK's components such as utilities and AWS clients. Use this as a reference of the Go types included with the SDK, such as AWS clients, API operations, and API parameters. https://docs.aws.amazon.com/sdk-for-go/api/ The SDK is composed of two main components, SDK core, and service clients. The SDK core packages are all available under the aws package at the root of the SDK. Each client for a supported AWS service is available within its own package under the service folder at the root of the SDK. aws - SDK core, provides common shared types such as Config, Logger, and utilities to make working with API parameters easier. awserr - Provides the error interface that the SDK will use for all errors that occur in the SDK's processing. This includes service API response errors as well. The Error type is made up of a code and message. Cast the SDK's returned error type to awserr.Error and call the Code method to compare returned error to specific error codes. See the package's documentation for additional values that can be extracted such as RequestId. credentials - Provides the types and built in credentials providers the SDK will use to retrieve AWS credentials to make API requests with. Nested under this folder are also additional credentials providers such as stscreds for assuming IAM roles, and ec2rolecreds for EC2 Instance roles. endpoints - Provides the AWS Regions and Endpoints metadata for the SDK. Use this to lookup AWS service endpoint information such as which services are in a region, and what regions a service is in. Constants are also provided for all region identifiers, e.g UsWest2RegionID for "us-west-2". session - Provides initial default configuration, and load configuration from external sources such as environment and shared credentials file. request - Provides the API request sending, and retry logic for the SDK. This package also includes utilities for defining your own request retryer, and configuring how the SDK processes the request. service - Clients for AWS services. All services supported by the SDK are available under this folder. The SDK includes the Go types and utilities you can use to make requests to AWS service APIs. Within the service folder at the root of the SDK you'll find a package for each AWS service the SDK supports. All service clients follows a common pattern of creation and usage. When creating a client for an AWS service you'll first need to have a Session value constructed. The Session provides shared configuration that can be shared between your service clients. When service clients are created you can pass in additional configuration via the aws.Config type to override configuration provided by in the Session to create service client instances with custom configuration. Once the service's client is created you can use it to make API requests the AWS service. These clients are safe to use concurrently. In the AWS SDK for Go, you can configure settings for service clients, such as the log level and maximum number of retries. Most settings are optional; however, for each service client, you must specify a region and your credentials. The SDK uses these values to send requests to the correct AWS region and sign requests with the correct credentials. You can specify these values as part of a session or as environment variables. See the SDK's configuration guide for more information. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html See the session package documentation for more information on how to use Session with the SDK. https://docs.aws.amazon.com/sdk-for-go/api/aws/session/ See the Config type in the aws package for more information on configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config When using the SDK you'll generally need your AWS credentials to authenticate with AWS services. The SDK supports multiple methods of supporting these credentials. By default the SDK will source credentials automatically from its default credential chain. See the session package for more information on this chain, and how to configure it. The common items in the credential chain are the following: Environment Credentials - Set of environment variables that are useful when sub processes are created for specific roles. Shared Credentials file (~/.aws/credentials) - This file stores your credentials based on a profile name and is useful for local development. EC2 Instance Role Credentials - Use EC2 Instance Role to assign credentials to application running on an EC2 instance. This removes the need to manage credential files in production. Credentials can be configured in code as well by setting the Config's Credentials value to a custom provider or using one of the providers included with the SDK to bypass the default credential chain and use a custom one. This is helpful when you want to instruct the SDK to only use a specific set of credentials or providers. This example creates a credential provider for assuming an IAM role, "myRoleARN" and configures the S3 service client to use that role for API requests. See the credentials package documentation for more information on credential providers included with the SDK, and how to customize the SDK's usage of credentials. https://docs.aws.amazon.com/sdk-for-go/api/aws/credentials The SDK has support for the shared configuration file (~/.aws/config). This support can be enabled by setting the environment variable, "AWS_SDK_LOAD_CONFIG=1", or enabling the feature in code when creating a Session via the Option's SharedConfigState parameter. In addition to the credentials you'll need to specify the region the SDK will use to make AWS API requests to. In the SDK you can specify the region either with an environment variable, or directly in code when a Session or service client is created. The last value specified in code wins if the region is specified multiple ways. To set the region via the environment variable set the "AWS_REGION" to the region you want to the SDK to use. Using this method to set the region will allow you to run your application in multiple regions without needing additional code in the application to select the region. The endpoints package includes constants for all regions the SDK knows. The values are all suffixed with RegionID. These values are helpful, because they reduce the need to type the region string manually. To set the region on a Session use the aws package's Config struct parameter Region to the AWS region you want the service clients created from the session to use. This is helpful when you want to create multiple service clients, and all of the clients make API requests to the same region. See the endpoints package for the AWS Regions and Endpoints metadata. https://docs.aws.amazon.com/sdk-for-go/api/aws/endpoints/ In addition to setting the region when creating a Session you can also set the region on a per service client bases. This overrides the region of a Session. This is helpful when you want to create service clients in specific regions different from the Session's region. See the Config type in the aws package for more information and additional options such as setting the Endpoint, and other service client configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config Once the client is created you can make an API request to the service. Each API method takes a input parameter, and returns the service response and an error. The SDK provides methods for making the API call in multiple ways. In this list we'll use the S3 ListObjects API as an example for the different ways of making API requests. ListObjects - Base API operation that will make the API request to the service. ListObjectsRequest - API methods suffixed with Request will construct the API request, but not send it. This is also helpful when you want to get a presigned URL for a request, and share the presigned URL instead of your application making the request directly. ListObjectsPages - Same as the base API operation, but uses a callback to automatically handle pagination of the API's response. ListObjectsWithContext - Same as base API operation, but adds support for the Context pattern. This is helpful for controlling the canceling of in flight requests. See the Go standard library context package for more information. This method also takes request package's Option functional options as the variadic argument for modifying how the request will be made, or extracting information from the raw HTTP response. ListObjectsPagesWithContext - same as ListObjectsPages, but adds support for the Context pattern. Similar to ListObjectsWithContext this method also takes the request package's Option function option types as the variadic argument. In addition to the API operations the SDK also includes several higher level methods that abstract checking for and waiting for an AWS resource to be in a desired state. In this list we'll use WaitUntilBucketExists to demonstrate the different forms of waiters. WaitUntilBucketExists. - Method to make API request to query an AWS service for a resource's state. Will return successfully when that state is accomplished. WaitUntilBucketExistsWithContext - Same as WaitUntilBucketExists, but adds support for the Context pattern. In addition these methods take request package's WaiterOptions to configure the waiter, and how underlying request will be made by the SDK. The API method will document which error codes the service might return for the operation. These errors will also be available as const strings prefixed with "ErrCode" in the service client's package. If there are no errors listed in the API's SDK documentation you'll need to consult the AWS service's API documentation for the errors that could be returned. Pagination helper methods are suffixed with "Pages", and provide the functionality needed to round trip API page requests. Pagination methods take a callback function that will be called for each page of the API's response. Waiter helper methods provide the functionality to wait for an AWS resource state. These methods abstract the logic needed to to check the state of an AWS resource, and wait until that resource is in a desired state. The waiter will block until the resource is in the state that is desired, an error occurs, or the waiter times out. If a resource times out the error code returned will be request.WaiterResourceNotReadyErrorCode. This example shows a complete working Go file which will upload a file to S3 and use the Context pattern to implement timeout logic that will cancel the request if it takes too long. This example highlights how to use sessions, create a service client, make a request, handle the error, and process the response.
2fa is a two-factor authentication agent. Usage: “2fa -add name” adds a new key to the 2fa keychain with the given name. It prints a prompt to standard error and reads a two-factor key from standard input. Two-factor keys are short case-insensitive strings of letters A-Z and digits 2-7. By default the new key generates time-based (TOTP) authentication codes; the -hotp flag makes the new key generate counter-based (HOTP) codes instead. By default the new key generates 6-digit codes; the -7 and -8 flags select 7- and 8-digit codes instead. “2fa -list” lists the names of all the keys in the keychain. “2fa name” prints a two-factor authentication code from the key with the given name. If “-clip” is specified, 2fa also copies the code to the system clipboard. With no arguments, 2fa prints two-factor authentication codes from all known time-based keys. The default time-based authentication codes are derived from a hash of the key and the current time, so it is important that the system clock have at least one-minute accuracy. The keychain is stored unencrypted in the text file $HOME/.2fa. During GitHub 2FA setup, at the “Scan this barcode with your app” step, click the “enter this text code instead” link. A window pops up showing “your two-factor secret,” a short string of letters and digits. Add it to 2fa under the name github, typing the secret at the prompt: Then whenever GitHub prompts for a 2FA code, run 2fa to obtain one: Or to type less:
2fa is a two-factor authentication agent. Usage: “2fa -add name” adds a new key to the 2fa keychain with the given name. It prints a prompt to standard error and reads a two-factor key from standard input. Two-factor keys are short case-insensitive strings of letters A-Z and digits 2-7. By default the new key generates time-based (TOTP) authentication codes; the -hotp flag makes the new key generate counter-based (HOTP) codes instead. By default the new key generates 6-digit codes; the -7 and -8 flags select 7- and 8-digit codes instead. “2fa -list” lists the names of all the keys in the keychain. “2fa name” prints a two-factor authentication code from the key with the given name. With no arguments, 2fa prints two-factor authentication codes from all known time-based keys. The default time-based authentication codes are derived from a hash of the key and the current time, so it is important that the system clock have at least one-minute accuracy. The keychain is stored unencrypted in the text file $HOME/.2fa. During GitHub 2FA setup, at the “Scan this barcode with your app” step, click the “enter this text code instead” link. A window pops up showing “your two-factor secret,” a short string of letters and digits. Add it to 2fa under the name github, typing the secret at the prompt: Then whenever GitHub prompts for a 2FA code, run 2fa to obtain one: Or to type less:
Package sdk is the official AWS SDK for the Go programming language. The AWS SDK for Go provides APIs and utilities that developers can use to build Go applications that use AWS services, such as Amazon Elastic Compute Cloud (Amazon EC2) and Amazon Simple Storage Service (Amazon S3). The SDK removes the complexity of coding directly against a web service interface. It hides a lot of the lower-level plumbing, such as authentication, request retries, and error handling. The SDK also includes helpful utilities on top of the AWS APIs that add additional capabilities and functionality. For example, the Amazon S3 Download and Upload Manager will automatically split up large objects into multiple parts and transfer them concurrently. See the s3manager package documentation for more information. https://docs.aws.amazon.com/sdk-for-go/api/service/s3/s3manager/ Checkout the Getting Started Guide and API Reference Docs detailed the SDK's components and details on each AWS client the SDK supports. The Getting Started Guide provides examples and detailed description of how to get setup with the SDK. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/welcome.html The API Reference Docs include a detailed breakdown of the SDK's components such as utilities and AWS clients. Use this as a reference of the Go types included with the SDK, such as AWS clients, API operations, and API parameters. https://docs.aws.amazon.com/sdk-for-go/api/ The SDK is composed of two main components, SDK core, and service clients. The SDK core packages are all available under the aws package at the root of the SDK. Each client for a supported AWS service is available within its own package under the service folder at the root of the SDK. aws - SDK core, provides common shared types such as Config, Logger, and utilities to make working with API parameters easier. awserr - Provides the error interface that the SDK will use for all errors that occur in the SDK's processing. This includes service API response errors as well. The Error type is made up of a code and message. Cast the SDK's returned error type to awserr.Error and call the Code method to compare returned error to specific error codes. See the package's documentation for additional values that can be extracted such as RequestId. credentials - Provides the types and built in credentials providers the SDK will use to retrieve AWS credentials to make API requests with. Nested under this folder are also additional credentials providers such as stscreds for assuming IAM roles, and ec2rolecreds for EC2 Instance roles. endpoints - Provides the AWS Regions and Endpoints metadata for the SDK. Use this to lookup AWS service endpoint information such as which services are in a region, and what regions a service is in. Constants are also provided for all region identifiers, e.g UsWest2RegionID for "us-west-2". session - Provides initial default configuration, and load configuration from external sources such as environment and shared credentials file. request - Provides the API request sending, and retry logic for the SDK. This package also includes utilities for defining your own request retryer, and configuring how the SDK processes the request. service - Clients for AWS services. All services supported by the SDK are available under this folder. The SDK includes the Go types and utilities you can use to make requests to AWS service APIs. Within the service folder at the root of the SDK you'll find a package for each AWS service the SDK supports. All service clients follows a common pattern of creation and usage. When creating a client for an AWS service you'll first need to have a Session value constructed. The Session provides shared configuration that can be shared between your service clients. When service clients are created you can pass in additional configuration via the aws.Config type to override configuration provided by in the Session to create service client instances with custom configuration. Once the service's client is created you can use it to make API requests the AWS service. These clients are safe to use concurrently. In the AWS SDK for Go, you can configure settings for service clients, such as the log level and maximum number of retries. Most settings are optional; however, for each service client, you must specify a region and your credentials. The SDK uses these values to send requests to the correct AWS region and sign requests with the correct credentials. You can specify these values as part of a session or as environment variables. See the SDK's configuration guide for more information. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html See the session package documentation for more information on how to use Session with the SDK. https://docs.aws.amazon.com/sdk-for-go/api/aws/session/ See the Config type in the aws package for more information on configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config When using the SDK you'll generally need your AWS credentials to authenticate with AWS services. The SDK supports multiple methods of supporting these credentials. By default the SDK will source credentials automatically from its default credential chain. See the session package for more information on this chain, and how to configure it. The common items in the credential chain are the following: Environment Credentials - Set of environment variables that are useful when sub processes are created for specific roles. Shared Credentials file (~/.aws/credentials) - This file stores your credentials based on a profile name and is useful for local development. EC2 Instance Role Credentials - Use EC2 Instance Role to assign credentials to application running on an EC2 instance. This removes the need to manage credential files in production. Credentials can be configured in code as well by setting the Config's Credentials value to a custom provider or using one of the providers included with the SDK to bypass the default credential chain and use a custom one. This is helpful when you want to instruct the SDK to only use a specific set of credentials or providers. This example creates a credential provider for assuming an IAM role, "myRoleARN" and configures the S3 service client to use that role for API requests. See the credentials package documentation for more information on credential providers included with the SDK, and how to customize the SDK's usage of credentials. https://docs.aws.amazon.com/sdk-for-go/api/aws/credentials The SDK has support for the shared configuration file (~/.aws/config). This support can be enabled by setting the environment variable, "AWS_SDK_LOAD_CONFIG=1", or enabling the feature in code when creating a Session via the Option's SharedConfigState parameter. In addition to the credentials you'll need to specify the region the SDK will use to make AWS API requests to. In the SDK you can specify the region either with an environment variable, or directly in code when a Session or service client is created. The last value specified in code wins if the region is specified multiple ways. To set the region via the environment variable set the "AWS_REGION" to the region you want to the SDK to use. Using this method to set the region will allow you to run your application in multiple regions without needing additional code in the application to select the region. The endpoints package includes constants for all regions the SDK knows. The values are all suffixed with RegionID. These values are helpful, because they reduce the need to type the region string manually. To set the region on a Session use the aws package's Config struct parameter Region to the AWS region you want the service clients created from the session to use. This is helpful when you want to create multiple service clients, and all of the clients make API requests to the same region. See the endpoints package for the AWS Regions and Endpoints metadata. https://docs.aws.amazon.com/sdk-for-go/api/aws/endpoints/ In addition to setting the region when creating a Session you can also set the region on a per service client bases. This overrides the region of a Session. This is helpful when you want to create service clients in specific regions different from the Session's region. See the Config type in the aws package for more information and additional options such as setting the Endpoint, and other service client configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config Once the client is created you can make an API request to the service. Each API method takes a input parameter, and returns the service response and an error. The SDK provides methods for making the API call in multiple ways. In this list we'll use the S3 ListObjects API as an example for the different ways of making API requests. ListObjects - Base API operation that will make the API request to the service. ListObjectsRequest - API methods suffixed with Request will construct the API request, but not send it. This is also helpful when you want to get a presigned URL for a request, and share the presigned URL instead of your application making the request directly. ListObjectsPages - Same as the base API operation, but uses a callback to automatically handle pagination of the API's response. ListObjectsWithContext - Same as base API operation, but adds support for the Context pattern. This is helpful for controlling the canceling of in flight requests. See the Go standard library context package for more information. This method also takes request package's Option functional options as the variadic argument for modifying how the request will be made, or extracting information from the raw HTTP response. ListObjectsPagesWithContext - same as ListObjectsPages, but adds support for the Context pattern. Similar to ListObjectsWithContext this method also takes the request package's Option function option types as the variadic argument. In addition to the API operations the SDK also includes several higher level methods that abstract checking for and waiting for an AWS resource to be in a desired state. In this list we'll use WaitUntilBucketExists to demonstrate the different forms of waiters. WaitUntilBucketExists. - Method to make API request to query an AWS service for a resource's state. Will return successfully when that state is accomplished. WaitUntilBucketExistsWithContext - Same as WaitUntilBucketExists, but adds support for the Context pattern. In addition these methods take request package's WaiterOptions to configure the waiter, and how underlying request will be made by the SDK. The API method will document which error codes the service might return for the operation. These errors will also be available as const strings prefixed with "ErrCode" in the service client's package. If there are no errors listed in the API's SDK documentation you'll need to consult the AWS service's API documentation for the errors that could be returned. Pagination helper methods are suffixed with "Pages", and provide the functionality needed to round trip API page requests. Pagination methods take a callback function that will be called for each page of the API's response. Waiter helper methods provide the functionality to wait for an AWS resource state. These methods abstract the logic needed to to check the state of an AWS resource, and wait until that resource is in a desired state. The waiter will block until the resource is in the state that is desired, an error occurs, or the waiter times out. If a resource times out the error code returned will be request.WaiterResourceNotReadyErrorCode. This example shows a complete working Go file which will upload a file to S3 and use the Context pattern to implement timeout logic that will cancel the request if it takes too long. This example highlights how to use sessions, create a service client, make a request, handle the error, and process the response.
Package goncurses is a new curses (ncurses) library for the Go programming language. It implements all the ncurses extension libraries: form, menu and panel. Minimal operation would consist of initializing the display: It is important to always call End() before your program exits. If you fail to do so, the terminal will not perform properly and will either need to be reset or restarted completely. CAUTION: Calls to ncurses functions are normally not atomic nor reentrant and therefore extreme care should be taken to ensure ncurses functions are not called concurrently. Specifically, never write data to the same window concurrently nor accept input and send output to the same window as both alter the underlying C data structures in a non safe manner. Ideally, you should structure your program to ensure all ncurses related calls happen in a single goroutine. This is probably most easily achieved via channels and Go's built-in select. Alternatively, or additionally, you can use a mutex to protect any calls in multiple goroutines from happening concurrently. Failure to do so will result in unpredictable and undefined behaviour in your program. The examples directory contains demonstrations of many of the capabilities goncurses can provide.
Package sdk is the official AWS SDK for the Go programming language. The AWS SDK for Go provides APIs and utilities that developers can use to build Go applications that use AWS services, such as Amazon Elastic Compute Cloud (Amazon EC2) and Amazon Simple Storage Service (Amazon S3). The SDK removes the complexity of coding directly against a web service interface. It hides a lot of the lower-level plumbing, such as authentication, request retries, and error handling. The SDK also includes helpful utilities on top of the AWS APIs that add additional capabilities and functionality. For example, the Amazon S3 Download and Upload Manager will automatically split up large objects into multiple parts and transfer them concurrently. See the s3manager package documentation for more information. https://docs.aws.amazon.com/sdk-for-go/api/service/s3/s3manager/ Checkout the Getting Started Guide and API Reference Docs detailed the SDK's components and details on each AWS client the SDK supports. The Getting Started Guide provides examples and detailed description of how to get setup with the SDK. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/welcome.html The API Reference Docs include a detailed breakdown of the SDK's components such as utilities and AWS clients. Use this as a reference of the Go types included with the SDK, such as AWS clients, API operations, and API parameters. https://docs.aws.amazon.com/sdk-for-go/api/ The SDK is composed of two main components, SDK core, and service clients. The SDK core packages are all available under the aws package at the root of the SDK. Each client for a supported AWS service is available within its own package under the service folder at the root of the SDK. aws - SDK core, provides common shared types such as Config, Logger, and utilities to make working with API parameters easier. awserr - Provides the error interface that the SDK will use for all errors that occur in the SDK's processing. This includes service API response errors as well. The Error type is made up of a code and message. Cast the SDK's returned error type to awserr.Error and call the Code method to compare returned error to specific error codes. See the package's documentation for additional values that can be extracted such as RequestId. credentials - Provides the types and built in credentials providers the SDK will use to retrieve AWS credentials to make API requests with. Nested under this folder are also additional credentials providers such as stscreds for assuming IAM roles, and ec2rolecreds for EC2 Instance roles. endpoints - Provides the AWS Regions and Endpoints metadata for the SDK. Use this to lookup AWS service endpoint information such as which services are in a region, and what regions a service is in. Constants are also provided for all region identifiers, e.g UsWest2RegionID for "us-west-2". session - Provides initial default configuration, and load configuration from external sources such as environment and shared credentials file. request - Provides the API request sending, and retry logic for the SDK. This package also includes utilities for defining your own request retryer, and configuring how the SDK processes the request. service - Clients for AWS services. All services supported by the SDK are available under this folder. The SDK includes the Go types and utilities you can use to make requests to AWS service APIs. Within the service folder at the root of the SDK you'll find a package for each AWS service the SDK supports. All service clients follows a common pattern of creation and usage. When creating a client for an AWS service you'll first need to have a Session value constructed. The Session provides shared configuration that can be shared between your service clients. When service clients are created you can pass in additional configuration via the aws.Config type to override configuration provided by in the Session to create service client instances with custom configuration. Once the service's client is created you can use it to make API requests the AWS service. These clients are safe to use concurrently. In the AWS SDK for Go, you can configure settings for service clients, such as the log level and maximum number of retries. Most settings are optional; however, for each service client, you must specify a region and your credentials. The SDK uses these values to send requests to the correct AWS region and sign requests with the correct credentials. You can specify these values as part of a session or as environment variables. See the SDK's configuration guide for more information. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html See the session package documentation for more information on how to use Session with the SDK. https://docs.aws.amazon.com/sdk-for-go/api/aws/session/ See the Config type in the aws package for more information on configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config When using the SDK you'll generally need your AWS credentials to authenticate with AWS services. The SDK supports multiple methods of supporting these credentials. By default the SDK will source credentials automatically from its default credential chain. See the session package for more information on this chain, and how to configure it. The common items in the credential chain are the following: Environment Credentials - Set of environment variables that are useful when sub processes are created for specific roles. Shared Credentials file (~/.aws/credentials) - This file stores your credentials based on a profile name and is useful for local development. EC2 Instance Role Credentials - Use EC2 Instance Role to assign credentials to application running on an EC2 instance. This removes the need to manage credential files in production. Credentials can be configured in code as well by setting the Config's Credentials value to a custom provider or using one of the providers included with the SDK to bypass the default credential chain and use a custom one. This is helpful when you want to instruct the SDK to only use a specific set of credentials or providers. This example creates a credential provider for assuming an IAM role, "myRoleARN" and configures the S3 service client to use that role for API requests. See the credentials package documentation for more information on credential providers included with the SDK, and how to customize the SDK's usage of credentials. https://docs.aws.amazon.com/sdk-for-go/api/aws/credentials The SDK has support for the shared configuration file (~/.aws/config). This support can be enabled by setting the environment variable, "AWS_SDK_LOAD_CONFIG=1", or enabling the feature in code when creating a Session via the Option's SharedConfigState parameter. In addition to the credentials you'll need to specify the region the SDK will use to make AWS API requests to. In the SDK you can specify the region either with an environment variable, or directly in code when a Session or service client is created. The last value specified in code wins if the region is specified multiple ways. To set the region via the environment variable set the "AWS_REGION" to the region you want to the SDK to use. Using this method to set the region will allow you to run your application in multiple regions without needing additional code in the application to select the region. The endpoints package includes constants for all regions the SDK knows. The values are all suffixed with RegionID. These values are helpful, because they reduce the need to type the region string manually. To set the region on a Session use the aws package's Config struct parameter Region to the AWS region you want the service clients created from the session to use. This is helpful when you want to create multiple service clients, and all of the clients make API requests to the same region. See the endpoints package for the AWS Regions and Endpoints metadata. https://docs.aws.amazon.com/sdk-for-go/api/aws/endpoints/ In addition to setting the region when creating a Session you can also set the region on a per service client bases. This overrides the region of a Session. This is helpful when you want to create service clients in specific regions different from the Session's region. See the Config type in the aws package for more information and additional options such as setting the Endpoint, and other service client configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config Once the client is created you can make an API request to the service. Each API method takes a input parameter, and returns the service response and an error. The SDK provides methods for making the API call in multiple ways. In this list we'll use the S3 ListObjects API as an example for the different ways of making API requests. ListObjects - Base API operation that will make the API request to the service. ListObjectsRequest - API methods suffixed with Request will construct the API request, but not send it. This is also helpful when you want to get a presigned URL for a request, and share the presigned URL instead of your application making the request directly. ListObjectsPages - Same as the base API operation, but uses a callback to automatically handle pagination of the API's response. ListObjectsWithContext - Same as base API operation, but adds support for the Context pattern. This is helpful for controlling the canceling of in flight requests. See the Go standard library context package for more information. This method also takes request package's Option functional options as the variadic argument for modifying how the request will be made, or extracting information from the raw HTTP response. ListObjectsPagesWithContext - same as ListObjectsPages, but adds support for the Context pattern. Similar to ListObjectsWithContext this method also takes the request package's Option function option types as the variadic argument. In addition to the API operations the SDK also includes several higher level methods that abstract checking for and waiting for an AWS resource to be in a desired state. In this list we'll use WaitUntilBucketExists to demonstrate the different forms of waiters. WaitUntilBucketExists. - Method to make API request to query an AWS service for a resource's state. Will return successfully when that state is accomplished. WaitUntilBucketExistsWithContext - Same as WaitUntilBucketExists, but adds support for the Context pattern. In addition these methods take request package's WaiterOptions to configure the waiter, and how underlying request will be made by the SDK. The API method will document which error codes the service might return for the operation. These errors will also be available as const strings prefixed with "ErrCode" in the service client's package. If there are no errors listed in the API's SDK documentation you'll need to consult the AWS service's API documentation for the errors that could be returned. Pagination helper methods are suffixed with "Pages", and provide the functionality needed to round trip API page requests. Pagination methods take a callback function that will be called for each page of the API's response. Waiter helper methods provide the functionality to wait for an AWS resource state. These methods abstract the logic needed to to check the state of an AWS resource, and wait until that resource is in a desired state. The waiter will block until the resource is in the state that is desired, an error occurs, or the waiter times out. If a resource times out the error code returned will be request.WaiterResourceNotReadyErrorCode. This example shows a complete working Go file which will upload a file to S3 and use the Context pattern to implement timeout logic that will cancel the request if it takes too long. This example highlights how to use sessions, create a service client, make a request, handle the error, and process the response.
Package sdk is the official AWS SDK for the Go programming language. The AWS SDK for Go provides APIs and utilities that developers can use to build Go applications that use AWS services, such as Amazon Elastic Compute Cloud (Amazon EC2) and Amazon Simple Storage Service (Amazon S3). The SDK removes the complexity of coding directly against a web service interface. It hides a lot of the lower-level plumbing, such as authentication, request retries, and error handling. The SDK also includes helpful utilities on top of the AWS APIs that add additional capabilities and functionality. For example, the Amazon S3 Download and Upload Manager will automatically split up large objects into multiple parts and transfer them concurrently. See the s3manager package documentation for more information. https://docs.aws.amazon.com/sdk-for-go/api/service/s3/s3manager/ Checkout the Getting Started Guide and API Reference Docs detailed the SDK's components and details on each AWS client the SDK supports. The Getting Started Guide provides examples and detailed description of how to get setup with the SDK. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/welcome.html The API Reference Docs include a detailed breakdown of the SDK's components such as utilities and AWS clients. Use this as a reference of the Go types included with the SDK, such as AWS clients, API operations, and API parameters. https://docs.aws.amazon.com/sdk-for-go/api/ The SDK is composed of two main components, SDK core, and service clients. The SDK core packages are all available under the aws package at the root of the SDK. Each client for a supported AWS service is available within its own package under the service folder at the root of the SDK. aws - SDK core, provides common shared types such as Config, Logger, and utilities to make working with API parameters easier. awserr - Provides the error interface that the SDK will use for all errors that occur in the SDK's processing. This includes service API response errors as well. The Error type is made up of a code and message. Cast the SDK's returned error type to awserr.Error and call the Code method to compare returned error to specific error codes. See the package's documentation for additional values that can be extracted such as RequestId. credentials - Provides the types and built in credentials providers the SDK will use to retrieve AWS credentials to make API requests with. Nested under this folder are also additional credentials providers such as stscreds for assuming IAM roles, and ec2rolecreds for EC2 Instance roles. endpoints - Provides the AWS Regions and Endpoints metadata for the SDK. Use this to lookup AWS service endpoint information such as which services are in a region, and what regions a service is in. Constants are also provided for all region identifiers, e.g UsWest2RegionID for "us-west-2". session - Provides initial default configuration, and load configuration from external sources such as environment and shared credentials file. request - Provides the API request sending, and retry logic for the SDK. This package also includes utilities for defining your own request retryer, and configuring how the SDK processes the request. service - Clients for AWS services. All services supported by the SDK are available under this folder. The SDK includes the Go types and utilities you can use to make requests to AWS service APIs. Within the service folder at the root of the SDK you'll find a package for each AWS service the SDK supports. All service clients follows a common pattern of creation and usage. When creating a client for an AWS service you'll first need to have a Session value constructed. The Session provides shared configuration that can be shared between your service clients. When service clients are created you can pass in additional configuration via the aws.Config type to override configuration provided by in the Session to create service client instances with custom configuration. Once the service's client is created you can use it to make API requests the AWS service. These clients are safe to use concurrently. In the AWS SDK for Go, you can configure settings for service clients, such as the log level and maximum number of retries. Most settings are optional; however, for each service client, you must specify a region and your credentials. The SDK uses these values to send requests to the correct AWS region and sign requests with the correct credentials. You can specify these values as part of a session or as environment variables. See the SDK's configuration guide for more information. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html See the session package documentation for more information on how to use Session with the SDK. https://docs.aws.amazon.com/sdk-for-go/api/aws/session/ See the Config type in the aws package for more information on configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config When using the SDK you'll generally need your AWS credentials to authenticate with AWS services. The SDK supports multiple methods of supporting these credentials. By default the SDK will source credentials automatically from its default credential chain. See the session package for more information on this chain, and how to configure it. The common items in the credential chain are the following: Environment Credentials - Set of environment variables that are useful when sub processes are created for specific roles. Shared Credentials file (~/.aws/credentials) - This file stores your credentials based on a profile name and is useful for local development. EC2 Instance Role Credentials - Use EC2 Instance Role to assign credentials to application running on an EC2 instance. This removes the need to manage credential files in production. Credentials can be configured in code as well by setting the Config's Credentials value to a custom provider or using one of the providers included with the SDK to bypass the default credential chain and use a custom one. This is helpful when you want to instruct the SDK to only use a specific set of credentials or providers. This example creates a credential provider for assuming an IAM role, "myRoleARN" and configures the S3 service client to use that role for API requests. See the credentials package documentation for more information on credential providers included with the SDK, and how to customize the SDK's usage of credentials. https://docs.aws.amazon.com/sdk-for-go/api/aws/credentials The SDK has support for the shared configuration file (~/.aws/config). This support can be enabled by setting the environment variable, "AWS_SDK_LOAD_CONFIG=1", or enabling the feature in code when creating a Session via the Option's SharedConfigState parameter. In addition to the credentials you'll need to specify the region the SDK will use to make AWS API requests to. In the SDK you can specify the region either with an environment variable, or directly in code when a Session or service client is created. The last value specified in code wins if the region is specified multiple ways. To set the region via the environment variable set the "AWS_REGION" to the region you want to the SDK to use. Using this method to set the region will allow you to run your application in multiple regions without needing additional code in the application to select the region. The endpoints package includes constants for all regions the SDK knows. The values are all suffixed with RegionID. These values are helpful, because they reduce the need to type the region string manually. To set the region on a Session use the aws package's Config struct parameter Region to the AWS region you want the service clients created from the session to use. This is helpful when you want to create multiple service clients, and all of the clients make API requests to the same region. See the endpoints package for the AWS Regions and Endpoints metadata. https://docs.aws.amazon.com/sdk-for-go/api/aws/endpoints/ In addition to setting the region when creating a Session you can also set the region on a per service client bases. This overrides the region of a Session. This is helpful when you want to create service clients in specific regions different from the Session's region. See the Config type in the aws package for more information and additional options such as setting the Endpoint, and other service client configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config Once the client is created you can make an API request to the service. Each API method takes a input parameter, and returns the service response and an error. The SDK provides methods for making the API call in multiple ways. In this list we'll use the S3 ListObjects API as an example for the different ways of making API requests. ListObjects - Base API operation that will make the API request to the service. ListObjectsRequest - API methods suffixed with Request will construct the API request, but not send it. This is also helpful when you want to get a presigned URL for a request, and share the presigned URL instead of your application making the request directly. ListObjectsPages - Same as the base API operation, but uses a callback to automatically handle pagination of the API's response. ListObjectsWithContext - Same as base API operation, but adds support for the Context pattern. This is helpful for controlling the canceling of in flight requests. See the Go standard library context package for more information. This method also takes request package's Option functional options as the variadic argument for modifying how the request will be made, or extracting information from the raw HTTP response. ListObjectsPagesWithContext - same as ListObjectsPages, but adds support for the Context pattern. Similar to ListObjectsWithContext this method also takes the request package's Option function option types as the variadic argument. In addition to the API operations the SDK also includes several higher level methods that abstract checking for and waiting for an AWS resource to be in a desired state. In this list we'll use WaitUntilBucketExists to demonstrate the different forms of waiters. WaitUntilBucketExists. - Method to make API request to query an AWS service for a resource's state. Will return successfully when that state is accomplished. WaitUntilBucketExistsWithContext - Same as WaitUntilBucketExists, but adds support for the Context pattern. In addition these methods take request package's WaiterOptions to configure the waiter, and how underlying request will be made by the SDK. The API method will document which error codes the service might return for the operation. These errors will also be available as const strings prefixed with "ErrCode" in the service client's package. If there are no errors listed in the API's SDK documentation you'll need to consult the AWS service's API documentation for the errors that could be returned. Pagination helper methods are suffixed with "Pages", and provide the functionality needed to round trip API page requests. Pagination methods take a callback function that will be called for each page of the API's response. Waiter helper methods provide the functionality to wait for an AWS resource state. These methods abstract the logic needed to to check the state of an AWS resource, and wait until that resource is in a desired state. The waiter will block until the resource is in the state that is desired, an error occurs, or the waiter times out. If a resource times out the error code returned will be request.WaiterResourceNotReadyErrorCode. This example shows a complete working Go file which will upload a file to S3 and use the Context pattern to implement timeout logic that will cancel the request if it takes too long. This example highlights how to use sessions, create a service client, make a request, handle the error, and process the response.
Package sdk is the official AWS SDK for the Go programming language. The AWS SDK for Go provides APIs and utilities that developers can use to build Go applications that use AWS services, such as Amazon Elastic Compute Cloud (Amazon EC2) and Amazon Simple Storage Service (Amazon S3). The SDK removes the complexity of coding directly against a web service interface. It hides a lot of the lower-level plumbing, such as authentication, request retries, and error handling. The SDK also includes helpful utilities on top of the AWS APIs that add additional capabilities and functionality. For example, the Amazon S3 Download and Upload Manager will automatically split up large objects into multiple parts and transfer them concurrently. See the s3manager package documentation for more information. https://docs.aws.amazon.com/sdk-for-go/api/service/s3/s3manager/ Checkout the Getting Started Guide and API Reference Docs detailed the SDK's components and details on each AWS client the SDK supports. The Getting Started Guide provides examples and detailed description of how to get setup with the SDK. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/welcome.html The API Reference Docs include a detailed breakdown of the SDK's components such as utilities and AWS clients. Use this as a reference of the Go types included with the SDK, such as AWS clients, API operations, and API parameters. https://docs.aws.amazon.com/sdk-for-go/api/ The SDK is composed of two main components, SDK core, and service clients. The SDK core packages are all available under the aws package at the root of the SDK. Each client for a supported AWS service is available within its own package under the service folder at the root of the SDK. aws - SDK core, provides common shared types such as Config, Logger, and utilities to make working with API parameters easier. awserr - Provides the error interface that the SDK will use for all errors that occur in the SDK's processing. This includes service API response errors as well. The Error type is made up of a code and message. Cast the SDK's returned error type to awserr.Error and call the Code method to compare returned error to specific error codes. See the package's documentation for additional values that can be extracted such as RequestId. credentials - Provides the types and built in credentials providers the SDK will use to retrieve AWS credentials to make API requests with. Nested under this folder are also additional credentials providers such as stscreds for assuming IAM roles, and ec2rolecreds for EC2 Instance roles. endpoints - Provides the AWS Regions and Endpoints metadata for the SDK. Use this to lookup AWS service endpoint information such as which services are in a region, and what regions a service is in. Constants are also provided for all region identifiers, e.g UsWest2RegionID for "us-west-2". session - Provides initial default configuration, and load configuration from external sources such as environment and shared credentials file. request - Provides the API request sending, and retry logic for the SDK. This package also includes utilities for defining your own request retryer, and configuring how the SDK processes the request. service - Clients for AWS services. All services supported by the SDK are available under this folder. The SDK includes the Go types and utilities you can use to make requests to AWS service APIs. Within the service folder at the root of the SDK you'll find a package for each AWS service the SDK supports. All service clients follows a common pattern of creation and usage. When creating a client for an AWS service you'll first need to have a Session value constructed. The Session provides shared configuration that can be shared between your service clients. When service clients are created you can pass in additional configuration via the aws.Config type to override configuration provided by in the Session to create service client instances with custom configuration. Once the service's client is created you can use it to make API requests the AWS service. These clients are safe to use concurrently. In the AWS SDK for Go, you can configure settings for service clients, such as the log level and maximum number of retries. Most settings are optional; however, for each service client, you must specify a region and your credentials. The SDK uses these values to send requests to the correct AWS region and sign requests with the correct credentials. You can specify these values as part of a session or as environment variables. See the SDK's configuration guide for more information. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html See the session package documentation for more information on how to use Session with the SDK. https://docs.aws.amazon.com/sdk-for-go/api/aws/session/ See the Config type in the aws package for more information on configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config When using the SDK you'll generally need your AWS credentials to authenticate with AWS services. The SDK supports multiple methods of supporting these credentials. By default the SDK will source credentials automatically from its default credential chain. See the session package for more information on this chain, and how to configure it. The common items in the credential chain are the following: Environment Credentials - Set of environment variables that are useful when sub processes are created for specific roles. Shared Credentials file (~/.aws/credentials) - This file stores your credentials based on a profile name and is useful for local development. EC2 Instance Role Credentials - Use EC2 Instance Role to assign credentials to application running on an EC2 instance. This removes the need to manage credential files in production. Credentials can be configured in code as well by setting the Config's Credentials value to a custom provider or using one of the providers included with the SDK to bypass the default credential chain and use a custom one. This is helpful when you want to instruct the SDK to only use a specific set of credentials or providers. This example creates a credential provider for assuming an IAM role, "myRoleARN" and configures the S3 service client to use that role for API requests. See the credentials package documentation for more information on credential providers included with the SDK, and how to customize the SDK's usage of credentials. https://docs.aws.amazon.com/sdk-for-go/api/aws/credentials The SDK has support for the shared configuration file (~/.aws/config). This support can be enabled by setting the environment variable, "AWS_SDK_LOAD_CONFIG=1", or enabling the feature in code when creating a Session via the Option's SharedConfigState parameter. In addition to the credentials you'll need to specify the region the SDK will use to make AWS API requests to. In the SDK you can specify the region either with an environment variable, or directly in code when a Session or service client is created. The last value specified in code wins if the region is specified multiple ways. To set the region via the environment variable set the "AWS_REGION" to the region you want to the SDK to use. Using this method to set the region will allow you to run your application in multiple regions without needing additional code in the application to select the region. The endpoints package includes constants for all regions the SDK knows. The values are all suffixed with RegionID. These values are helpful, because they reduce the need to type the region string manually. To set the region on a Session use the aws package's Config struct parameter Region to the AWS region you want the service clients created from the session to use. This is helpful when you want to create multiple service clients, and all of the clients make API requests to the same region. See the endpoints package for the AWS Regions and Endpoints metadata. https://docs.aws.amazon.com/sdk-for-go/api/aws/endpoints/ In addition to setting the region when creating a Session you can also set the region on a per service client bases. This overrides the region of a Session. This is helpful when you want to create service clients in specific regions different from the Session's region. See the Config type in the aws package for more information and additional options such as setting the Endpoint, and other service client configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config Once the client is created you can make an API request to the service. Each API method takes a input parameter, and returns the service response and an error. The SDK provides methods for making the API call in multiple ways. In this list we'll use the S3 ListObjects API as an example for the different ways of making API requests. ListObjects - Base API operation that will make the API request to the service. ListObjectsRequest - API methods suffixed with Request will construct the API request, but not send it. This is also helpful when you want to get a presigned URL for a request, and share the presigned URL instead of your application making the request directly. ListObjectsPages - Same as the base API operation, but uses a callback to automatically handle pagination of the API's response. ListObjectsWithContext - Same as base API operation, but adds support for the Context pattern. This is helpful for controlling the canceling of in flight requests. See the Go standard library context package for more information. This method also takes request package's Option functional options as the variadic argument for modifying how the request will be made, or extracting information from the raw HTTP response. ListObjectsPagesWithContext - same as ListObjectsPages, but adds support for the Context pattern. Similar to ListObjectsWithContext this method also takes the request package's Option function option types as the variadic argument. In addition to the API operations the SDK also includes several higher level methods that abstract checking for and waiting for an AWS resource to be in a desired state. In this list we'll use WaitUntilBucketExists to demonstrate the different forms of waiters. WaitUntilBucketExists. - Method to make API request to query an AWS service for a resource's state. Will return successfully when that state is accomplished. WaitUntilBucketExistsWithContext - Same as WaitUntilBucketExists, but adds support for the Context pattern. In addition these methods take request package's WaiterOptions to configure the waiter, and how underlying request will be made by the SDK. The API method will document which error codes the service might return for the operation. These errors will also be available as const strings prefixed with "ErrCode" in the service client's package. If there are no errors listed in the API's SDK documentation you'll need to consult the AWS service's API documentation for the errors that could be returned. Pagination helper methods are suffixed with "Pages", and provide the functionality needed to round trip API page requests. Pagination methods take a callback function that will be called for each page of the API's response. Waiter helper methods provide the functionality to wait for an AWS resource state. These methods abstract the logic needed to to check the state of an AWS resource, and wait until that resource is in a desired state. The waiter will block until the resource is in the state that is desired, an error occurs, or the waiter times out. If a resource times out the error code returned will be request.WaiterResourceNotReadyErrorCode. This example shows a complete working Go file which will upload a file to S3 and use the Context pattern to implement timeout logic that will cancel the request if it takes too long. This example highlights how to use sessions, create a service client, make a request, handle the error, and process the response.
Package sdk is the official AWS SDK for the Go programming language. The AWS SDK for Go provides APIs and utilities that developers can use to build Go applications that use AWS services, such as Amazon Elastic Compute Cloud (Amazon EC2) and Amazon Simple Storage Service (Amazon S3). The SDK removes the complexity of coding directly against a web service interface. It hides a lot of the lower-level plumbing, such as authentication, request retries, and error handling. The SDK also includes helpful utilities on top of the AWS APIs that add additional capabilities and functionality. For example, the Amazon S3 Download and Upload Manager will automatically split up large objects into multiple parts and transfer them concurrently. See the s3manager package documentation for more information. https://docs.aws.amazon.com/sdk-for-go/api/service/s3/s3manager/ Checkout the Getting Started Guide and API Reference Docs detailed the SDK's components and details on each AWS client the SDK supports. The Getting Started Guide provides examples and detailed description of how to get setup with the SDK. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/welcome.html The API Reference Docs include a detailed breakdown of the SDK's components such as utilities and AWS clients. Use this as a reference of the Go types included with the SDK, such as AWS clients, API operations, and API parameters. https://docs.aws.amazon.com/sdk-for-go/api/ The SDK is composed of two main components, SDK core, and service clients. The SDK core packages are all available under the aws package at the root of the SDK. Each client for a supported AWS service is available within its own package under the service folder at the root of the SDK. aws - SDK core, provides common shared types such as Config, Logger, and utilities to make working with API parameters easier. awserr - Provides the error interface that the SDK will use for all errors that occur in the SDK's processing. This includes service API response errors as well. The Error type is made up of a code and message. Cast the SDK's returned error type to awserr.Error and call the Code method to compare returned error to specific error codes. See the package's documentation for additional values that can be extracted such as RequestId. credentials - Provides the types and built in credentials providers the SDK will use to retrieve AWS credentials to make API requests with. Nested under this folder are also additional credentials providers such as stscreds for assuming IAM roles, and ec2rolecreds for EC2 Instance roles. endpoints - Provides the AWS Regions and Endpoints metadata for the SDK. Use this to lookup AWS service endpoint information such as which services are in a region, and what regions a service is in. Constants are also provided for all region identifiers, e.g UsWest2RegionID for "us-west-2". session - Provides initial default configuration, and load configuration from external sources such as environment and shared credentials file. request - Provides the API request sending, and retry logic for the SDK. This package also includes utilities for defining your own request retryer, and configuring how the SDK processes the request. service - Clients for AWS services. All services supported by the SDK are available under this folder. The SDK includes the Go types and utilities you can use to make requests to AWS service APIs. Within the service folder at the root of the SDK you'll find a package for each AWS service the SDK supports. All service clients follows a common pattern of creation and usage. When creating a client for an AWS service you'll first need to have a Session value constructed. The Session provides shared configuration that can be shared between your service clients. When service clients are created you can pass in additional configuration via the aws.Config type to override configuration provided by in the Session to create service client instances with custom configuration. Once the service's client is created you can use it to make API requests the AWS service. These clients are safe to use concurrently. In the AWS SDK for Go, you can configure settings for service clients, such as the log level and maximum number of retries. Most settings are optional; however, for each service client, you must specify a region and your credentials. The SDK uses these values to send requests to the correct AWS region and sign requests with the correct credentials. You can specify these values as part of a session or as environment variables. See the SDK's configuration guide for more information. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html See the session package documentation for more information on how to use Session with the SDK. https://docs.aws.amazon.com/sdk-for-go/api/aws/session/ See the Config type in the aws package for more information on configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config When using the SDK you'll generally need your AWS credentials to authenticate with AWS services. The SDK supports multiple methods of supporting these credentials. By default the SDK will source credentials automatically from its default credential chain. See the session package for more information on this chain, and how to configure it. The common items in the credential chain are the following: Environment Credentials - Set of environment variables that are useful when sub processes are created for specific roles. Shared Credentials file (~/.aws/credentials) - This file stores your credentials based on a profile name and is useful for local development. EC2 Instance Role Credentials - Use EC2 Instance Role to assign credentials to application running on an EC2 instance. This removes the need to manage credential files in production. Credentials can be configured in code as well by setting the Config's Credentials value to a custom provider or using one of the providers included with the SDK to bypass the default credential chain and use a custom one. This is helpful when you want to instruct the SDK to only use a specific set of credentials or providers. This example creates a credential provider for assuming an IAM role, "myRoleARN" and configures the S3 service client to use that role for API requests. See the credentials package documentation for more information on credential providers included with the SDK, and how to customize the SDK's usage of credentials. https://docs.aws.amazon.com/sdk-for-go/api/aws/credentials The SDK has support for the shared configuration file (~/.aws/config). This support can be enabled by setting the environment variable, "AWS_SDK_LOAD_CONFIG=1", or enabling the feature in code when creating a Session via the Option's SharedConfigState parameter. In addition to the credentials you'll need to specify the region the SDK will use to make AWS API requests to. In the SDK you can specify the region either with an environment variable, or directly in code when a Session or service client is created. The last value specified in code wins if the region is specified multiple ways. To set the region via the environment variable set the "AWS_REGION" to the region you want to the SDK to use. Using this method to set the region will allow you to run your application in multiple regions without needing additional code in the application to select the region. The endpoints package includes constants for all regions the SDK knows. The values are all suffixed with RegionID. These values are helpful, because they reduce the need to type the region string manually. To set the region on a Session use the aws package's Config struct parameter Region to the AWS region you want the service clients created from the session to use. This is helpful when you want to create multiple service clients, and all of the clients make API requests to the same region. See the endpoints package for the AWS Regions and Endpoints metadata. https://docs.aws.amazon.com/sdk-for-go/api/aws/endpoints/ In addition to setting the region when creating a Session you can also set the region on a per service client bases. This overrides the region of a Session. This is helpful when you want to create service clients in specific regions different from the Session's region. See the Config type in the aws package for more information and additional options such as setting the Endpoint, and other service client configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config Once the client is created you can make an API request to the service. Each API method takes a input parameter, and returns the service response and an error. The SDK provides methods for making the API call in multiple ways. In this list we'll use the S3 ListObjects API as an example for the different ways of making API requests. ListObjects - Base API operation that will make the API request to the service. ListObjectsRequest - API methods suffixed with Request will construct the API request, but not send it. This is also helpful when you want to get a presigned URL for a request, and share the presigned URL instead of your application making the request directly. ListObjectsPages - Same as the base API operation, but uses a callback to automatically handle pagination of the API's response. ListObjectsWithContext - Same as base API operation, but adds support for the Context pattern. This is helpful for controlling the canceling of in flight requests. See the Go standard library context package for more information. This method also takes request package's Option functional options as the variadic argument for modifying how the request will be made, or extracting information from the raw HTTP response. ListObjectsPagesWithContext - same as ListObjectsPages, but adds support for the Context pattern. Similar to ListObjectsWithContext this method also takes the request package's Option function option types as the variadic argument. In addition to the API operations the SDK also includes several higher level methods that abstract checking for and waiting for an AWS resource to be in a desired state. In this list we'll use WaitUntilBucketExists to demonstrate the different forms of waiters. WaitUntilBucketExists. - Method to make API request to query an AWS service for a resource's state. Will return successfully when that state is accomplished. WaitUntilBucketExistsWithContext - Same as WaitUntilBucketExists, but adds support for the Context pattern. In addition these methods take request package's WaiterOptions to configure the waiter, and how underlying request will be made by the SDK. The API method will document which error codes the service might return for the operation. These errors will also be available as const strings prefixed with "ErrCode" in the service client's package. If there are no errors listed in the API's SDK documentation you'll need to consult the AWS service's API documentation for the errors that could be returned. Pagination helper methods are suffixed with "Pages", and provide the functionality needed to round trip API page requests. Pagination methods take a callback function that will be called for each page of the API's response. Waiter helper methods provide the functionality to wait for an AWS resource state. These methods abstract the logic needed to to check the state of an AWS resource, and wait until that resource is in a desired state. The waiter will block until the resource is in the state that is desired, an error occurs, or the waiter times out. If a resource times out the error code returned will be request.WaiterResourceNotReadyErrorCode. This example shows a complete working Go file which will upload a file to S3 and use the Context pattern to implement timeout logic that will cancel the request if it takes too long. This example highlights how to use sessions, create a service client, make a request, handle the error, and process the response.
lf is a terminal file manager. Source code can be found in the repository at https://github.com/gokcehan/lf. This documentation can either be read from terminal using 'lf -doc' or online at https://godoc.org/github.com/gokcehan/lf. You can also use 'doc' command (default '<f-1>') inside lf to view the documentation in a pager. You can run 'lf -help' to see descriptions of command line options. The following commands are provided by lf: The following command line commands are provided by lf: The following options can be used to customize the behavior of lf: The following environment variables are exported for shell commands: The following commands/keybindings are provided by default: The following additional keybindings are provided by default: Configuration files should be located at: Marks file should be located at: History file should be located at: You can configure the default values of following variables to change these locations: A sample configuration file can be found at https://github.com/gokcehan/lf/blob/master/etc/lfrc.example. This section shows information about builtin commands. Modal commands do not take any arguments, but instead change the operation mode to read their input conveniently, and so they are meant to be assigned to keybindings. Quit lf and return to the shell. Move the current file selection upwards/downwards by one/half a page/full page. Change the current working directory to the parent directory. If the current file is a directory, then change the current directory to it, otherwise, execute the 'open' command. A default 'open' command is provided to call the default system opener asynchronously with the current file as the argument. A custom 'open' command can be defined to override this default. (See also 'OPENER' variable and 'Opening Files' section) Move the current file selection to the top/bottom of the directory. Toggle the selection of the current file or files given as arguments. Reverse the selection of all files in the current directory (i.e. 'toggle' all files). Selections in other directories are not effected by this command. You can define a new command to select all files in the directory by combining 'invert' with 'unselect' (i.e. `cmd select-all :unselect; invert`), though this will also remove selections in other directories. Remove the selection of all files in all directories. Select files that match the given glob. Unselect files that match the given glob. If there are no selections, save the path of the current file to the copy buffer, otherwise, copy the paths of selected files. If there are no selections, save the path of the current file to the cut buffer, otherwise, copy the paths of selected files. Copy/Move files in copy/cut buffer to the current working directory. Clear file paths in copy/cut buffer. Synchronize copied/cut files with server. This command is automatically called when required. Draw the screen. This command is automatically called when required. Synchronize the terminal and redraw the screen. Load modified files and directories. This command is automatically called when required. Flush the cache and reload all files and directories. Print given arguments to the message line at the bottom. Print given arguments to the message line at the bottom and also to the log file. Print given arguments to the message line at the bottom in red color and also to the log file. Change the working directory to the given argument. Change the current file selection to the given argument. Remove the current file or selected file(s). Rename the current file using the builtin method. A custom 'rename' command can be defined to override this default. Read the configuration file given in the argument. Simulate key pushes given in the argument. Read a command to evaluate. Read a shell command to execute. (See also 'Prefixes' and 'Shell Commands' sections) Read a shell command to execute piping its standard I/O to the bottom statline. (See also 'Prefixes' and 'Piping Shell Commands' sections) Read a shell command to execute and wait for a key press in the end. (See also 'Prefixes' and 'Waiting Shell Commands' sections) Read a shell command to execute synchronously without standard I/O. Read key(s) to find the appropriate file name match in the forward/backward direction and jump to the next/previous match. (See also 'anchorfind', 'findlen', 'wrapscan', 'ignorecase', 'smartcase', 'ignoredia', and 'smartdia' options and 'Searching Files' section) Read a pattern to search for a file name match in the forward/backward direction and jump to the next/previous match. (See also 'globsearch', 'incsearch', 'wrapscan', 'ignorecase', 'smartcase', 'ignoredia', and 'smartdia' options and 'Searching Files' section) Save the current directory as a bookmark assigned to the given key. Change the current directory to the bookmark assigned to the given key. A special bookmark "'" holds the previous directory after a 'mark-load', 'cd', or 'select' command. Remove a bookmark assigned to the given key. This section shows information about command line commands. These should be mostly compatible with readline keybindings. A character refers to a unicode code point, a word consists of letters and digits, and a unix word consists of any non-blank characters. Quit command line mode and return to normal mode. Autocomplete the current word. Autocomplete the current word, then you can press the binded key/s again to cycle completition options. Autocomplete the current word, then you can press the binded key/s again to cycle completition options backwards. Execute the current line. Interrupt the current shell-pipe command and return to the normal mode. Go to next/previous item in the history. Move the cursor to the left/right. Move the cursor to the beginning/end of line. Delete the next character in forward/backward direction. Delete everything up to the beginning/end of line. Delete the previous unix word. Paste the buffer content containing the last deleted item. Transpose the positions of last two characters/words. Move the cursor by one word in forward/backward direction. Delete the next word in forward direction. Capitalize/uppercase/lowercase the current word and jump to the next word. This section shows information about options to customize the behavior. Character ':' is used as the separator for list options '[]int' and '[]string'. When this option is enabled, find command starts matching patterns from the beginning of file names, otherwise, it can match at an arbitrary position. When this option is enabled, directory sizes show the number of items inside instead of the size of directory file. The former needs to be calculated by reading the directory and counting the items inside. The latter is directly provided by the operating system and it does not require any calculation, though it is non-intuitive and it can often be misleading. This option is disabled by default for performance reasons. This option only has an effect when 'info' has a 'size' field and the pane is wide enough to show the information. A thousand items are counted per directory at most, and bigger directories are shown as '999+'. Show directories first above regular files. Draw boxes around panes with box drawing characters. Format string of error messages shown in the bottom message line. File separator used in environment variables 'fs' and 'fx'. Number of characters prompted for the find command. When this value is set to 0, find command prompts until there is only a single match left. When this option is enabled, search command patterns are considered as globs, otherwise they are literals. With globbing, '*' matches any sequence, '?' matches any character, and '[...]' or '[^...] matches character sets or ranges. Otherwise, these characters are interpreted as they are. Show hidden files. On unix systems, hidden files are determined by the value of 'hiddenfiles'. On windows, only files with hidden attributes are considered hidden files. List of hidden file glob patterns. Patterns can be given as relative or absolute paths. Globbing supports the usual special characters, '*' to match any sequence, '?' to match any character, and '[...]' or '[^...] to match character sets or ranges. In addition, if a pattern starts with '!', then its matches are excluded from hidden files. Show icons before each item in the list. By default, only two icons, 🗀 (U+1F5C0) and 🗎 (U+1F5CE), are used for directories and files respectively, as they are supported in the unicode standard. Icons can be configured with an environment variable named 'LF_ICONS'. The syntax of this variable is similar to 'LS_COLORS'. See the wiki page for an example icon configuration. Sets 'IFS' variable in shell commands. It works by adding the assignment to the beginning of the command string as 'IFS='...'; ...'. The reason is that 'IFS' variable is not inherited by the shell for security reasons. This method assumes a POSIX shell syntax and so it can fail for non-POSIX shells. This option has no effect when the value is left empty. This option does not have any effect on windows. Ignore case in sorting and search patterns. Ignore diacritics in sorting and search patterns. Jump to the first match after each keystroke during searching. List of information shown for directory items at the right side of pane. Currently supported information types are 'size', 'time', 'atime', and 'ctime'. Information is only shown when the pane width is more than twice the width of information. Send mouse events as input. Show the position number for directory items at the left side of pane. When 'relativenumber' is enabled, only the current line shows the absolute position and relative positions are shown for the rest. Set the interval in seconds for periodic checks of directory updates. This works by periodically calling the 'load' command. Note that directories are already updated automatically in many cases. This option can be useful when there is an external process changing the displayed directory and you are not doing anything in lf. Periodic checks are disabled when the value of this option is set to zero. Show previews of files and directories at the right most pane. If the file has more lines than the preview pane, rest of the lines are not read. Files containing the null character (U+0000) in the read portion are considered binary files and displayed as 'binary'. Set the path of a previewer file to filter the content of regular files for previewing. The file should be executable. Five arguments are passed to the file, first is the current file name; the second, third, fourth, and fifth are width, height, horizontal position, and vertical position of preview pane respectively. SIGPIPE signal is sent when enough lines are read. If the previewer returns a non-zero exit code, then the preview cache for the given file is disabled. This means that if the file is selected in the future, the previewer is called once again. Preview filtering is disabled and files are displayed as they are when the value of this option is left empty. Set the path of a cleaner file. This file will be called if previewing is enabled, the previewer is set, and the previously selected file had its preview cache disabled. The file should be executable. One argument is passed to the file; the path to the file whose preview should be cleaned. Preview clearing is disabled when the value of this option is left empty. Format string of the prompt shown in the top line. Special expansions are provided, '%u' as the user name, '%h' as the host name, '%w' as the working directory, '%d' as the working directory with a trailing path separator, and '%f' as the file name. Home folder is shown as '~' in the working directory expansion. Directory names are automatically shortened to a single character starting from the left most parent when the prompt does not fit to the screen. List of ratios of pane widths. Number of items in the list determines the number of panes in the ui. When 'preview' option is enabled, the right most number is used for the width of preview pane. Show the position number relative to the current line. When 'number' is enabled, current line shows the absolute position, otherwise nothing is shown. Reverse the direction of sort. Minimum number of offset lines shown at all times in the top and the bottom of the screen when scrolling. The current line is kept in the middle when this option is set to a large value that is bigger than the half of number of lines. A smaller offset can be used when the current file is close to the beginning or end of the list to show the maximum number of items. Shell executable to use for shell commands. On unix, a POSIX compatible shell is required. Shell commands are executed as 'shell shellopts -c command -- arguments'. On windows, '/c' is used instead of '-c' which should work in 'cmd' and 'powershell'. List of shell options to pass to the shell executable. Override 'ignorecase' option when the pattern contains an uppercase character. This option has no effect when 'ignorecase' is disabled. Override 'ignoredia' option when the pattern contains a character with diacritic. This option has no effect when 'ignoredia' is disabled. Sort type for directories. Currently supported sort types are 'natural', 'name', 'size', 'time', 'ctime', 'atime', and 'ext'. Number of space characters to show for horizontal tabulation (U+0009) character. Format string of the file modification time shown in the bottom line. Truncate character shown at the end when the file name does not fit to the pane. Searching can wrap around the file list. Scrolling can wrap around the file list. The following variables are exported for shell commands: These are referred with a '$' prefix on POSIX shells (e.g. '$f'), between '%' characters on Windows cmd (e.g. '%f%'), and with a '$env:' prefix on Windows powershell (e.g. '$env:f'). Current file selection as a full path. Selected file(s) separated with the value of 'filesep' option as full path(s). Selected file(s) (i.e. 'fs') if there are any selected files, otherwise current file selection (i.e. 'f'). Id of the running client. The value of this variable is set to the current nesting level when you run lf from a shell spawned inside lf. You can add the value of this variable to your shell prompt to make it clear that your shell runs inside lf. For example, with POSIX shells, you can use '[ -n "$LF_LEVEL" ] && PS1="$PS1""(lf level: $LF_LEVEL) "' in your shell configuration file (e.g. '~/.bashrc'). If this variable is set in the environment, use the same value, otherwise set the value to 'start' in Windows, 'open' in MacOS, 'xdg-open' in others. If this variable is set in the environment, use the same value, otherwise set the value to 'vi' on unix, 'notepad' in Windows. If this variable is set in the environment, use the same value, otherwise set the value to 'less' on unix, 'more' in Windows. If this variable is set in the environment, use the same value, otherwise set the value to 'sh' on unix, 'cmd' in Windows. The following command prefixes are used by lf: The same evaluator is used for the command line and the configuration file for read and shell commands. The difference is that prefixes are not necessary in the command line. Instead, different modes are provided to read corresponding commands. These modes are mapped to the prefix keys above by default. Characters from '#' to newline are comments and ignored: There are three special commands ('set', 'map', and 'cmd') and their variants for configuration. Command 'set' is used to set an option which can be boolean, integer, or string: Command 'map' is used to bind a key to a command which can be builtin command, custom command, or shell command: Command 'cmap' is used to bind a key to a command line command which can only be one of the builtin commands: You can delete an existing binding by leaving the expression empty: Command 'cmd' is used to define a custom command: You can delete an existing command by leaving the expression empty: If there is no prefix then ':' is assumed: An explicit ':' can be provided to group statements until a newline which is especially useful for 'map' and 'cmd' commands: If you need multiline you can wrap statements in '{{' and '}}' after the proper prefix. Regular keys are assigned to a command with the usual syntax: Keys combined with the shift key simply use the uppercase letter: Special keys are written in between '<' and '>' characters and always use lowercase letters: Angle brackets can be assigned with their special names: Function keys are prefixed with 'f' character: Keys combined with the control key are prefixed with 'c' character: Keys combined with the alt key are assigned in two different ways depending on the behavior of your terminal. Older terminals (e.g. xterm) may set the 8th bit of a character when the alt key is pressed. On these terminals, you can use the corresponding byte for the mapping: Newer terminals (e.g. gnome-terminal) may prefix the key with an escape key when the alt key is pressed. lf uses the escape delaying mechanism to recognize alt keys in these terminals (delay is 100ms). On these terminals, keys combined with the alt key are prefixed with 'a' character: Please note that, some key combinations are not possible due to the way terminals work (e.g. control and h combination sends a backspace key instead). The easiest way to find the name of a key combination is to press the key while lf is running and read the name of the key from the unknown mapping error. Mouse buttons are prefixed with 'm' character: Mouse wheel events are also prefixed with 'm' character: The usual way to map a key sequence is to assign it to a named or unnamed command. While this provides a clean way to remap builtin keys as well as other commands, it can be limiting at times. For this reason 'push' command is provided by lf. This command is used to simulate key pushes given as its arguments. You can 'map' a key to a 'push' command with an argument to create various keybindings. This is mainly useful for two purposes. First, it can be used to map a command with a command count: Second, it can be used to avoid typing the name when a command takes arguments: One thing to be careful is that since 'push' command works with keys instead of commands it is possible to accidentally create recursive bindings: These types of bindings create a deadlock when executed. Regular shell commands are the most basic command type that is useful for many purposes. For example, we can write a shell command to move selected file(s) to trash. A first attempt to write such a command may look like this: We check '$fs' to see if there are any selected files. Otherwise we just delete the current file. Since this is such a common pattern, a separate '$fx' variable is provided. We can use this variable to get rid of the conditional: The trash directory is checked each time the command is executed. We can move it outside of the command so it would only run once at startup: Since these are one liners, we can drop '{{' and '}}': Finally note that we set 'IFS' variable manually in these commands. Instead we could use the 'ifs' option to set it for all shell commands (i.e. 'set ifs "\n"'). This can be especially useful for interactive use (e.g. '$rm $f' or '$rm $fs' would simply work). This option is not set by default as it can behave unexpectedly for new users. However, use of this option is highly recommended and it is assumed in the rest of the documentation. Regular shell commands have some limitations in some cases. When an output or error message is given and the command exits afterwards, the ui is immediately resumed and there is no way to see the message without dropping to shell again. Also, even when there is no output or error, the ui still needs to be paused while the command is running. This can cause flickering on the screen for short commands and similar distractions for longer commands. Instead of pausing the ui, piping shell commands connects stdin, stdout, and stderr of the command to the statline in the bottom of the ui. This can be useful for programs following the unix philosophy to give no output in the success case, and brief error messages or prompts in other cases. For example, following rename command prompts for overwrite in the statline if there is an existing file with the given name: You can also output error messages in the command and it will show up in the statline. For example, an alternative rename command may look like this: Note that input is line buffered and output and error are byte buffered. Waiting shell commands are similar to regular shell commands except that they wait for a key press when the command is finished. These can be useful to see the output of a program before the ui is resumed. Waiting shell commands are more appropriate than piping shell commands when the command is verbose and the output is best displayed as multiline. Asynchronous shell commands are used to start a command in the background and then resume operation without waiting for the command to finish. Stdin, stdout, and stderr of the command is neither connected to the terminal nor to the ui. One of the more advanced features in lf is remote commands. All clients connect to a server on startup. It is possible to send commands to all or any of the connected clients over the common server. This is used internally to notify file selection changes to other clients. To use this feature, you need to use a client which supports communicating with a UNIX-domain socket. OpenBSD implementation of netcat (nc) is one such example. You can use it to send a command to the socket file: Since such a client may not be available everywhere, lf comes bundled with a command line flag to be used as such. When using lf, you do not need to specify the address of the socket file. This is the recommended way of using remote commands since it is shorter and immune to socket file address changes: In this command 'send' is used to send the rest of the string as a command to all connected clients. You can optionally give it an id number to send a command to a single client: All clients have a unique id number but you may not be aware of the id number when you are writing a command. For this purpose, an '$id' variable is exported to the environment for shell commands. You can use it to send a remote command from a client to the server which in return sends a command back to itself. So now you can display a message in the current client by calling the following in a shell command: Since lf does not have control flow syntax, remote commands are used for such needs. For example, you can configure the number of columns in the ui with respect to the terminal width as follows: Besides 'send' command, there are also two commands to get or set the current file selection. Two possible modes 'copy' and 'move' specify whether selected files are to be copied or moved. File names are separated by newline character. Setting the file selection is done with 'save' command: Getting the file selection is similarly done with 'load' command: There is a 'quit' command to close client connections and quit the server: Lastly, there is a 'conn' command to connect the server as a client. This should not be needed for users. lf uses its own builtin copy and move operations by default. These are implemented as asynchronous operations and progress is shown in the bottom ruler. These commands do not overwrite existing files or directories with the same name. Instead, a suffix that is compatible with '--backup=numbered' option in GNU cp is added to the new files or directories. Only file modes are preserved and all other attributes are ignored including ownership, timestamps, context, and xattr. Special files such as character and block devices, named pipes, and sockets are skipped and links are not followed. Moving is performed using the rename operation of the underlying OS. For cross-device moving, lf falls back to copying and then deletes the original files if there are no errors. Operation errors are shown in the message line as well as the log file and they do not preemptively finish the corresponding file operation. File operations can be performed on the current selected file or alternatively on multiple files by selecting them first. When you 'copy' a file, lf doesn't actually copy the file on the disk, but only records its name to memory. The actual file copying takes place when you 'paste'. Similarly 'paste' after a 'cut' operation moves the file. You can customize copy and move operations by defining a 'paste' command. This is a special command that is called when it is defined instead of the builtin implementation. You can use the following example as a starting point: Some useful things to be considered are to use the backup ('--backup') and/or preserve attributes ('-a') options with 'cp' and 'mv' commands if they support it (i.e. GNU implementation), change the command type to asynchronous, or use 'rsync' command with progress bar option for copying and feed the progress to the client periodically with remote 'echo' calls. By default, lf does not assign 'delete' command to a key to protect new users. You can customize file deletion by defining a 'delete' command. You can also assign a key to this command if you like. An example command to move selected files to a trash folder and remove files completely after a prompt are provided in the example configuration file. There are two mechanisms implemented in lf to search a file in the current directory. Searching is the traditional method to move the selection to a file matching a given pattern. Finding is an alternative way to search for a pattern possibly using fewer keystrokes. Searching mechanism is implemented with commands 'search' (default '/'), 'search-back' (default '?'), 'search-next' (default 'n'), and 'search-prev' (default 'N'). You can enable 'globsearch' option to match with a glob pattern. Globbing supports '*' to match any sequence, '?' to match any character, and '[...]' or '[^...] to match character sets or ranges. You can enable 'incsearch' option to jump to the current match at each keystroke while typing. In this mode, you can either use 'cmd-enter' to accept the search or use 'cmd-escape' to cancel the search. Alternatively, you can also map some other commands with 'cmap' to accept the search and execute the command immediately afterwards. Possible candidates are 'up', 'down' and their variants, 'top', 'bottom', 'updir', and 'open' commands. For example, you can use arrow keys to finish the search with the following mappings: Finding mechanism is implemented with commands 'find' (default 'f'), 'find-back' (default 'F'), 'find-next' (default ';'), 'find-prev' (default ','). You can disable 'anchorfind' option to match a pattern at an arbitrary position in the filename instead of the beginning. You can set the number of keys to match using 'findlen' option. If you set this value to zero, then the the keys are read until there is only a single match. Default values of these two options are set to jump to the first file with the given initial. Some options effect both searching and finding. You can disable 'wrapscan' option to prevent searches to wrap around at the end of the file list. You can disable 'ignorecase' option to match cases in the pattern and the filename. This option is already automatically overridden if the pattern contains upper case characters. You can disable 'smartcase' option to disable this behavior. Two similar options 'ignoredia' and 'smartdia' are provided to control matching diacritics in latin letters. You can define a an 'open' command (default 'l' and '<right>') to configure file opening. This command is only called when the current file is not a directory, otherwise the directory is entered instead. You can define it just as you would define any other command: It is possible to use different command types: You may want to use either file extensions or mime types from 'file' command: You may want to use 'setsid' before your opener command to have persistent processes that continue to run after lf quits. Following command is provided by default: You may also use any other existing file openers as you like. Possible options are 'libfile-mimeinfo-perl' (executable name is 'mimeopen'), 'rifle' (ranger's default file opener), or 'mimeo' to name a few. lf previews files on the preview pane by printing the file until the end or the preview pane is filled. This output can be enhanced by providing a custom preview script for filtering. This can be used to highlight source codes, list contents of archive files or view pdf or image files as text to name few. For coloring lf recognizes ansi escape codes. In order to use this feature you need to set the value of 'previewer' option to the path of an executable file. lf passes the current file name as the first argument and the height of the preview pane as the second argument when running this file. Output of the execution is printed in the preview pane. You may want to use the same script in your pager mapping as well if any: For 'less' pager, you may instead utilize 'LESSOPEN' mechanism so that useful information about the file such as the full path of the file can be displayed in the statusline below: Since this script is called for each file selection change it needs to be as efficient as possible and this responsibility is left to the user. You may use file extensions to determine the type of file more efficiently compared to obtaining mime types from 'file' command. Extensions can then be used to match cleanly within a conditional: Another important consideration for efficiency is the use of programs with short startup times for preview. For this reason, 'highlight' is recommended over 'pygmentize' for syntax highlighting. Besides, it is also important that the application is processing the file on the fly rather than first reading it to the memory and then do the processing afterwards. This is especially relevant for big files. lf automatically closes the previewer script output pipe with a SIGPIPE when enough lines are read. When everything else fails, you can make use of the height argument to only feed the first portion of the file to a program for preview. Note that some programs may not respond well to SIGPIPE to exit with a non-zero return code and avoid caching. You may add a trailing '|| true' command to avoid such errors: You may also use an existing preview filter as you like. Your system may already come with a preview filter named 'lesspipe'. These filters may have a mechanism to add user customizations as well. See the related documentations for more information. lf changes the working directory of the process to the current directory so that shell commands always work in the displayed directory. After quitting, it returns to the original directory where it is first launched like all shell programs. If you want to stay in the current directory after quitting, you can use one of the example wrapper shell scripts provided in the repository. There is a special command 'on-cd' that runs a shell command when it is defined and the directory is changed. You can define it just as you would define any other command: If you want to print escape sequences, you may redirect 'printf' output to '/dev/tty'. The following xterm specific escape sequence sets the terminal title to the working directory: This command runs whenever you change directory but not on startup. You can add an extra call to make it run on startup as well: Note that all shell commands are possible but `%` and `&` are usually more appropriate as `$` and `!` causes flickers and pauses respectively. lf tries to automatically adapt its colors to the environment. It starts with a default colorscheme and updates colors using values of existing environment variables possibly by overwriting its previous values. Colors are set in the following order: Please refer to the corresponding man pages for more information about 'LSCOLORS' and 'LS_COLORS'. 'LF_COLORS' is provided with the same syntax as 'LS_COLORS' in case you want to configure colors only for lf but not ls. This can be useful since there are some differences between ls and lf, though one should expect the same behavior for common cases. You can configure lf colors in two different ways. First, you can only configure 8 basic colors used by your terminal and lf should pick up those colors automatically. Depending on your terminal, you should be able to select your colors from a 24-bit palette. This is the recommended approach as colors used by other programs will also match each other. Second, you can set the values of environmental variables mentioned above for fine grained customization. Note that 'LS_COLORS/LF_COLORS' are more powerful than 'LSCOLORS' and they can be used even when GNU programs are not installed on the system. You can combine this second method with the first method for best results. Lastly, you may also want to configure the colors of the prompt line to match the rest of the colors. Colors of the prompt line can be configured using the 'promptfmt' option which can include hardcoded colors as ansi escapes. See the default value of this option to have an idea about how to color this line. It is worth noting that lf uses as many colors are advertised by your terminal's entry in your systems terminfo or infocmp database, if this is not present lf will default to an internal database. For terminals supporting 24-bit (or "true") color that do not have a database entry (or one that does not advertise all capabilities), support can be enabled by either setting the '$COLORTERM' variable to "truecolor" or ensuring '$TERM' is set to a value that ends with "-truecolor". Default lf colors are mostly taken from GNU dircolors defaults. These defaults use 8 basic colors and bold attribute. Default dircolors entries with background colors are simplified to avoid confusion with current file selection in lf. Similarly, there are only file type matchings and extension matchings are left out for simplicity. Default values are as follows given with their matching order in lf: Note that, lf first tries matching file names and then falls back to file types. The full order of matchings from most specific to least are as follows: For example, given a regular text file '/path/to/README.txt', the following entries are checked in the configuration and the first one to match is used: Given a regular directory '/path/to/example.d', the following entries are checked in the configuration and the first one to match is used: Note that glob-like patterns do not actually perform glob matching due to performance reasons. For example, you can set a variable as follows: Having all entries on a single line can make it hard to read. You may instead divide it to multiple lines in between double quotes by escaping newlines with backslashes as follows: Having such a long variable definition in a shell configuration file might be undesirable. You may instead put this definition in a separate file and source it in your shell configuration file as follows: See the wiki page for ansi escape codes https://en.wikipedia.org/wiki/ANSI_escape_code. Icons are configured using 'LF_ICONS' environment variable. This variable uses the same syntax as 'LS_COLORS/LF_COLORS'. Instead of colors, you should put a single characters as values of entries. Do not forget to enable 'icons' option to see the icons. Default values are as follows given with their matching order in lf: See the wiki page for an example icons configuration https://github.com/gokcehan/lf/wiki/Icons.
organ is a notes manager. A 'note' could be any regular file. That is to say, organ is a tacky file manager. Every 'note' is 'folderish'. So a note can contain other notes inside it. organ does this by associating a directory with the 'note'. Each such directory has a suffix. This documentation can either be read from terminal using 'organ -doc'. You can also use 'doc' command (default '<f-1>') inside organ to view the documentation in a pager. You can run 'organ -help' to see descriptions of command line options. The following commands are provided by organ with default keybindings: The following commands are provided by organ without default keybindings: The following command line commands are provided by organ with default keybindings: The following options can be used to customize the behavior of organ: The following variables are exported for shell commands: The following default values are set to the environmental variables on unix when they are not set or empty: The following default values are set to the environmental variables on windows when they are not set or empty: The following additional keybindings are provided by default: The following keybindings to applications are provided by default: Configuration files should be located at: Marks file should be located at: History file should be located at: You can configure the default values of following variables to change these locations: The following command prefixes are used by organ: The same evaluator is used for the command line and the configuration file for read and shell commands. The difference is that prefixes are not necessary in the command line. Instead, different modes are provided to read corresponding commands. These modes are mapped to the prefix keys above by default. Characters from '#' to newline are comments and ignored: There are three special commands ('set', 'map', and 'cmd') and their variants for configuration. Command 'set' is used to set an option which can be boolean, integer, or string: Command 'map' is used to bind a key to a command which can be builtin command, custom command, or shell command: Command 'cmap' is used to bind a key to a command line command which can only be one of the builtin commands: You can delete an existing binding by leaving the expression empty: Command 'cmd' is used to define a custom command: You can delete an existing command by leaving the expression empty: If there is no prefix then ':' is assumed: An explicit ':' can be provided to group statements until a newline which is especially useful for 'map' and 'cmd' commands: If you need multiline you can wrap statements in '{{' and '}}' after the proper prefix. Regular keys are assigned to a command with the usual syntax: Keys combined with the shift key simply use the uppercase letter: Special keys are written in between '<' and '>' characters and always use lowercase letters: Angle brackets can be assigned with their special names: Function keys are prefixed with 'f' character: Keys combined with the control key are prefixed with 'c' character: Keys combined with the alt key are assigned in two different ways depending on the behavior of your terminal. Older terminals (e.g. xterm) may set the 8th bit of a character when the alt key is pressed. On these terminals, you can use the corresponding byte for the mapping: Newer terminals (e.g. gnome-terminal) may prefix the key with an escape key when the alt key is pressed. organ uses the escape delaying mechanism to recognize alt keys in these terminals (delay is 100ms). On these terminals, keys combined with the alt key are prefixed with 'a' character: Please note that, some key combinations are not possible due to the way terminals work (e.g. control and h combination sends a backspace key instead). The easiest way to find the name of a key combination is to press the key while organ is running and read the name of the key from the unknown mapping error. The usual way to map a key sequence is to assign it to a named or unnamed command. While this provides a clean way to remap builtin keys as well as other commands, it can be limiting at times. For this reason 'push' command is provided by organ. This command is used to simulate key pushes given as its arguments. You can 'map' a key to a 'push' command with an argument to create various keybindings. This is mainly useful for two purposes. First, it can be used to map a command with a command count: Second, it can be used to avoid typing the name when a command takes arguments: One thing to be careful is that since 'push' command works with keys instead of commands it is possible to accidentally create recursive bindings: These types of bindings create a deadlock when executed. Regular shell commands are the most basic command type that is useful for many purposes. For example, we can write a shell command to move selected file(s) to trash. A first attempt to write such a command may look like this: We check '$fs' to see if there are any selected files. Otherwise we just delete the current file. Since this is such a common pattern, a separate '$fx' variable is provided. We can use this variable to get rid of the conditional: The trash directory is checked each time the command is executed. We can move it outside of the command so it would only run once at startup: Since these are one liners, we can drop '{{' and '}}': Finally note that we set 'IFS' variable manually in these commands. Instead we could use the 'ifs' option to set it for all shell commands (i.e. 'set ifs "\n"'). This can be especially useful for interactive use (e.g. '$rm $f' or '$rm $fs' would simply work). This option is not set by default as it can behave unexpectedly for new users. However, use of this option is highly recommended and it is assumed in the rest of the documentation. Regular shell commands have some limitations in some cases. When an output or error message is given and the command exits afterwards, the ui is immediately resumed and there is no way to see the message without dropping to shell again. Also, even when there is no output or error, the ui still needs to be paused while the command is running. This can cause flickering on the screen for short commands and similar distractions for longer commands. Instead of pausing the ui, piping shell commands connects stdin, stdout, and stderr of the command to the statline in the bottom of the ui. This can be useful for programs following the unix philosophy to give no output in the success case, and brief error messages or prompts in other cases. For example, following rename command prompts for overwrite in the statline if there is an existing file with the given name: You can also output error messages in the command and it will show up in the statline. For example, an alternative rename command may look like this: One thing to be careful is that although input is still line buffered, output and error are byte buffered and verbose commands will be very slow to display. Waiting shell commands are similar to regular shell commands except that they wait for a key press when the command is finished. These can be useful to see the output of a program before the ui is resumed. Waiting shell commands are more appropriate than piping shell commands when the command is verbose and the output is best displayed as multiline. Asynchronous shell commands are used to start a command in the background and then resume operation without waiting for the command to finish. Stdin, stdout, and stderr of the command is neither connected to the terminal nor to the ui. One of the more advanced features in organ is remote commands. All clients connect to a server on startup. It is possible to send commands to all or any of the connected clients over the common server. This is used internally to notify file selection changes to other clients. To use this feature, you need to use a client which supports communicating with a UNIX-domain socket. OpenBSD implementation of netcat (nc) is one such example. You can use it to send a command to the socket file: Since such a client may not be available everywhere, organ comes bundled with a command line flag to be used as such. When using organ, you do not need to specify the address of the socket file. This is the recommended way of using remote commands since it is shorter and immune to socket file address changes: In this command 'send' is used to send the rest of the string as a command to all connected clients. You can optionally give it an id number to send a command to a single client: All clients have a unique id number but you may not be aware of the id number when you are writing a command. For this purpose, an '$id' variable is exported to the environment for shell commands. You can use it to send a remote command from a client to the server which in return sends a command back to itself. So now you can display a message in the current client by calling the following in a shell command: Since organ does not have control flow syntax, remote commands are used for such needs. For example, you can configure the number of columns in the ui with respect to the terminal width as follows: Besides 'send' command, there are also two commands to get or set the current file selection. Two possible modes 'copy' and 'move' specify whether selected files are to be copied or moved. File names are separated by newline character. Setting the file selection is done with 'save' command: Getting the file selection is similarly done with 'load' command: There is a 'quit' command to close client connections and quit the server: Lastly, there is a 'conn' command to connect the server as a client. This should not be needed for users. organ uses its own builtin copy and move operations by default. These are implemented as asynchronous operations and progress is shown in the bottom ruler. These commands do not overwrite existing files or directories with the same name. Instead, a suffix that is compatible with '--backup=numbered' option in GNU cp is added to the new files or directories. Only file modes are preserved and all other attributes are ignored including ownership, timestamps, context, links, and xattr. Special files such as character and block devices, named pipes, and sockets are skipped and links are followed. Moving is performed using the rename operation of the underlying OS. This can fail to move files between different partitions when it needs to copy files. For these cases, users are expected to explicitly copy files and then delete the old ones manually. Operation errors are shown in the message line as well as the log file and they do not preemptively finish the corresponding file operation. File operations can be performed on the current selected file or alternatively on multiple files by selecting them first. When you 'copy' a file, organ doesn't actually copy the file on the disk, but only records its name to memory. The actual file copying takes place when you 'paste'. Similarly 'paste' after a 'cut' operation moves the file. You can customize copy and move operations by defining a 'paste' command. This is a special command that is called when it is defined instead of the builtin implementation. You can use the following example as a starting point: Some useful things to be considered are to use the backup ('--backup') and/or preserve attributes ('-a') options with 'cp' and 'mv' commands if they support it (i.e. GNU implementation), change the command type to asynchronous, or use 'rsync' command with progress bar option for copying and feed the progress to the client periodically with remote 'echo' calls. By default, organ does not assign 'delete' command to a key to protect new users. You can customize file deletion by defining a 'delete' command. You can also assign a key to this command if you like. An example command to move selected files to a trash folder and remove files completely after a prompt are provided in the example configuration file. There are two mechanisms implemented in organ to search a file in the current directory. Searching is the traditional method to move the selection to a file matching a given pattern. Finding is an alternative way to search for a pattern possibly using fewer keystrokes. Searching mechanism is implemented with commands 'search' (default '/'), 'search-back' (default '?'), 'search-next' (default 'n'), and 'search-prev' (default 'N'). You can enable 'globsearch' option to match with a glob pattern. Globbing supports '*' to match any sequence, '?' to match any character, and '[...]' or '[^...] to match character sets or ranges. You can enable 'incsearch' option to jump to the current match at each keystroke while typing. In this mode, you can either use 'cmd-enter' to accept the search or use 'cmd-escape' to cancel the search. Alternatively, you can also map some other commands with 'cmap' to accept the search and execute the command immediately afterwards. Possible candidates are 'up', 'down' and their variants, 'updir', and 'open' commands. For example, you can use arrow keys to finish the search with the following mappings: Finding mechanism is implemented with commands 'find' (default 'f'), 'find-back' (default 'F'), 'find-next' (default ';'), 'find-prev' (default ','). You can disable 'anchorfind' option to match a pattern at an arbitrary position in the filename instead of the beginning. You can set the number of keys to match using 'findlen' option. If you set this value to zero, then the the keys are read until there is only a single match. Default values of these two options are set to jump to the first file with the given initial. Some options effect both searching and finding. You can disable 'wrapscan' option to prevent searches to wrap around at the end of the file list. You can disable 'ignorecase' option to match cases in the pattern and the filename. This option is already automatically overridden if the pattern contains upper case characters. You can disable 'smartcase' option to disable this behavior. Two similar options 'ignoredia' and 'smartdia' are provided to control matching diacritics in latin letters. You can define a an 'open' command (default 'l' and '<right>') to configure file opening. This command is only called when the current file is not a directory, otherwise the directory is entered instead. You can define it just as you would define any other command: It is possible to use different command types: You may want to use either file extensions or mime types from 'file' command: You may want to use 'setsid' before your opener command to have persistent processes that continue to run after organ quits. Following command is provided by default: You may also use any other existing file openers as you like. Possible options are 'libfile-mimeinfo-perl' (executable name is 'mimeopen'), 'rifle' (ranger's default file opener), or 'mimeo' to name a few. organ previews files on the preview pane by printing the file. This output can be enhanced by providing a custom preview script for filtering. This can be used to highlight source codes, list contents of archive files or view pdf or image files as text to name few. For coloring organ recognizes ansi escape codes. In order to use this feature you need to set the value of 'previewer' option to the path of an executable file. organ passes the current file name as the first argument and the height of the preview pane as the second argument when running this file. Output of the execution is printed in the preview pane. You may want to use the same script in your pager mapping as well if any: Since this script is called for each file selection change it needs to be as efficient as possible and this responsibility is left to the user. You may use file extensions to determine the type of file more efficiently compared to obtaining mime types from 'file' command. Extensions can then be used to match cleanly within a conditional: Another important consideration for efficiency is the use of programs with short startup times for preview. For this reason, 'highlight' is recommended over 'pygmentize' for syntax highlighting. Besides, it is also important that the application is processing the file on the fly rather than first reading it to the memory and then do the processing afterwards. This is especially relevant for big files. organ automatically closes the previewer script output pipe with a SIGPIPE when enough lines are read. When everything else fails, you can make use of the height argument to only feed the first portion of the file to a program for preview. organ tries to automatically adapt its colors to the environment. On startup, first '$LS_COLORS' environment variable is checked. This variable is used by GNU ls to configure its colors based on file types and extensions. The value of this variable is often set by GNU dircolors in a shell configuration file. dircolors program itself can be configured with a configuration file. dircolors supports 256 colors along with common attributes such as bold and underline. If '$LS_COLORS' variable is not set, '$LSCOLORS' variable is checked instead. This variable is used by ls programs on unix systems such as Mac and BSDs. This variable has a simple syntax and supports 8 colors and bold attribute. If both of these environment variables are not set, then organ fallbacks to its default colorscheme. Default organ colors are taken from GNU dircolors defaults. These defaults use 8 basic colors and bold attribute. You should also note that organ uses 8 color mode by default which uses sgr 3-bit color escapes (e.g. '\033[34m'). If you want to use 256 colors, you need to enable 'color256' option which then makes organ use sgr 8-bit color escapes (e.g. '\033[38;5;4m'). This option is intended to eliminate differences between default colors used by ls and organ since terminals may render 3-bit and 8-bit escapes differently even for the same color. Keeping this mechanism in mind, you can configure organ colors in two different ways. First, you can configure 8 basic colors used by your terminal and organ should pick up those colors automatically. Depending on your terminal, you should be able to select your colors from a 24-bit palette. This is the recommended approach as colors used by other programs will also match each other. Second, you can set the values of environmental variables mentioned above for fine grained customization. This is useful to change colors used for different file types and extensions. '$LS_COLORS' is more powerful than '$LSCOLORS' and it can be used even when GNU programs are not installed on the system. You can combine this second method with the first method for best results. Lastly, you may also want to configure the colors of the prompt line to match the rest of the colors. Colors of the prompt line can be configured using the 'promptfmt' option which can include hardcoded colors as ansi escapes. See the default value of this option to have an idea about how to color this line.
Package promptui is a library providing a simple interface to create command-line prompts for go. It can be easily integrated into spf13/cobra, urfave/cli or any cli go application. promptui has two main input modes: Prompt provides a single line for user input. It supports optional live validation, confirmation and masking the input. Select provides a list of options to choose from. It supports pagination, search, detailed view and custom templates. This is an example for the Prompt mode of promptui. In this example, a prompt is created with a validator function that validates the given value to make sure its a number. If successful, it will output the chosen number in a formatted message. This is an example for the Select mode of promptui. In this example, a select is created with the days of the week as its items. When an item is selected, the selected day will be displayed in a formatted message.
Package goncurses is a new curses (ncurses) library for the Go programming language. It implements all the ncurses extension libraries: form, menu and panel. Minimal operation would consist of initializing the display: It is important to always call End() before your program exits. If you fail to do so, the terminal will not perform properly and will either need to be reset or restarted completely. CAUTION: Calls to ncurses functions are normally not atomic nor reentrant and therefore extreme care should be taken to ensure ncurses functions are not called concurrently. Specifically, never write data to the same window concurrently nor accept input and send output to the same window as both alter the underlying C data structures in a non safe manner. Ideally, you should structure your program to ensure all ncurses related calls happen in a single goroutine. This is probably most easily achieved via channels and Go's built-in select. Alternatively, or additionally, you can use a mutex to protect any calls in multiple goroutines from happening concurrently. Failure to do so will result in unpredictable and undefined behaviour in your program. The examples directory contains demontrations of many of the capabilities goncurses can provide.
Generating random text: a Markov chain algorithm Based on the program presented in the "Design and Implementation" chapter of The Practice of Programming (Kernighan and Pike, Addison-Wesley 1999). See also Computer Recreations, Scientific American 260, 122 - 125 (1989). A Markov chain algorithm generates text by creating a statistical model of potential textual suffixes for a given prefix. Consider this text: Our Markov chain algorithm would arrange this text into this set of prefixes and suffixes, or "chain": (This table assumes a prefix length of two words.) To generate text using this table we select an initial prefix ("I am", for example), choose one of the suffixes associated with that prefix at random with probability determined by the input statistics ("a"), and then create a new prefix by removing the first word from the prefix and appending the suffix (making the new prefix is "am a"). Repeat this process until we can't find any suffixes for the current prefix or we exceed the word limit. (The word limit is necessary as the chain table may contain cycles.) Our version of this program reads text from standard input, parsing it into a Markov chain, and writes generated text to standard output. The prefix and output lengths can be specified using the -prefix and -words flags on the command-line.
Package vfsgen takes an http.FileSystem (likely at `go generate` time) and generates Go code that statically implements the provided http.FileSystem. Features: - Efficient generated code without unneccessary overhead. - Uses gzip compression internally (selectively, only for files that compress well). - Enables direct access to internal gzip compressed bytes via an optional interface. - Outputs `gofmt`ed Go code. This code will generate an assets_vfsdata.go file with `var assets http.FileSystem = ...` that statically implements the contents of "assets" directory. vfsgen is great to use with go generate directives. This code can go in an assets_gen.go file, which can then be invoked via "//go:generate go run assets_gen.go". The input virtual filesystem can read directly from disk, or it can be more involved.
Package sdk is the official AWS SDK for the Go programming language. The AWS SDK for Go provides APIs and utilities that developers can use to build Go applications that use AWS services, such as Amazon Elastic Compute Cloud (Amazon EC2) and Amazon Simple Storage Service (Amazon S3). The SDK removes the complexity of coding directly against a web service interface. It hides a lot of the lower-level plumbing, such as authentication, request retries, and error handling. The SDK also includes helpful utilities on top of the AWS APIs that add additional capabilities and functionality. For example, the Amazon S3 Download and Upload Manager will automatically split up large objects into multiple parts and transfer them concurrently. See the s3manager package documentation for more information. https://docs.aws.amazon.com/sdk-for-go/api/service/s3/s3manager/ Checkout the Getting Started Guide and API Reference Docs detailed the SDK's components and details on each AWS client the SDK supports. The Getting Started Guide provides examples and detailed description of how to get setup with the SDK. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/welcome.html The API Reference Docs include a detailed breakdown of the SDK's components such as utilities and AWS clients. Use this as a reference of the Go types included with the SDK, such as AWS clients, API operations, and API parameters. https://docs.aws.amazon.com/sdk-for-go/api/ The SDK is composed of two main components, SDK core, and service clients. The SDK core packages are all available under the aws package at the root of the SDK. Each client for a supported AWS service is available within its own package under the service folder at the root of the SDK. aws - SDK core, provides common shared types such as Config, Logger, and utilities to make working with API parameters easier. awserr - Provides the error interface that the SDK will use for all errors that occur in the SDK's processing. This includes service API response errors as well. The Error type is made up of a code and message. Cast the SDK's returned error type to awserr.Error and call the Code method to compare returned error to specific error codes. See the package's documentation for additional values that can be extracted such as RequestId. credentials - Provides the types and built in credentials providers the SDK will use to retrieve AWS credentials to make API requests with. Nested under this folder are also additional credentials providers such as stscreds for assuming IAM roles, and ec2rolecreds for EC2 Instance roles. endpoints - Provides the AWS Regions and Endpoints metadata for the SDK. Use this to lookup AWS service endpoint information such as which services are in a region, and what regions a service is in. Constants are also provided for all region identifiers, e.g UsWest2RegionID for "us-west-2". session - Provides initial default configuration, and load configuration from external sources such as environment and shared credentials file. request - Provides the API request sending, and retry logic for the SDK. This package also includes utilities for defining your own request retryer, and configuring how the SDK processes the request. service - Clients for AWS services. All services supported by the SDK are available under this folder. The SDK includes the Go types and utilities you can use to make requests to AWS service APIs. Within the service folder at the root of the SDK you'll find a package for each AWS service the SDK supports. All service clients follows a common pattern of creation and usage. When creating a client for an AWS service you'll first need to have a Session value constructed. The Session provides shared configuration that can be shared between your service clients. When service clients are created you can pass in additional configuration via the aws.Config type to override configuration provided by in the Session to create service client instances with custom configuration. Once the service's client is created you can use it to make API requests the AWS service. These clients are safe to use concurrently. In the AWS SDK for Go, you can configure settings for service clients, such as the log level and maximum number of retries. Most settings are optional; however, for each service client, you must specify a region and your credentials. The SDK uses these values to send requests to the correct AWS region and sign requests with the correct credentials. You can specify these values as part of a session or as environment variables. See the SDK's configuration guide for more information. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html See the session package documentation for more information on how to use Session with the SDK. https://docs.aws.amazon.com/sdk-for-go/api/aws/session/ See the Config type in the aws package for more information on configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config When using the SDK you'll generally need your AWS credentials to authenticate with AWS services. The SDK supports multiple methods of supporting these credentials. By default the SDK will source credentials automatically from its default credential chain. See the session package for more information on this chain, and how to configure it. The common items in the credential chain are the following: Environment Credentials - Set of environment variables that are useful when sub processes are created for specific roles. Shared Credentials file (~/.aws/credentials) - This file stores your credentials based on a profile name and is useful for local development. EC2 Instance Role Credentials - Use EC2 Instance Role to assign credentials to application running on an EC2 instance. This removes the need to manage credential files in production. Credentials can be configured in code as well by setting the Config's Credentials value to a custom provider or using one of the providers included with the SDK to bypass the default credential chain and use a custom one. This is helpful when you want to instruct the SDK to only use a specific set of credentials or providers. This example creates a credential provider for assuming an IAM role, "myRoleARN" and configures the S3 service client to use that role for API requests. See the credentials package documentation for more information on credential providers included with the SDK, and how to customize the SDK's usage of credentials. https://docs.aws.amazon.com/sdk-for-go/api/aws/credentials The SDK has support for the shared configuration file (~/.aws/config). This support can be enabled by setting the environment variable, "AWS_SDK_LOAD_CONFIG=1", or enabling the feature in code when creating a Session via the Option's SharedConfigState parameter. In addition to the credentials you'll need to specify the region the SDK will use to make AWS API requests to. In the SDK you can specify the region either with an environment variable, or directly in code when a Session or service client is created. The last value specified in code wins if the region is specified multiple ways. To set the region via the environment variable set the "AWS_REGION" to the region you want to the SDK to use. Using this method to set the region will allow you to run your application in multiple regions without needing additional code in the application to select the region. The endpoints package includes constants for all regions the SDK knows. The values are all suffixed with RegionID. These values are helpful, because they reduce the need to type the region string manually. To set the region on a Session use the aws package's Config struct parameter Region to the AWS region you want the service clients created from the session to use. This is helpful when you want to create multiple service clients, and all of the clients make API requests to the same region. See the endpoints package for the AWS Regions and Endpoints metadata. https://docs.aws.amazon.com/sdk-for-go/api/aws/endpoints/ In addition to setting the region when creating a Session you can also set the region on a per service client bases. This overrides the region of a Session. This is helpful when you want to create service clients in specific regions different from the Session's region. See the Config type in the aws package for more information and additional options such as setting the Endpoint, and other service client configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config Once the client is created you can make an API request to the service. Each API method takes a input parameter, and returns the service response and an error. The SDK provides methods for making the API call in multiple ways. In this list we'll use the S3 ListObjects API as an example for the different ways of making API requests. ListObjects - Base API operation that will make the API request to the service. ListObjectsRequest - API methods suffixed with Request will construct the API request, but not send it. This is also helpful when you want to get a presigned URL for a request, and share the presigned URL instead of your application making the request directly. ListObjectsPages - Same as the base API operation, but uses a callback to automatically handle pagination of the API's response. ListObjectsWithContext - Same as base API operation, but adds support for the Context pattern. This is helpful for controlling the canceling of in flight requests. See the Go standard library context package for more information. This method also takes request package's Option functional options as the variadic argument for modifying how the request will be made, or extracting information from the raw HTTP response. ListObjectsPagesWithContext - same as ListObjectsPages, but adds support for the Context pattern. Similar to ListObjectsWithContext this method also takes the request package's Option function option types as the variadic argument. In addition to the API operations the SDK also includes several higher level methods that abstract checking for and waiting for an AWS resource to be in a desired state. In this list we'll use WaitUntilBucketExists to demonstrate the different forms of waiters. WaitUntilBucketExists. - Method to make API request to query an AWS service for a resource's state. Will return successfully when that state is accomplished. WaitUntilBucketExistsWithContext - Same as WaitUntilBucketExists, but adds support for the Context pattern. In addition these methods take request package's WaiterOptions to configure the waiter, and how underlying request will be made by the SDK. The API method will document which error codes the service might return for the operation. These errors will also be available as const strings prefixed with "ErrCode" in the service client's package. If there are no errors listed in the API's SDK documentation you'll need to consult the AWS service's API documentation for the errors that could be returned. Pagination helper methods are suffixed with "Pages", and provide the functionality needed to round trip API page requests. Pagination methods take a callback function that will be called for each page of the API's response. Waiter helper methods provide the functionality to wait for an AWS resource state. These methods abstract the logic needed to to check the state of an AWS resource, and wait until that resource is in a desired state. The waiter will block until the resource is in the state that is desired, an error occurs, or the waiter times out. If a resource times out the error code returned will be request.WaiterResourceNotReadyErrorCode. This example shows a complete working Go file which will upload a file to S3 and use the Context pattern to implement timeout logic that will cancel the request if it takes too long. This example highlights how to use sessions, create a service client, make a request, handle the error, and process the response.
Package sdk is the official AWS SDK for the Go programming language. The AWS SDK for Go provides APIs and utilities that developers can use to build Go applications that use AWS services, such as Amazon Elastic Compute Cloud (Amazon EC2) and Amazon Simple Storage Service (Amazon S3). The SDK removes the complexity of coding directly against a web service interface. It hides a lot of the lower-level plumbing, such as authentication, request retries, and error handling. The SDK also includes helpful utilities on top of the AWS APIs that add additional capabilities and functionality. For example, the Amazon S3 Download and Upload Manager will automatically split up large objects into multiple parts and transfer them concurrently. See the s3manager package documentation for more information. https://docs.aws.amazon.com/sdk-for-go/api/service/s3/s3manager/ Checkout the Getting Started Guide and API Reference Docs detailed the SDK's components and details on each AWS client the SDK supports. The Getting Started Guide provides examples and detailed description of how to get setup with the SDK. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/welcome.html The API Reference Docs include a detailed breakdown of the SDK's components such as utilities and AWS clients. Use this as a reference of the Go types included with the SDK, such as AWS clients, API operations, and API parameters. https://docs.aws.amazon.com/sdk-for-go/api/ The SDK is composed of two main components, SDK core, and service clients. The SDK core packages are all available under the aws package at the root of the SDK. Each client for a supported AWS service is available within its own package under the service folder at the root of the SDK. aws - SDK core, provides common shared types such as Config, Logger, and utilities to make working with API parameters easier. awserr - Provides the error interface that the SDK will use for all errors that occur in the SDK's processing. This includes service API response errors as well. The Error type is made up of a code and message. Cast the SDK's returned error type to awserr.Error and call the Code method to compare returned error to specific error codes. See the package's documentation for additional values that can be extracted such as RequestId. credentials - Provides the types and built in credentials providers the SDK will use to retrieve AWS credentials to make API requests with. Nested under this folder are also additional credentials providers such as stscreds for assuming IAM roles, and ec2rolecreds for EC2 Instance roles. endpoints - Provides the AWS Regions and Endpoints metadata for the SDK. Use this to lookup AWS service endpoint information such as which services are in a region, and what regions a service is in. Constants are also provided for all region identifiers, e.g UsWest2RegionID for "us-west-2". session - Provides initial default configuration, and load configuration from external sources such as environment and shared credentials file. request - Provides the API request sending, and retry logic for the SDK. This package also includes utilities for defining your own request retryer, and configuring how the SDK processes the request. service - Clients for AWS services. All services supported by the SDK are available under this folder. The SDK includes the Go types and utilities you can use to make requests to AWS service APIs. Within the service folder at the root of the SDK you'll find a package for each AWS service the SDK supports. All service clients follows a common pattern of creation and usage. When creating a client for an AWS service you'll first need to have a Session value constructed. The Session provides shared configuration that can be shared between your service clients. When service clients are created you can pass in additional configuration via the aws.Config type to override configuration provided by in the Session to create service client instances with custom configuration. Once the service's client is created you can use it to make API requests the AWS service. These clients are safe to use concurrently. In the AWS SDK for Go, you can configure settings for service clients, such as the log level and maximum number of retries. Most settings are optional; however, for each service client, you must specify a region and your credentials. The SDK uses these values to send requests to the correct AWS region and sign requests with the correct credentials. You can specify these values as part of a session or as environment variables. See the SDK's configuration guide for more information. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html See the session package documentation for more information on how to use Session with the SDK. https://docs.aws.amazon.com/sdk-for-go/api/aws/session/ See the Config type in the aws package for more information on configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config When using the SDK you'll generally need your AWS credentials to authenticate with AWS services. The SDK supports multiple methods of supporting these credentials. By default the SDK will source credentials automatically from its default credential chain. See the session package for more information on this chain, and how to configure it. The common items in the credential chain are the following: Environment Credentials - Set of environment variables that are useful when sub processes are created for specific roles. Shared Credentials file (~/.aws/credentials) - This file stores your credentials based on a profile name and is useful for local development. EC2 Instance Role Credentials - Use EC2 Instance Role to assign credentials to application running on an EC2 instance. This removes the need to manage credential files in production. Credentials can be configured in code as well by setting the Config's Credentials value to a custom provider or using one of the providers included with the SDK to bypass the default credential chain and use a custom one. This is helpful when you want to instruct the SDK to only use a specific set of credentials or providers. This example creates a credential provider for assuming an IAM role, "myRoleARN" and configures the S3 service client to use that role for API requests. See the credentials package documentation for more information on credential providers included with the SDK, and how to customize the SDK's usage of credentials. https://docs.aws.amazon.com/sdk-for-go/api/aws/credentials The SDK has support for the shared configuration file (~/.aws/config). This support can be enabled by setting the environment variable, "AWS_SDK_LOAD_CONFIG=1", or enabling the feature in code when creating a Session via the Option's SharedConfigState parameter. In addition to the credentials you'll need to specify the region the SDK will use to make AWS API requests to. In the SDK you can specify the region either with an environment variable, or directly in code when a Session or service client is created. The last value specified in code wins if the region is specified multiple ways. To set the region via the environment variable set the "AWS_REGION" to the region you want to the SDK to use. Using this method to set the region will allow you to run your application in multiple regions without needing additional code in the application to select the region. The endpoints package includes constants for all regions the SDK knows. The values are all suffixed with RegionID. These values are helpful, because they reduce the need to type the region string manually. To set the region on a Session use the aws package's Config struct parameter Region to the AWS region you want the service clients created from the session to use. This is helpful when you want to create multiple service clients, and all of the clients make API requests to the same region. See the endpoints package for the AWS Regions and Endpoints metadata. https://docs.aws.amazon.com/sdk-for-go/api/aws/endpoints/ In addition to setting the region when creating a Session you can also set the region on a per service client bases. This overrides the region of a Session. This is helpful when you want to create service clients in specific regions different from the Session's region. See the Config type in the aws package for more information and additional options such as setting the Endpoint, and other service client configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config Once the client is created you can make an API request to the service. Each API method takes a input parameter, and returns the service response and an error. The SDK provides methods for making the API call in multiple ways. In this list we'll use the S3 ListObjects API as an example for the different ways of making API requests. ListObjects - Base API operation that will make the API request to the service. ListObjectsRequest - API methods suffixed with Request will construct the API request, but not send it. This is also helpful when you want to get a presigned URL for a request, and share the presigned URL instead of your application making the request directly. ListObjectsPages - Same as the base API operation, but uses a callback to automatically handle pagination of the API's response. ListObjectsWithContext - Same as base API operation, but adds support for the Context pattern. This is helpful for controlling the canceling of in flight requests. See the Go standard library context package for more information. This method also takes request package's Option functional options as the variadic argument for modifying how the request will be made, or extracting information from the raw HTTP response. ListObjectsPagesWithContext - same as ListObjectsPages, but adds support for the Context pattern. Similar to ListObjectsWithContext this method also takes the request package's Option function option types as the variadic argument. In addition to the API operations the SDK also includes several higher level methods that abstract checking for and waiting for an AWS resource to be in a desired state. In this list we'll use WaitUntilBucketExists to demonstrate the different forms of waiters. WaitUntilBucketExists. - Method to make API request to query an AWS service for a resource's state. Will return successfully when that state is accomplished. WaitUntilBucketExistsWithContext - Same as WaitUntilBucketExists, but adds support for the Context pattern. In addition these methods take request package's WaiterOptions to configure the waiter, and how underlying request will be made by the SDK. The API method will document which error codes the service might return for the operation. These errors will also be available as const strings prefixed with "ErrCode" in the service client's package. If there are no errors listed in the API's SDK documentation you'll need to consult the AWS service's API documentation for the errors that could be returned. Pagination helper methods are suffixed with "Pages", and provide the functionality needed to round trip API page requests. Pagination methods take a callback function that will be called for each page of the API's response. Waiter helper methods provide the functionality to wait for an AWS resource state. These methods abstract the logic needed to to check the state of an AWS resource, and wait until that resource is in a desired state. The waiter will block until the resource is in the state that is desired, an error occurs, or the waiter times out. If a resource times out the error code returned will be request.WaiterResourceNotReadyErrorCode. This example shows a complete working Go file which will upload a file to S3 and use the Context pattern to implement timeout logic that will cancel the request if it takes too long. This example highlights how to use sessions, create a service client, make a request, handle the error, and process the response.
Package promptui is a library providing a simple interface to create command-line prompts for go. It can be easily integrated into spf13/cobra, urfave/cli or any cli go application. promptui has two main input modes: Prompt provides a single line for user input. It supports optional live validation, confirmation and masking the input. Select provides a list of options to choose from. It supports pagination, search, detailed view and custom templates. This is an example for the Prompt mode of promptui. In this example, a prompt is created with a validator function that validates the given value to make sure its a number. If successful, it will output the chosen number in a formatted message. This is an example for the Select mode of promptui. In this example, a select is created with the days of the week as its items. When an item is selected, the selected day will be displayed in a formatted message.
Package sdk is the official AWS SDK for the Go programming language. The AWS SDK for Go provides APIs and utilities that developers can use to build Go applications that use AWS services, such as Amazon Elastic Compute Cloud (Amazon EC2) and Amazon Simple Storage Service (Amazon S3). The SDK removes the complexity of coding directly against a web service interface. It hides a lot of the lower-level plumbing, such as authentication, request retries, and error handling. The SDK also includes helpful utilities on top of the AWS APIs that add additional capabilities and functionality. For example, the Amazon S3 Download and Upload Manager will automatically split up large objects into multiple parts and transfer them concurrently. See the s3manager package documentation for more information. https://docs.aws.amazon.com/sdk-for-go/api/service/s3/s3manager/ Checkout the Getting Started Guide and API Reference Docs detailed the SDK's components and details on each AWS client the SDK supports. The Getting Started Guide provides examples and detailed description of how to get setup with the SDK. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/welcome.html The API Reference Docs include a detailed breakdown of the SDK's components such as utilities and AWS clients. Use this as a reference of the Go types included with the SDK, such as AWS clients, API operations, and API parameters. https://docs.aws.amazon.com/sdk-for-go/api/ The SDK is composed of two main components, SDK core, and service clients. The SDK core packages are all available under the aws package at the root of the SDK. Each client for a supported AWS service is available within its own package under the service folder at the root of the SDK. aws - SDK core, provides common shared types such as Config, Logger, and utilities to make working with API parameters easier. awserr - Provides the error interface that the SDK will use for all errors that occur in the SDK's processing. This includes service API response errors as well. The Error type is made up of a code and message. Cast the SDK's returned error type to awserr.Error and call the Code method to compare returned error to specific error codes. See the package's documentation for additional values that can be extracted such as RequestId. credentials - Provides the types and built in credentials providers the SDK will use to retrieve AWS credentials to make API requests with. Nested under this folder are also additional credentials providers such as stscreds for assuming IAM roles, and ec2rolecreds for EC2 Instance roles. endpoints - Provides the AWS Regions and Endpoints metadata for the SDK. Use this to lookup AWS service endpoint information such as which services are in a region, and what regions a service is in. Constants are also provided for all region identifiers, e.g UsWest2RegionID for "us-west-2". session - Provides initial default configuration, and load configuration from external sources such as environment and shared credentials file. request - Provides the API request sending, and retry logic for the SDK. This package also includes utilities for defining your own request retryer, and configuring how the SDK processes the request. service - Clients for AWS services. All services supported by the SDK are available under this folder. The SDK includes the Go types and utilities you can use to make requests to AWS service APIs. Within the service folder at the root of the SDK you'll find a package for each AWS service the SDK supports. All service clients follows a common pattern of creation and usage. When creating a client for an AWS service you'll first need to have a Session value constructed. The Session provides shared configuration that can be shared between your service clients. When service clients are created you can pass in additional configuration via the aws.Config type to override configuration provided by in the Session to create service client instances with custom configuration. Once the service's client is created you can use it to make API requests the AWS service. These clients are safe to use concurrently. In the AWS SDK for Go, you can configure settings for service clients, such as the log level and maximum number of retries. Most settings are optional; however, for each service client, you must specify a region and your credentials. The SDK uses these values to send requests to the correct AWS region and sign requests with the correct credentials. You can specify these values as part of a session or as environment variables. See the SDK's configuration guide for more information. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html See the session package documentation for more information on how to use Session with the SDK. https://docs.aws.amazon.com/sdk-for-go/api/aws/session/ See the Config type in the aws package for more information on configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config When using the SDK you'll generally need your AWS credentials to authenticate with AWS services. The SDK supports multiple methods of supporting these credentials. By default the SDK will source credentials automatically from its default credential chain. See the session package for more information on this chain, and how to configure it. The common items in the credential chain are the following: Environment Credentials - Set of environment variables that are useful when sub processes are created for specific roles. Shared Credentials file (~/.aws/credentials) - This file stores your credentials based on a profile name and is useful for local development. EC2 Instance Role Credentials - Use EC2 Instance Role to assign credentials to application running on an EC2 instance. This removes the need to manage credential files in production. Credentials can be configured in code as well by setting the Config's Credentials value to a custom provider or using one of the providers included with the SDK to bypass the default credential chain and use a custom one. This is helpful when you want to instruct the SDK to only use a specific set of credentials or providers. This example creates a credential provider for assuming an IAM role, "myRoleARN" and configures the S3 service client to use that role for API requests. See the credentials package documentation for more information on credential providers included with the SDK, and how to customize the SDK's usage of credentials. https://docs.aws.amazon.com/sdk-for-go/api/aws/credentials The SDK has support for the shared configuration file (~/.aws/config). This support can be enabled by setting the environment variable, "AWS_SDK_LOAD_CONFIG=1", or enabling the feature in code when creating a Session via the Option's SharedConfigState parameter. In addition to the credentials you'll need to specify the region the SDK will use to make AWS API requests to. In the SDK you can specify the region either with an environment variable, or directly in code when a Session or service client is created. The last value specified in code wins if the region is specified multiple ways. To set the region via the environment variable set the "AWS_REGION" to the region you want to the SDK to use. Using this method to set the region will allow you to run your application in multiple regions without needing additional code in the application to select the region. The endpoints package includes constants for all regions the SDK knows. The values are all suffixed with RegionID. These values are helpful, because they reduce the need to type the region string manually. To set the region on a Session use the aws package's Config struct parameter Region to the AWS region you want the service clients created from the session to use. This is helpful when you want to create multiple service clients, and all of the clients make API requests to the same region. See the endpoints package for the AWS Regions and Endpoints metadata. https://docs.aws.amazon.com/sdk-for-go/api/aws/endpoints/ In addition to setting the region when creating a Session you can also set the region on a per service client bases. This overrides the region of a Session. This is helpful when you want to create service clients in specific regions different from the Session's region. See the Config type in the aws package for more information and additional options such as setting the Endpoint, and other service client configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config Once the client is created you can make an API request to the service. Each API method takes a input parameter, and returns the service response and an error. The SDK provides methods for making the API call in multiple ways. In this list we'll use the S3 ListObjects API as an example for the different ways of making API requests. ListObjects - Base API operation that will make the API request to the service. ListObjectsRequest - API methods suffixed with Request will construct the API request, but not send it. This is also helpful when you want to get a presigned URL for a request, and share the presigned URL instead of your application making the request directly. ListObjectsPages - Same as the base API operation, but uses a callback to automatically handle pagination of the API's response. ListObjectsWithContext - Same as base API operation, but adds support for the Context pattern. This is helpful for controlling the canceling of in flight requests. See the Go standard library context package for more information. This method also takes request package's Option functional options as the variadic argument for modifying how the request will be made, or extracting information from the raw HTTP response. ListObjectsPagesWithContext - same as ListObjectsPages, but adds support for the Context pattern. Similar to ListObjectsWithContext this method also takes the request package's Option function option types as the variadic argument. In addition to the API operations the SDK also includes several higher level methods that abstract checking for and waiting for an AWS resource to be in a desired state. In this list we'll use WaitUntilBucketExists to demonstrate the different forms of waiters. WaitUntilBucketExists. - Method to make API request to query an AWS service for a resource's state. Will return successfully when that state is accomplished. WaitUntilBucketExistsWithContext - Same as WaitUntilBucketExists, but adds support for the Context pattern. In addition these methods take request package's WaiterOptions to configure the waiter, and how underlying request will be made by the SDK. The API method will document which error codes the service might return for the operation. These errors will also be available as const strings prefixed with "ErrCode" in the service client's package. If there are no errors listed in the API's SDK documentation you'll need to consult the AWS service's API documentation for the errors that could be returned. Pagination helper methods are suffixed with "Pages", and provide the functionality needed to round trip API page requests. Pagination methods take a callback function that will be called for each page of the API's response. Waiter helper methods provide the functionality to wait for an AWS resource state. These methods abstract the logic needed to to check the state of an AWS resource, and wait until that resource is in a desired state. The waiter will block until the resource is in the state that is desired, an error occurs, or the waiter times out. If a resource times out the error code returned will be request.WaiterResourceNotReadyErrorCode. This example shows a complete working Go file which will upload a file to S3 and use the Context pattern to implement timeout logic that will cancel the request if it takes too long. This example highlights how to use sessions, create a service client, make a request, handle the error, and process the response.
A dynamic and extensible music library organizer Demlo is a music library organizer. It can encode, fix case, change folder hierarchy according to tags or file properties, tag from an online database, copy covers while ignoring duplicates or those below a quality threshold, and much more. It makes it possible to manage your libraries uniformly and dynamically. You can write your own rules to fit your needs best. Demlo aims at being as lightweight and portable as possible. Its major runtime dependency is the transcoder FFmpeg. The scripts are written in Lua for portability and speed while allowing virtually unlimited extensibility. Usage: For usage options, see: First Demlo creates a list of all input files. When a folder is specified, all files matching the extensions from the 'extensions' variable will be appended to the list. Identical files are appended only once. Next all files get analyzed: - The audio file details (tags, stream properties, format properties, etc.) are stored into the 'input' variable. The 'output' variable gets its default values from 'input', or from an index file if specified from command-line. If no index has been specified and if an attached cuesheet is found, all cuesheet details are appended accordingly. Cuesheet tags override stream tags, which override format tags. Finally, still without index, tags can be retrieved from Internet if the command-line option is set. - If a prescript has been specified, it gets executed. It makes it possible to adjust the input values and global variables before running the other scripts. - The scripts, if any, get executed in the lexicographic order of their basename. The 'output' variable is transformed accordingly. Scripts may contain rules such as defining a new file name, new tags, new encoding properties, etc. You can use conditions on input values to set the output properties, which makes it virtually possible to process a full music library in one single run. - If a postscript has been specified, it gets executed. It makes it possible to adjust the output of the script for the current run only. - Demlo makes some last-minute tweaking if need be: it adjusts the bitrate, the path, the encoding parameters, and so on. - A preview of changes is displayed. - When applying changes, the covers get copied if required and the audio file gets processed: tags are modified as specified, the file is re-encoded if required, and the output is written to the appropriate folder. When destination already exists, the 'exist' action is executed. The program's default behaviour can be changed from the user configuration file. (See the 'Files' section for a template.) Most command-line flags default value can be changed. The configuration file is loaded on startup, before parsing the command-line options. Review the default value of the CLI flags with 'demlo -h'. If you wish to use no configuration file, set the environment variable DEMLORC to ".". Scripts can contain any safe Lua code. Some functions like 'os.execute' are not available for security reasons. It is not possible to print to the standard output/error unless running in debug mode and using the 'debug' function. See the 'sandbox.go' file for a list of allowed functions and variables. Lua patterns are replaced by Go regexps. See https://github.com/google/re2/wiki/Syntax. Scripts have no requirements at all. However, to be useful, they should set values of the 'output' table detailed in the 'Variables' section. You can use the full power of the Lua to set the variables dynamically. For instance: 'input' and 'output' are both accessible from any script. All default functions and variables (excluding 'output') are reset on every script call to enforce consistency. Local variables are lost from one script call to another. Global variables are preserved. Use this feature to pass data like options or new functions. 'output' structure consistency is guaranteed at the start of every script. Demlo will only extract the fields with the right type as described in the 'Variables' section. Warning: Do not abuse of global variables, especially when processing non-fixed size data (e.g. tables). Data could grow big and slow down the program. By default, when the destination exists, Demlo will append a suffix to the output destination. This behaviour can be changed from the 'exist' action specified by the user. Demlo comes with a few default actions. The 'exist' action works just like scripts with the following differences: - Any change to 'output.path' will be skipped. - An additional variable is accessible from the action: 'existinfo' holds the file details of the existing files in the same fashion as 'input'. This allows for comparing the input file and the existing destination. The writing rules can be tweaked the following way: Word of caution: overwriting breaks Demlo's rule of not altering existing files. It can lead to undesired results if the overwritten file is also part of the (yet to be processed) input. The overwrite capability can be useful when syncing music libraries however. The user scripts should be generic. Therefore they may not properly handle some uncommon input values. Tweak the input with temporary overrides from command-line. The prescript and postscript defined on command-line will let you run arbitrary code that is run before and after all other scripts, respectively. Use global variables to transfer data and parameters along. If the prescript and postscript end up being too long, consider writing a demlo script. You can also define shell aliases or use wrapper scripts as convenience. The 'input' table describes the file: Bitrate is in bits per seconds (bps). That is, for 320 kbps you would specify The 'time' is the modification time of the file. It holds the sec seconds and nsec nanoseconds since January 1, 1970 UTC. The entry 'streams' and 'format' are as returned by It gives access to most metadata that FFmpeg can return. For instance, to get the duration of the track in seconds, query the variable 'input.format.duration'. Since there may be more than one stream (covers, other data), the first audio stream is assumed to be the music stream. For convenience, the index of the music stream is stored in 'audioindex'. The tags returned by FFmpeg are found in streams, format and in the cuesheet. To make tag queries easier, all tags are stored in the 'tags' table, with the following precedence: You can remove a tag by setting it to 'nil' or the empty string. This is equivalent, except that 'nil' saves some memory during the process. The 'output' table describes the transformation to apply to the file: The 'parameters' array holds the CLI parameters passed to FFmpeg. It can be anything supported by FFmpeg, although this variable is supposed to hold encoding information. See the 'Examples' section. The 'embeddedcovers', 'externalcovers' and 'onlinecover' variables are detailed in the 'Covers' section. The 'write' variable is covered in the 'Existing destination' section. The 'rmsrc' variable is a boolean: when true, Demlo removes the source file after processing. This can speed up the process when not re-encoding. This option is ignored for multi-track files. For convenience, the following shortcuts are provided: Demlo provides some non-standard Lua functions to ease scripting. Display a message on stderr if debug mode is on. Return lowercase string without non-alphanumeric characters nor leading zeros. Return the relation coefficient of the two input strings. The result is a float in 0.0...1.0, 0.0 means no relation at all, 1.0 means identical strings. A format is a container in FFmpeg's terminology. 'output.parameters' contains CLI flags passed to FFmpeg. They are meant to set the stream codec, the bitrate, etc. If 'output.parameters' is {'-c:a', 'copy'} and the format is identical, then taglib will be used instead of FFmpeg. Use this rule from a (post)script to disable encoding by setting the same format and the copy parameters. This speeds up the process. The official scripts are usually very smart at guessing the right values. They might make mistakes however. If you are unsure, you can (and you are advised to) preview the results before proceeding. The 'diff' preview is printed to stderr. A JSON preview of the changes is printed to stdout if stdout is redirected. The initial values of the 'output' table can be completed with tags fetched from the MusicBrainz database. Audio files are fingerprinted for the queries, so even with initially wrong file names and tags, the right values should still be retrieved. The front album cover can also be retrieved. Proxy parameters will be fetched automatically from the 'http_proxy' and 'https_proxy' environment variables. As this process requires network access it can be quite slow. Nevertheless, Demlo is specifically optimized for albums, so that network queries are used for only one track per album, when possible. Some tracks can be released on different albums: Demlo tries to guess it from the tags, but if the tags are wrong there is no way to know which one it is. There is a case where the selection can be controlled: let's assume we have tracks A, B and C from the same album Z. A and B were also released in album Y, whereas C was release in Z only. Tags for A will be checked online; let's assume it gets tagged to album Y. B will use A details, so album Y too. Then C does not match neither A's nor B's album, so another online query will be made and it will be tagged to album Z. This is slow and does not yield the expected result. Now let's call Tags for C will be queried online, and C will be tagged to Z. Then both A and B will match album Z so they will be tagged using C details, which is the desired result. Conclusion: when using online tagging, the first argument should be the lesser known track of the album. Demlo can set the output variables according to the values set in a text file before calling the script. The input values are ignored as well as online tagging, but it is still possible to access the input table from scripts. This 'index' file is formatted in JSON. It corresponds to what Demlo outputs when printing the JSON preview. This is valid JSON except for the missing beginning and the missing end. It makes it possible to concatenate and to append to existing index files. Demlo will automatically complete the missing parts so that it becomes valid JSON. The index file is useful when you want to edit tags manually: You can redirect the output to a file, edit the content manually with your favorite text editor, then run Demlo again with the index as argument. See the 'Examples' section. This feature can also be used to interface Demlo with other programs. Demlo can manage embedded covers as well as external covers. External covers are queried from files matching known extensions in the file's folder. Embedded covers are queried from static video streams in the file. Covers are accessed from The embedded covers are indexed numerically by order of appearance in the streams. The first cover will be at index 1 and so on. This is not necessarily the index of the stream. 'inputcover' is the following structure: 'format' is the picture format. FFmpeg makes a distinction between format and codec, but it is not useful for covers. The name of the format is specified by Demlo, not by FFmpeg. Hence the 'jpeg' name, instead of 'mjpeg' as FFmpeg puts it. 'width' and 'height' hold the size in pixels. 'checksum' can be used to identify files uniquely. For performance reasons, only a partial checksum is performed. This variable is typically used for skipping duplicates. Cover transformations are specified in 'outputcover' has the following structure: The format is specified by FFmpeg this time. See the comments on 'format' for 'inputcover'. 'parameters' is used in the same fashion as 'output.parameters'. User configuration: This must be a Lua file. See the 'demlorc' file provided with this package for an exhaustive list of options. Folder containing the official scripts: User script folder: Create this folder and add your own scripts inside. This folder takes precedence over the system folder, so scripts with the same name will be found in the user folder first. The following examples will not proceed unless the '-p' command-line option is true. Important: you _must_ use single quotes for the runtime Lua command to prevent expansion. Inside the Lua code, use double quotes for strings and escape single quotes. Show default options: Preview changes made by the default scripts: Use 'alternate' script if found in user or system script folder (user folder first): Add the Lua file to the list of scripts. This feature is convenient if you want to write scripts that are too complex to fit on the command-line, but not generic enough to fit the user or system script folders. Remove all script from the list, then add '30-case' and '60-path' scripts. Note that '30-case' will be run before '60-path'. Do not use any script but '60-path'. The file content is unchanged and the file is renamed to a dynamically computed destination. Demlo performs an instant rename if destination is on the same device. Otherwise it copies the file and removes the source. Use the default scripts (if set in configuration file), but do not re-encode: Set 'artist' to the value of 'composer', and 'title' to be preceded by the new value of 'artist', then apply the default script. Do not re-encode. Order in runtime script matters. Mind the double quotes. Set track number to first number in input file name: Use the default scripts but keep original value for the 'artist' tag: 1) Preview default scripts transformation and save it to an index. 2) Edit file to fix any potential mistake. 3) Run Demlo over the same files using the index information only. Same as above but generate output filename according to the custom '61-rename' script. The numeric prefix is important: it ensures that '61-rename' will be run after all the default tag related scripts and after '60-path'. Otherwise, if a change in tags would occur later on, it would not affect the renaming script. Retrieve tags from Internet: Same as above but for a whole album, and saving the result to an index: Only download the cover for the album corresponding to the track. Use 'rmsrc' to avoid duplicating the audio file. Change tags inplace with entries from MusicBrainz: Set tags to titlecase while casing AC-DC correctly: To easily switch between formats from command-line, create one script per format (see 50-encoding.lua), e.g. ogg.lua and flac.lua. Then Add support for non-default formats from CLI: Overwrite existing destination if input is newer: ffmpeg(1), ffprobe(1), http://www.lua.org/pil/contents.html
2fa is a two-factor authentication agent. Usage: “2fa -add name” adds a new key to the 2fa keychain with the given name. It prints a prompt to standard error and reads a two-factor key from standard input. Two-factor keys are short case-insensitive strings of letters A-Z and digits 2-7. By default the new key generates time-based (TOTP) authentication codes; the -hotp flag makes the new key generate counter-based (HOTP) codes instead. By default the new key generates 6-digit codes; the -7 and -8 flags select 7- and 8-digit codes instead. “2fa -list” lists the names of all the keys in the keychain. “2fa name” prints a two-factor authentication code from the key with the given name. With no arguments, 2fa prints two-factor authentication codes from all known time-based keys. The default time-based authentication codes are derived from a hash of the key and the current time, so it is important that the system clock have at least one-minute accuracy. The keychain is stored unencrypted in the text file $HOME/.2fa. During GitHub 2FA setup, at the “Scan this barcode with your app” step, click the “enter this text code instead” link. A window pops up showing “your two-factor secret,” a short string of letters and digits. Add it to 2fa under the name github, typing the secret at the prompt: Then whenever GitHub prompts for a 2FA code, run 2fa to obtain one: Or to type less:
Package sdk is the official AWS SDK for the Go programming language. The AWS SDK for Go provides APIs and utilities that developers can use to build Go applications that use AWS services, such as Amazon Elastic Compute Cloud (Amazon EC2) and Amazon Simple Storage Service (Amazon S3). The SDK removes the complexity of coding directly against a web service interface. It hides a lot of the lower-level plumbing, such as authentication, request retries, and error handling. The SDK also includes helpful utilities on top of the AWS APIs that add additional capabilities and functionality. For example, the Amazon S3 Download and Upload Manager will automatically split up large objects into multiple parts and transfer them concurrently. See the s3manager package documentation for more information. https://docs.aws.amazon.com/sdk-for-go/api/service/s3/s3manager/ Checkout the Getting Started Guide and API Reference Docs detailed the SDK's components and details on each AWS client the SDK supports. The Getting Started Guide provides examples and detailed description of how to get setup with the SDK. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/welcome.html The API Reference Docs include a detailed breakdown of the SDK's components such as utilities and AWS clients. Use this as a reference of the Go types included with the SDK, such as AWS clients, API operations, and API parameters. https://docs.aws.amazon.com/sdk-for-go/api/ The SDK is composed of two main components, SDK core, and service clients. The SDK core packages are all available under the aws package at the root of the SDK. Each client for a supported AWS service is available within its own package under the service folder at the root of the SDK. aws - SDK core, provides common shared types such as Config, Logger, and utilities to make working with API parameters easier. awserr - Provides the error interface that the SDK will use for all errors that occur in the SDK's processing. This includes service API response errors as well. The Error type is made up of a code and message. Cast the SDK's returned error type to awserr.Error and call the Code method to compare returned error to specific error codes. See the package's documentation for additional values that can be extracted such as RequestId. credentials - Provides the types and built in credentials providers the SDK will use to retrieve AWS credentials to make API requests with. Nested under this folder are also additional credentials providers such as stscreds for assuming IAM roles, and ec2rolecreds for EC2 Instance roles. endpoints - Provides the AWS Regions and Endpoints metadata for the SDK. Use this to lookup AWS service endpoint information such as which services are in a region, and what regions a service is in. Constants are also provided for all region identifiers, e.g UsWest2RegionID for "us-west-2". session - Provides initial default configuration, and load configuration from external sources such as environment and shared credentials file. request - Provides the API request sending, and retry logic for the SDK. This package also includes utilities for defining your own request retryer, and configuring how the SDK processes the request. service - Clients for AWS services. All services supported by the SDK are available under this folder. The SDK includes the Go types and utilities you can use to make requests to AWS service APIs. Within the service folder at the root of the SDK you'll find a package for each AWS service the SDK supports. All service clients follows a common pattern of creation and usage. When creating a client for an AWS service you'll first need to have a Session value constructed. The Session provides shared configuration that can be shared between your service clients. When service clients are created you can pass in additional configuration via the aws.Config type to override configuration provided by in the Session to create service client instances with custom configuration. Once the service's client is created you can use it to make API requests the AWS service. These clients are safe to use concurrently. In the AWS SDK for Go, you can configure settings for service clients, such as the log level and maximum number of retries. Most settings are optional; however, for each service client, you must specify a region and your credentials. The SDK uses these values to send requests to the correct AWS region and sign requests with the correct credentials. You can specify these values as part of a session or as environment variables. See the SDK's configuration guide for more information. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html See the session package documentation for more information on how to use Session with the SDK. https://docs.aws.amazon.com/sdk-for-go/api/aws/session/ See the Config type in the aws package for more information on configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config When using the SDK you'll generally need your AWS credentials to authenticate with AWS services. The SDK supports multiple methods of supporting these credentials. By default the SDK will source credentials automatically from its default credential chain. See the session package for more information on this chain, and how to configure it. The common items in the credential chain are the following: Environment Credentials - Set of environment variables that are useful when sub processes are created for specific roles. Shared Credentials file (~/.aws/credentials) - This file stores your credentials based on a profile name and is useful for local development. EC2 Instance Role Credentials - Use EC2 Instance Role to assign credentials to application running on an EC2 instance. This removes the need to manage credential files in production. Credentials can be configured in code as well by setting the Config's Credentials value to a custom provider or using one of the providers included with the SDK to bypass the default credential chain and use a custom one. This is helpful when you want to instruct the SDK to only use a specific set of credentials or providers. This example creates a credential provider for assuming an IAM role, "myRoleARN" and configures the S3 service client to use that role for API requests. See the credentials package documentation for more information on credential providers included with the SDK, and how to customize the SDK's usage of credentials. https://docs.aws.amazon.com/sdk-for-go/api/aws/credentials The SDK has support for the shared configuration file (~/.aws/config). This support can be enabled by setting the environment variable, "AWS_SDK_LOAD_CONFIG=1", or enabling the feature in code when creating a Session via the Option's SharedConfigState parameter. In addition to the credentials you'll need to specify the region the SDK will use to make AWS API requests to. In the SDK you can specify the region either with an environment variable, or directly in code when a Session or service client is created. The last value specified in code wins if the region is specified multiple ways. To set the region via the environment variable set the "AWS_REGION" to the region you want to the SDK to use. Using this method to set the region will allow you to run your application in multiple regions without needing additional code in the application to select the region. The endpoints package includes constants for all regions the SDK knows. The values are all suffixed with RegionID. These values are helpful, because they reduce the need to type the region string manually. To set the region on a Session use the aws package's Config struct parameter Region to the AWS region you want the service clients created from the session to use. This is helpful when you want to create multiple service clients, and all of the clients make API requests to the same region. See the endpoints package for the AWS Regions and Endpoints metadata. https://docs.aws.amazon.com/sdk-for-go/api/aws/endpoints/ In addition to setting the region when creating a Session you can also set the region on a per service client bases. This overrides the region of a Session. This is helpful when you want to create service clients in specific regions different from the Session's region. See the Config type in the aws package for more information and additional options such as setting the Endpoint, and other service client configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config Once the client is created you can make an API request to the service. Each API method takes a input parameter, and returns the service response and an error. The SDK provides methods for making the API call in multiple ways. In this list we'll use the S3 ListObjects API as an example for the different ways of making API requests. ListObjects - Base API operation that will make the API request to the service. ListObjectsRequest - API methods suffixed with Request will construct the API request, but not send it. This is also helpful when you want to get a presigned URL for a request, and share the presigned URL instead of your application making the request directly. ListObjectsPages - Same as the base API operation, but uses a callback to automatically handle pagination of the API's response. ListObjectsWithContext - Same as base API operation, but adds support for the Context pattern. This is helpful for controlling the canceling of in flight requests. See the Go standard library context package for more information. This method also takes request package's Option functional options as the variadic argument for modifying how the request will be made, or extracting information from the raw HTTP response. ListObjectsPagesWithContext - same as ListObjectsPages, but adds support for the Context pattern. Similar to ListObjectsWithContext this method also takes the request package's Option function option types as the variadic argument. In addition to the API operations the SDK also includes several higher level methods that abstract checking for and waiting for an AWS resource to be in a desired state. In this list we'll use WaitUntilBucketExists to demonstrate the different forms of waiters. WaitUntilBucketExists. - Method to make API request to query an AWS service for a resource's state. Will return successfully when that state is accomplished. WaitUntilBucketExistsWithContext - Same as WaitUntilBucketExists, but adds support for the Context pattern. In addition these methods take request package's WaiterOptions to configure the waiter, and how underlying request will be made by the SDK. The API method will document which error codes the service might return for the operation. These errors will also be available as const strings prefixed with "ErrCode" in the service client's package. If there are no errors listed in the API's SDK documentation you'll need to consult the AWS service's API documentation for the errors that could be returned. Pagination helper methods are suffixed with "Pages", and provide the functionality needed to round trip API page requests. Pagination methods take a callback function that will be called for each page of the API's response. Waiter helper methods provide the functionality to wait for an AWS resource state. These methods abstract the logic needed to to check the state of an AWS resource, and wait until that resource is in a desired state. The waiter will block until the resource is in the state that is desired, an error occurs, or the waiter times out. If a resource times out the error code returned will be request.WaiterResourceNotReadyErrorCode. This example shows a complete working Go file which will upload a file to S3 and use the Context pattern to implement timeout logic that will cancel the request if it takes too long. This example highlights how to use sessions, create a service client, make a request, handle the error, and process the response.
Package promptui is a library providing a simple interface to create command-line prompts for go. It can be easily integrated into spf13/cobra, urfave/cli or any cli go application. promptui has two main input modes: Prompt provides a single line for user input. It supports optional live validation, confirmation and masking the input. Select provides a list of options to choose from. It supports pagination, search, detailed view and custom templates. This is an example for the Prompt mode of promptui. In this example, a prompt is created with a validator function that validates the given value to make sure its a number. If successful, it will output the chosen number in a formatted message. This is an example for the Select mode of promptui. In this example, a select is created with the days of the week as its items. When an item is selected, the selected day will be displayed in a formatted message.
Package promptui is a library providing a simple interface to create command-line prompts for go. It can be easily integrated into spf13/cobra, urfave/cli or any cli go application. promptui has two main input modes: Prompt provides a single line for user input. It supports optional live validation, confirmation and masking the input. Select provides a list of options to choose from. It supports pagination, search, detailed view and custom templates. This is an example for the Prompt mode of promptui. In this example, a prompt is created with a validator function that validates the given value to make sure its a number. If successful, it will output the chosen number in a formatted message. This is an example for the Select mode of promptui. In this example, a select is created with the days of the week as its items. When an item is selected, the selected day will be displayed in a formatted message.
Package bluemonday provides a way of describing a whitelist of HTML elements and attributes as a policy, and for that policy to be applied to untrusted strings from users that may contain markup. All elements and attributes not on the whitelist will be stripped. The default bluemonday.UGCPolicy().Sanitize() turns this: Into the more harmless: And it turns this: Into this: Whilst still allowing this: To pass through mostly unaltered (it gained a rel="nofollow"): The primary purpose of bluemonday is to take potentially unsafe user generated content (from things like Markdown, HTML WYSIWYG tools, etc) and make it safe for you to put on your website. It protects sites against XSS (http://en.wikipedia.org/wiki/Cross-site_scripting) and other malicious content that a user interface may deliver. There are many vectors for an XSS attack (https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet) and the safest thing to do is to sanitize user input against a known safe list of HTML elements and attributes. Note: You should always run bluemonday after any other processing. If you use blackfriday (https://github.com/russross/blackfriday) or Pandoc (http://johnmacfarlane.net/pandoc/) then bluemonday should be run after these steps. This ensures that no insecure HTML is introduced later in your process. bluemonday is heavily inspired by both the OWASP Java HTML Sanitizer (https://code.google.com/p/owasp-java-html-sanitizer/) and the HTML Purifier (http://htmlpurifier.org/). We ship two default policies, one is bluemonday.StrictPolicy() and can be thought of as equivalent to stripping all HTML elements and their attributes as it has nothing on it's whitelist. The other is bluemonday.UGCPolicy() and allows a broad selection of HTML elements and attributes that are safe for user generated content. Note that this policy does not whitelist iframes, object, embed, styles, script, etc. The essence of building a policy is to determine which HTML elements and attributes are considered safe for your scenario. OWASP provide an XSS prevention cheat sheet ( https://www.google.com/search?q=xss+prevention+cheat+sheet ) to help explain the risks, but essentially:
Package sdk is the official AWS SDK for the Go programming language. The AWS SDK for Go provides APIs and utilities that developers can use to build Go applications that use AWS services, such as Amazon Elastic Compute Cloud (Amazon EC2) and Amazon Simple Storage Service (Amazon S3). The SDK removes the complexity of coding directly against a web service interface. It hides a lot of the lower-level plumbing, such as authentication, request retries, and error handling. The SDK also includes helpful utilities on top of the AWS APIs that add additional capabilities and functionality. For example, the Amazon S3 Download and Upload Manager will automatically split up large objects into multiple parts and transfer them concurrently. See the s3manager package documentation for more information. https://docs.aws.amazon.com/sdk-for-go/api/service/s3/s3manager/ Checkout the Getting Started Guide and API Reference Docs detailed the SDK's components and details on each AWS client the SDK supports. The Getting Started Guide provides examples and detailed description of how to get setup with the SDK. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/welcome.html The API Reference Docs include a detailed breakdown of the SDK's components such as utilities and AWS clients. Use this as a reference of the Go types included with the SDK, such as AWS clients, API operations, and API parameters. https://docs.aws.amazon.com/sdk-for-go/api/ The SDK is composed of two main components, SDK core, and service clients. The SDK core packages are all available under the aws package at the root of the SDK. Each client for a supported AWS service is available within its own package under the service folder at the root of the SDK. aws - SDK core, provides common shared types such as Config, Logger, and utilities to make working with API parameters easier. awserr - Provides the error interface that the SDK will use for all errors that occur in the SDK's processing. This includes service API response errors as well. The Error type is made up of a code and message. Cast the SDK's returned error type to awserr.Error and call the Code method to compare returned error to specific error codes. See the package's documentation for additional values that can be extracted such as RequestId. credentials - Provides the types and built in credentials providers the SDK will use to retrieve AWS credentials to make API requests with. Nested under this folder are also additional credentials providers such as stscreds for assuming IAM roles, and ec2rolecreds for EC2 Instance roles. endpoints - Provides the AWS Regions and Endpoints metadata for the SDK. Use this to lookup AWS service endpoint information such as which services are in a region, and what regions a service is in. Constants are also provided for all region identifiers, e.g UsWest2RegionID for "us-west-2". session - Provides initial default configuration, and load configuration from external sources such as environment and shared credentials file. request - Provides the API request sending, and retry logic for the SDK. This package also includes utilities for defining your own request retryer, and configuring how the SDK processes the request. service - Clients for AWS services. All services supported by the SDK are available under this folder. The SDK includes the Go types and utilities you can use to make requests to AWS service APIs. Within the service folder at the root of the SDK you'll find a package for each AWS service the SDK supports. All service clients follows a common pattern of creation and usage. When creating a client for an AWS service you'll first need to have a Session value constructed. The Session provides shared configuration that can be shared between your service clients. When service clients are created you can pass in additional configuration via the aws.Config type to override configuration provided by in the Session to create service client instances with custom configuration. Once the service's client is created you can use it to make API requests the AWS service. These clients are safe to use concurrently. In the AWS SDK for Go, you can configure settings for service clients, such as the log level and maximum number of retries. Most settings are optional; however, for each service client, you must specify a region and your credentials. The SDK uses these values to send requests to the correct AWS region and sign requests with the correct credentials. You can specify these values as part of a session or as environment variables. See the SDK's configuration guide for more information. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html See the session package documentation for more information on how to use Session with the SDK. https://docs.aws.amazon.com/sdk-for-go/api/aws/session/ See the Config type in the aws package for more information on configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config When using the SDK you'll generally need your AWS credentials to authenticate with AWS services. The SDK supports multiple methods of supporting these credentials. By default the SDK will source credentials automatically from its default credential chain. See the session package for more information on this chain, and how to configure it. The common items in the credential chain are the following: Environment Credentials - Set of environment variables that are useful when sub processes are created for specific roles. Shared Credentials file (~/.aws/credentials) - This file stores your credentials based on a profile name and is useful for local development. EC2 Instance Role Credentials - Use EC2 Instance Role to assign credentials to application running on an EC2 instance. This removes the need to manage credential files in production. Credentials can be configured in code as well by setting the Config's Credentials value to a custom provider or using one of the providers included with the SDK to bypass the default credential chain and use a custom one. This is helpful when you want to instruct the SDK to only use a specific set of credentials or providers. This example creates a credential provider for assuming an IAM role, "myRoleARN" and configures the S3 service client to use that role for API requests. See the credentials package documentation for more information on credential providers included with the SDK, and how to customize the SDK's usage of credentials. https://docs.aws.amazon.com/sdk-for-go/api/aws/credentials The SDK has support for the shared configuration file (~/.aws/config). This support can be enabled by setting the environment variable, "AWS_SDK_LOAD_CONFIG=1", or enabling the feature in code when creating a Session via the Option's SharedConfigState parameter. In addition to the credentials you'll need to specify the region the SDK will use to make AWS API requests to. In the SDK you can specify the region either with an environment variable, or directly in code when a Session or service client is created. The last value specified in code wins if the region is specified multiple ways. To set the region via the environment variable set the "AWS_REGION" to the region you want to the SDK to use. Using this method to set the region will allow you to run your application in multiple regions without needing additional code in the application to select the region. The endpoints package includes constants for all regions the SDK knows. The values are all suffixed with RegionID. These values are helpful, because they reduce the need to type the region string manually. To set the region on a Session use the aws package's Config struct parameter Region to the AWS region you want the service clients created from the session to use. This is helpful when you want to create multiple service clients, and all of the clients make API requests to the same region. See the endpoints package for the AWS Regions and Endpoints metadata. https://docs.aws.amazon.com/sdk-for-go/api/aws/endpoints/ In addition to setting the region when creating a Session you can also set the region on a per service client bases. This overrides the region of a Session. This is helpful when you want to create service clients in specific regions different from the Session's region. See the Config type in the aws package for more information and additional options such as setting the Endpoint, and other service client configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config Once the client is created you can make an API request to the service. Each API method takes a input parameter, and returns the service response and an error. The SDK provides methods for making the API call in multiple ways. In this list we'll use the S3 ListObjects API as an example for the different ways of making API requests. ListObjects - Base API operation that will make the API request to the service. ListObjectsRequest - API methods suffixed with Request will construct the API request, but not send it. This is also helpful when you want to get a presigned URL for a request, and share the presigned URL instead of your application making the request directly. ListObjectsPages - Same as the base API operation, but uses a callback to automatically handle pagination of the API's response. ListObjectsWithContext - Same as base API operation, but adds support for the Context pattern. This is helpful for controlling the canceling of in flight requests. See the Go standard library context package for more information. This method also takes request package's Option functional options as the variadic argument for modifying how the request will be made, or extracting information from the raw HTTP response. ListObjectsPagesWithContext - same as ListObjectsPages, but adds support for the Context pattern. Similar to ListObjectsWithContext this method also takes the request package's Option function option types as the variadic argument. In addition to the API operations the SDK also includes several higher level methods that abstract checking for and waiting for an AWS resource to be in a desired state. In this list we'll use WaitUntilBucketExists to demonstrate the different forms of waiters. WaitUntilBucketExists. - Method to make API request to query an AWS service for a resource's state. Will return successfully when that state is accomplished. WaitUntilBucketExistsWithContext - Same as WaitUntilBucketExists, but adds support for the Context pattern. In addition these methods take request package's WaiterOptions to configure the waiter, and how underlying request will be made by the SDK. The API method will document which error codes the service might return for the operation. These errors will also be available as const strings prefixed with "ErrCode" in the service client's package. If there are no errors listed in the API's SDK documentation you'll need to consult the AWS service's API documentation for the errors that could be returned. Pagination helper methods are suffixed with "Pages", and provide the functionality needed to round trip API page requests. Pagination methods take a callback function that will be called for each page of the API's response. Waiter helper methods provide the functionality to wait for an AWS resource state. These methods abstract the logic needed to to check the state of an AWS resource, and wait until that resource is in a desired state. The waiter will block until the resource is in the state that is desired, an error occurs, or the waiter times out. If a resource times out the error code returned will be request.WaiterResourceNotReadyErrorCode. This example shows a complete working Go file which will upload a file to S3 and use the Context pattern to implement timeout logic that will cancel the request if it takes too long. This example highlights how to use sessions, create a service client, make a request, handle the error, and process the response.
Package bluemonday provides a way of describing a whitelist of HTML elements and attributes as a policy, and for that policy to be applied to untrusted strings from users that may contain markup. All elements and attributes not on the whitelist will be stripped. The default bluemonday.UGCPolicy().Sanitize() turns this: Into the more harmless: And it turns this: Into this: Whilst still allowing this: To pass through mostly unaltered (it gained a rel="nofollow"): The primary purpose of bluemonday is to take potentially unsafe user generated content (from things like Markdown, HTML WYSIWYG tools, etc) and make it safe for you to put on your website. It protects sites against XSS (http://en.wikipedia.org/wiki/Cross-site_scripting) and other malicious content that a user interface may deliver. There are many vectors for an XSS attack (https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet) and the safest thing to do is to sanitize user input against a known safe list of HTML elements and attributes. Note: You should always run bluemonday after any other processing. If you use blackfriday (https://github.com/russross/blackfriday) or Pandoc (http://johnmacfarlane.net/pandoc/) then bluemonday should be run after these steps. This ensures that no insecure HTML is introduced later in your process. bluemonday is heavily inspired by both the OWASP Java HTML Sanitizer (https://code.google.com/p/owasp-java-html-sanitizer/) and the HTML Purifier (http://htmlpurifier.org/). We ship two default policies, one is bluemonday.StrictPolicy() and can be thought of as equivalent to stripping all HTML elements and their attributes as it has nothing on its whitelist. The other is bluemonday.UGCPolicy() and allows a broad selection of HTML elements and attributes that are safe for user generated content. Note that this policy does not whitelist iframes, object, embed, styles, script, etc. The essence of building a policy is to determine which HTML elements and attributes are considered safe for your scenario. OWASP provide an XSS prevention cheat sheet ( https://www.google.com/search?q=xss+prevention+cheat+sheet ) to help explain the risks, but essentially:
Package sdk is the official AWS SDK for the Go programming language. The AWS SDK for Go provides APIs and utilities that developers can use to build Go applications that use AWS services, such as Amazon Elastic Compute Cloud (Amazon EC2) and Amazon Simple Storage Service (Amazon S3). The SDK removes the complexity of coding directly against a web service interface. It hides a lot of the lower-level plumbing, such as authentication, request retries, and error handling. The SDK also includes helpful utilities on top of the AWS APIs that add additional capabilities and functionality. For example, the Amazon S3 Download and Upload Manager will automatically split up large objects into multiple parts and transfer them concurrently. See the s3manager package documentation for more information. https://docs.aws.amazon.com/sdk-for-go/api/service/s3/s3manager/ Checkout the Getting Started Guide and API Reference Docs detailed the SDK's components and details on each AWS client the SDK supports. The Getting Started Guide provides examples and detailed description of how to get setup with the SDK. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/welcome.html The API Reference Docs include a detailed breakdown of the SDK's components such as utilities and AWS clients. Use this as a reference of the Go types included with the SDK, such as AWS clients, API operations, and API parameters. https://docs.aws.amazon.com/sdk-for-go/api/ The SDK is composed of two main components, SDK core, and service clients. The SDK core packages are all available under the aws package at the root of the SDK. Each client for a supported AWS service is available within its own package under the service folder at the root of the SDK. aws - SDK core, provides common shared types such as Config, Logger, and utilities to make working with API parameters easier. awserr - Provides the error interface that the SDK will use for all errors that occur in the SDK's processing. This includes service API response errors as well. The Error type is made up of a code and message. Cast the SDK's returned error type to awserr.Error and call the Code method to compare returned error to specific error codes. See the package's documentation for additional values that can be extracted such as RequestId. credentials - Provides the types and built in credentials providers the SDK will use to retrieve AWS credentials to make API requests with. Nested under this folder are also additional credentials providers such as stscreds for assuming IAM roles, and ec2rolecreds for EC2 Instance roles. endpoints - Provides the AWS Regions and Endpoints metadata for the SDK. Use this to lookup AWS service endpoint information such as which services are in a region, and what regions a service is in. Constants are also provided for all region identifiers, e.g UsWest2RegionID for "us-west-2". session - Provides initial default configuration, and load configuration from external sources such as environment and shared credentials file. request - Provides the API request sending, and retry logic for the SDK. This package also includes utilities for defining your own request retryer, and configuring how the SDK processes the request. service - Clients for AWS services. All services supported by the SDK are available under this folder. The SDK includes the Go types and utilities you can use to make requests to AWS service APIs. Within the service folder at the root of the SDK you'll find a package for each AWS service the SDK supports. All service clients follows a common pattern of creation and usage. When creating a client for an AWS service you'll first need to have a Session value constructed. The Session provides shared configuration that can be shared between your service clients. When service clients are created you can pass in additional configuration via the aws.Config type to override configuration provided by in the Session to create service client instances with custom configuration. Once the service's client is created you can use it to make API requests the AWS service. These clients are safe to use concurrently. In the AWS SDK for Go, you can configure settings for service clients, such as the log level and maximum number of retries. Most settings are optional; however, for each service client, you must specify a region and your credentials. The SDK uses these values to send requests to the correct AWS region and sign requests with the correct credentials. You can specify these values as part of a session or as environment variables. See the SDK's configuration guide for more information. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html See the session package documentation for more information on how to use Session with the SDK. https://docs.aws.amazon.com/sdk-for-go/api/aws/session/ See the Config type in the aws package for more information on configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config When using the SDK you'll generally need your AWS credentials to authenticate with AWS services. The SDK supports multiple methods of supporting these credentials. By default the SDK will source credentials automatically from its default credential chain. See the session package for more information on this chain, and how to configure it. The common items in the credential chain are the following: Environment Credentials - Set of environment variables that are useful when sub processes are created for specific roles. Shared Credentials file (~/.aws/credentials) - This file stores your credentials based on a profile name and is useful for local development. EC2 Instance Role Credentials - Use EC2 Instance Role to assign credentials to application running on an EC2 instance. This removes the need to manage credential files in production. Credentials can be configured in code as well by setting the Config's Credentials value to a custom provider or using one of the providers included with the SDK to bypass the default credential chain and use a custom one. This is helpful when you want to instruct the SDK to only use a specific set of credentials or providers. This example creates a credential provider for assuming an IAM role, "myRoleARN" and configures the S3 service client to use that role for API requests. See the credentials package documentation for more information on credential providers included with the SDK, and how to customize the SDK's usage of credentials. https://docs.aws.amazon.com/sdk-for-go/api/aws/credentials The SDK has support for the shared configuration file (~/.aws/config). This support can be enabled by setting the environment variable, "AWS_SDK_LOAD_CONFIG=1", or enabling the feature in code when creating a Session via the Option's SharedConfigState parameter. In addition to the credentials you'll need to specify the region the SDK will use to make AWS API requests to. In the SDK you can specify the region either with an environment variable, or directly in code when a Session or service client is created. The last value specified in code wins if the region is specified multiple ways. To set the region via the environment variable set the "AWS_REGION" to the region you want to the SDK to use. Using this method to set the region will allow you to run your application in multiple regions without needing additional code in the application to select the region. The endpoints package includes constants for all regions the SDK knows. The values are all suffixed with RegionID. These values are helpful, because they reduce the need to type the region string manually. To set the region on a Session use the aws package's Config struct parameter Region to the AWS region you want the service clients created from the session to use. This is helpful when you want to create multiple service clients, and all of the clients make API requests to the same region. See the endpoints package for the AWS Regions and Endpoints metadata. https://docs.aws.amazon.com/sdk-for-go/api/aws/endpoints/ In addition to setting the region when creating a Session you can also set the region on a per service client bases. This overrides the region of a Session. This is helpful when you want to create service clients in specific regions different from the Session's region. See the Config type in the aws package for more information and additional options such as setting the Endpoint, and other service client configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config Once the client is created you can make an API request to the service. Each API method takes a input parameter, and returns the service response and an error. The SDK provides methods for making the API call in multiple ways. In this list we'll use the S3 ListObjects API as an example for the different ways of making API requests. ListObjects - Base API operation that will make the API request to the service. ListObjectsRequest - API methods suffixed with Request will construct the API request, but not send it. This is also helpful when you want to get a presigned URL for a request, and share the presigned URL instead of your application making the request directly. ListObjectsPages - Same as the base API operation, but uses a callback to automatically handle pagination of the API's response. ListObjectsWithContext - Same as base API operation, but adds support for the Context pattern. This is helpful for controlling the canceling of in flight requests. See the Go standard library context package for more information. This method also takes request package's Option functional options as the variadic argument for modifying how the request will be made, or extracting information from the raw HTTP response. ListObjectsPagesWithContext - same as ListObjectsPages, but adds support for the Context pattern. Similar to ListObjectsWithContext this method also takes the request package's Option function option types as the variadic argument. In addition to the API operations the SDK also includes several higher level methods that abstract checking for and waiting for an AWS resource to be in a desired state. In this list we'll use WaitUntilBucketExists to demonstrate the different forms of waiters. WaitUntilBucketExists. - Method to make API request to query an AWS service for a resource's state. Will return successfully when that state is accomplished. WaitUntilBucketExistsWithContext - Same as WaitUntilBucketExists, but adds support for the Context pattern. In addition these methods take request package's WaiterOptions to configure the waiter, and how underlying request will be made by the SDK. The API method will document which error codes the service might return for the operation. These errors will also be available as const strings prefixed with "ErrCode" in the service client's package. If there are no errors listed in the API's SDK documentation you'll need to consult the AWS service's API documentation for the errors that could be returned. Pagination helper methods are suffixed with "Pages", and provide the functionality needed to round trip API page requests. Pagination methods take a callback function that will be called for each page of the API's response. Waiter helper methods provide the functionality to wait for an AWS resource state. These methods abstract the logic needed to to check the state of an AWS resource, and wait until that resource is in a desired state. The waiter will block until the resource is in the state that is desired, an error occurs, or the waiter times out. If a resource times out the error code returned will be request.WaiterResourceNotReadyErrorCode. This example shows a complete working Go file which will upload a file to S3 and use the Context pattern to implement timeout logic that will cancel the request if it takes too long. This example highlights how to use sessions, create a service client, make a request, handle the error, and process the response.
Package promptui is a library providing a simple interface to create command-line prompts for go. It can be easily integrated into spf13/cobra, urfave/cli or any cli go application. promptui has two main input modes: Prompt provides a single line for user input. It supports optional live validation, confirmation and masking the input. Select provides a list of options to choose from. It supports pagination, search, detailed view and custom templates. This is an example for the Prompt mode of promptui. In this example, a prompt is created with a validator function that validates the given value to make sure its a number. If successful, it will output the chosen number in a formatted message. This is an example for the Select mode of promptui. In this example, a select is created with the days of the week as its items. When an item is selected, the selected day will be displayed in a formatted message.
Package promptui is a library providing a simple interface to create command-line prompts for go. It can be easily integrated into spf13/cobra, urfave/cli or any cli go application. promptui has two main input modes: Prompt provides a single line for user input. It supports optional live validation, confirmation and masking the input. Select provides a list of options to choose from. It supports pagination, search, detailed view and custom templates. This is an example for the Prompt mode of promptui. In this example, a prompt is created with a validator function that validates the given value to make sure its a number. If successful, it will output the chosen number in a formatted message. This is an example for the Select mode of promptui. In this example, a select is created with the days of the week as its items. When an item is selected, the selected day will be displayed in a formatted message.
Package sdk is the official AWS SDK for the Go programming language. The AWS SDK for Go provides APIs and utilities that developers can use to build Go applications that use AWS services, such as Amazon Elastic Compute Cloud (Amazon EC2) and Amazon Simple Storage Service (Amazon S3). The SDK removes the complexity of coding directly against a web service interface. It hides a lot of the lower-level plumbing, such as authentication, request retries, and error handling. The SDK also includes helpful utilities on top of the AWS APIs that add additional capabilities and functionality. For example, the Amazon S3 Download and Upload Manager will automatically split up large objects into multiple parts and transfer them concurrently. See the s3manager package documentation for more information. https://docs.aws.amazon.com/sdk-for-go/api/service/s3/s3manager/ Checkout the Getting Started Guide and API Reference Docs detailed the SDK's components and details on each AWS client the SDK supports. The Getting Started Guide provides examples and detailed description of how to get setup with the SDK. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/welcome.html The API Reference Docs include a detailed breakdown of the SDK's components such as utilities and AWS clients. Use this as a reference of the Go types included with the SDK, such as AWS clients, API operations, and API parameters. https://docs.aws.amazon.com/sdk-for-go/api/ The SDK is composed of two main components, SDK core, and service clients. The SDK core packages are all available under the aws package at the root of the SDK. Each client for a supported AWS service is available within its own package under the service folder at the root of the SDK. aws - SDK core, provides common shared types such as Config, Logger, and utilities to make working with API parameters easier. awserr - Provides the error interface that the SDK will use for all errors that occur in the SDK's processing. This includes service API response errors as well. The Error type is made up of a code and message. Cast the SDK's returned error type to awserr.Error and call the Code method to compare returned error to specific error codes. See the package's documentation for additional values that can be extracted such as RequestId. credentials - Provides the types and built in credentials providers the SDK will use to retrieve AWS credentials to make API requests with. Nested under this folder are also additional credentials providers such as stscreds for assuming IAM roles, and ec2rolecreds for EC2 Instance roles. endpoints - Provides the AWS Regions and Endpoints metadata for the SDK. Use this to lookup AWS service endpoint information such as which services are in a region, and what regions a service is in. Constants are also provided for all region identifiers, e.g UsWest2RegionID for "us-west-2". session - Provides initial default configuration, and load configuration from external sources such as environment and shared credentials file. request - Provides the API request sending, and retry logic for the SDK. This package also includes utilities for defining your own request retryer, and configuring how the SDK processes the request. service - Clients for AWS services. All services supported by the SDK are available under this folder. The SDK includes the Go types and utilities you can use to make requests to AWS service APIs. Within the service folder at the root of the SDK you'll find a package for each AWS service the SDK supports. All service clients follows a common pattern of creation and usage. When creating a client for an AWS service you'll first need to have a Session value constructed. The Session provides shared configuration that can be shared between your service clients. When service clients are created you can pass in additional configuration via the aws.Config type to override configuration provided by in the Session to create service client instances with custom configuration. Once the service's client is created you can use it to make API requests the AWS service. These clients are safe to use concurrently. In the AWS SDK for Go, you can configure settings for service clients, such as the log level and maximum number of retries. Most settings are optional; however, for each service client, you must specify a region and your credentials. The SDK uses these values to send requests to the correct AWS region and sign requests with the correct credentials. You can specify these values as part of a session or as environment variables. See the SDK's configuration guide for more information. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html See the session package documentation for more information on how to use Session with the SDK. https://docs.aws.amazon.com/sdk-for-go/api/aws/session/ See the Config type in the aws package for more information on configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config When using the SDK you'll generally need your AWS credentials to authenticate with AWS services. The SDK supports multiple methods of supporting these credentials. By default the SDK will source credentials automatically from its default credential chain. See the session package for more information on this chain, and how to configure it. The common items in the credential chain are the following: Environment Credentials - Set of environment variables that are useful when sub processes are created for specific roles. Shared Credentials file (~/.aws/credentials) - This file stores your credentials based on a profile name and is useful for local development. EC2 Instance Role Credentials - Use EC2 Instance Role to assign credentials to application running on an EC2 instance. This removes the need to manage credential files in production. Credentials can be configured in code as well by setting the Config's Credentials value to a custom provider or using one of the providers included with the SDK to bypass the default credential chain and use a custom one. This is helpful when you want to instruct the SDK to only use a specific set of credentials or providers. This example creates a credential provider for assuming an IAM role, "myRoleARN" and configures the S3 service client to use that role for API requests. See the credentials package documentation for more information on credential providers included with the SDK, and how to customize the SDK's usage of credentials. https://docs.aws.amazon.com/sdk-for-go/api/aws/credentials The SDK has support for the shared configuration file (~/.aws/config). This support can be enabled by setting the environment variable, "AWS_SDK_LOAD_CONFIG=1", or enabling the feature in code when creating a Session via the Option's SharedConfigState parameter. In addition to the credentials you'll need to specify the region the SDK will use to make AWS API requests to. In the SDK you can specify the region either with an environment variable, or directly in code when a Session or service client is created. The last value specified in code wins if the region is specified multiple ways. To set the region via the environment variable set the "AWS_REGION" to the region you want to the SDK to use. Using this method to set the region will allow you to run your application in multiple regions without needing additional code in the application to select the region. The endpoints package includes constants for all regions the SDK knows. The values are all suffixed with RegionID. These values are helpful, because they reduce the need to type the region string manually. To set the region on a Session use the aws package's Config struct parameter Region to the AWS region you want the service clients created from the session to use. This is helpful when you want to create multiple service clients, and all of the clients make API requests to the same region. See the endpoints package for the AWS Regions and Endpoints metadata. https://docs.aws.amazon.com/sdk-for-go/api/aws/endpoints/ In addition to setting the region when creating a Session you can also set the region on a per service client bases. This overrides the region of a Session. This is helpful when you want to create service clients in specific regions different from the Session's region. See the Config type in the aws package for more information and additional options such as setting the Endpoint, and other service client configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config Once the client is created you can make an API request to the service. Each API method takes a input parameter, and returns the service response and an error. The SDK provides methods for making the API call in multiple ways. In this list we'll use the S3 ListObjects API as an example for the different ways of making API requests. ListObjects - Base API operation that will make the API request to the service. ListObjectsRequest - API methods suffixed with Request will construct the API request, but not send it. This is also helpful when you want to get a presigned URL for a request, and share the presigned URL instead of your application making the request directly. ListObjectsPages - Same as the base API operation, but uses a callback to automatically handle pagination of the API's response. ListObjectsWithContext - Same as base API operation, but adds support for the Context pattern. This is helpful for controlling the canceling of in flight requests. See the Go standard library context package for more information. This method also takes request package's Option functional options as the variadic argument for modifying how the request will be made, or extracting information from the raw HTTP response. ListObjectsPagesWithContext - same as ListObjectsPages, but adds support for the Context pattern. Similar to ListObjectsWithContext this method also takes the request package's Option function option types as the variadic argument. In addition to the API operations the SDK also includes several higher level methods that abstract checking for and waiting for an AWS resource to be in a desired state. In this list we'll use WaitUntilBucketExists to demonstrate the different forms of waiters. WaitUntilBucketExists. - Method to make API request to query an AWS service for a resource's state. Will return successfully when that state is accomplished. WaitUntilBucketExistsWithContext - Same as WaitUntilBucketExists, but adds support for the Context pattern. In addition these methods take request package's WaiterOptions to configure the waiter, and how underlying request will be made by the SDK. The API method will document which error codes the service might return for the operation. These errors will also be available as const strings prefixed with "ErrCode" in the service client's package. If there are no errors listed in the API's SDK documentation you'll need to consult the AWS service's API documentation for the errors that could be returned. Pagination helper methods are suffixed with "Pages", and provide the functionality needed to round trip API page requests. Pagination methods take a callback function that will be called for each page of the API's response. Waiter helper methods provide the functionality to wait for an AWS resource state. These methods abstract the logic needed to to check the state of an AWS resource, and wait until that resource is in a desired state. The waiter will block until the resource is in the state that is desired, an error occurs, or the waiter times out. If a resource times out the error code returned will be request.WaiterResourceNotReadyErrorCode. This example shows a complete working Go file which will upload a file to S3 and use the Context pattern to implement timeout logic that will cancel the request if it takes too long. This example highlights how to use sessions, create a service client, make a request, handle the error, and process the response.
Package promptui is a library providing a simple interface to create command-line prompts for go. It can be easily integrated into spf13/cobra, urfave/cli or any cli go application. promptui has two main input modes: Prompt provides a single line for user input. It supports optional live validation, confirmation and masking the input. Select provides a list of options to choose from. It supports pagination, search, detailed view and custom templates. This is an example for the Prompt mode of promptui. In this example, a prompt is created with a validator function that validates the given value to make sure its a number. If successful, it will output the chosen number in a formatted message. This is an example for the Select mode of promptui. In this example, a select is created with the days of the week as its items. When an item is selected, the selected day will be displayed in a formatted message.
Package sdk is the official AWS SDK for the Go programming language. The AWS SDK for Go provides APIs and utilities that developers can use to build Go applications that use AWS services, such as Amazon Elastic Compute Cloud (Amazon EC2) and Amazon Simple Storage Service (Amazon S3). The SDK removes the complexity of coding directly against a web service interface. It hides a lot of the lower-level plumbing, such as authentication, request retries, and error handling. The SDK also includes helpful utilities on top of the AWS APIs that add additional capabilities and functionality. For example, the Amazon S3 Download and Upload Manager will automatically split up large objects into multiple parts and transfer them concurrently. See the s3manager package documentation for more information. https://docs.aws.amazon.com/sdk-for-go/api/service/s3/s3manager/ Checkout the Getting Started Guide and API Reference Docs detailed the SDK's components and details on each AWS client the SDK supports. The Getting Started Guide provides examples and detailed description of how to get setup with the SDK. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/welcome.html The API Reference Docs include a detailed breakdown of the SDK's components such as utilities and AWS clients. Use this as a reference of the Go types included with the SDK, such as AWS clients, API operations, and API parameters. https://docs.aws.amazon.com/sdk-for-go/api/ The SDK is composed of two main components, SDK core, and service clients. The SDK core packages are all available under the aws package at the root of the SDK. Each client for a supported AWS service is available within its own package under the service folder at the root of the SDK. aws - SDK core, provides common shared types such as Config, Logger, and utilities to make working with API parameters easier. awserr - Provides the error interface that the SDK will use for all errors that occur in the SDK's processing. This includes service API response errors as well. The Error type is made up of a code and message. Cast the SDK's returned error type to awserr.Error and call the Code method to compare returned error to specific error codes. See the package's documentation for additional values that can be extracted such as RequestId. credentials - Provides the types and built in credentials providers the SDK will use to retrieve AWS credentials to make API requests with. Nested under this folder are also additional credentials providers such as stscreds for assuming IAM roles, and ec2rolecreds for EC2 Instance roles. endpoints - Provides the AWS Regions and Endpoints metadata for the SDK. Use this to lookup AWS service endpoint information such as which services are in a region, and what regions a service is in. Constants are also provided for all region identifiers, e.g UsWest2RegionID for "us-west-2". session - Provides initial default configuration, and load configuration from external sources such as environment and shared credentials file. request - Provides the API request sending, and retry logic for the SDK. This package also includes utilities for defining your own request retryer, and configuring how the SDK processes the request. service - Clients for AWS services. All services supported by the SDK are available under this folder. The SDK includes the Go types and utilities you can use to make requests to AWS service APIs. Within the service folder at the root of the SDK you'll find a package for each AWS service the SDK supports. All service clients follows a common pattern of creation and usage. When creating a client for an AWS service you'll first need to have a Session value constructed. The Session provides shared configuration that can be shared between your service clients. When service clients are created you can pass in additional configuration via the aws.Config type to override configuration provided by in the Session to create service client instances with custom configuration. Once the service's client is created you can use it to make API requests the AWS service. These clients are safe to use concurrently. In the AWS SDK for Go, you can configure settings for service clients, such as the log level and maximum number of retries. Most settings are optional; however, for each service client, you must specify a region and your credentials. The SDK uses these values to send requests to the correct AWS region and sign requests with the correct credentials. You can specify these values as part of a session or as environment variables. See the SDK's configuration guide for more information. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html See the session package documentation for more information on how to use Session with the SDK. https://docs.aws.amazon.com/sdk-for-go/api/aws/session/ See the Config type in the aws package for more information on configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config When using the SDK you'll generally need your AWS credentials to authenticate with AWS services. The SDK supports multiple methods of supporting these credentials. By default the SDK will source credentials automatically from its default credential chain. See the session package for more information on this chain, and how to configure it. The common items in the credential chain are the following: Environment Credentials - Set of environment variables that are useful when sub processes are created for specific roles. Shared Credentials file (~/.aws/credentials) - This file stores your credentials based on a profile name and is useful for local development. EC2 Instance Role Credentials - Use EC2 Instance Role to assign credentials to application running on an EC2 instance. This removes the need to manage credential files in production. Credentials can be configured in code as well by setting the Config's Credentials value to a custom provider or using one of the providers included with the SDK to bypass the default credential chain and use a custom one. This is helpful when you want to instruct the SDK to only use a specific set of credentials or providers. This example creates a credential provider for assuming an IAM role, "myRoleARN" and configures the S3 service client to use that role for API requests. See the credentials package documentation for more information on credential providers included with the SDK, and how to customize the SDK's usage of credentials. https://docs.aws.amazon.com/sdk-for-go/api/aws/credentials The SDK has support for the shared configuration file (~/.aws/config). This support can be enabled by setting the environment variable, "AWS_SDK_LOAD_CONFIG=1", or enabling the feature in code when creating a Session via the Option's SharedConfigState parameter. In addition to the credentials you'll need to specify the region the SDK will use to make AWS API requests to. In the SDK you can specify the region either with an environment variable, or directly in code when a Session or service client is created. The last value specified in code wins if the region is specified multiple ways. To set the region via the environment variable set the "AWS_REGION" to the region you want to the SDK to use. Using this method to set the region will allow you to run your application in multiple regions without needing additional code in the application to select the region. The endpoints package includes constants for all regions the SDK knows. The values are all suffixed with RegionID. These values are helpful, because they reduce the need to type the region string manually. To set the region on a Session use the aws package's Config struct parameter Region to the AWS region you want the service clients created from the session to use. This is helpful when you want to create multiple service clients, and all of the clients make API requests to the same region. See the endpoints package for the AWS Regions and Endpoints metadata. https://docs.aws.amazon.com/sdk-for-go/api/aws/endpoints/ In addition to setting the region when creating a Session you can also set the region on a per service client bases. This overrides the region of a Session. This is helpful when you want to create service clients in specific regions different from the Session's region. See the Config type in the aws package for more information and additional options such as setting the Endpoint, and other service client configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config Once the client is created you can make an API request to the service. Each API method takes a input parameter, and returns the service response and an error. The SDK provides methods for making the API call in multiple ways. In this list we'll use the S3 ListObjects API as an example for the different ways of making API requests. ListObjects - Base API operation that will make the API request to the service. ListObjectsRequest - API methods suffixed with Request will construct the API request, but not send it. This is also helpful when you want to get a presigned URL for a request, and share the presigned URL instead of your application making the request directly. ListObjectsPages - Same as the base API operation, but uses a callback to automatically handle pagination of the API's response. ListObjectsWithContext - Same as base API operation, but adds support for the Context pattern. This is helpful for controlling the canceling of in flight requests. See the Go standard library context package for more information. This method also takes request package's Option functional options as the variadic argument for modifying how the request will be made, or extracting information from the raw HTTP response. ListObjectsPagesWithContext - same as ListObjectsPages, but adds support for the Context pattern. Similar to ListObjectsWithContext this method also takes the request package's Option function option types as the variadic argument. In addition to the API operations the SDK also includes several higher level methods that abstract checking for and waiting for an AWS resource to be in a desired state. In this list we'll use WaitUntilBucketExists to demonstrate the different forms of waiters. WaitUntilBucketExists. - Method to make API request to query an AWS service for a resource's state. Will return successfully when that state is accomplished. WaitUntilBucketExistsWithContext - Same as WaitUntilBucketExists, but adds support for the Context pattern. In addition these methods take request package's WaiterOptions to configure the waiter, and how underlying request will be made by the SDK. The API method will document which error codes the service might return for the operation. These errors will also be available as const strings prefixed with "ErrCode" in the service client's package. If there are no errors listed in the API's SDK documentation you'll need to consult the AWS service's API documentation for the errors that could be returned. Pagination helper methods are suffixed with "Pages", and provide the functionality needed to round trip API page requests. Pagination methods take a callback function that will be called for each page of the API's response. Waiter helper methods provide the functionality to wait for an AWS resource state. These methods abstract the logic needed to to check the state of an AWS resource, and wait until that resource is in a desired state. The waiter will block until the resource is in the state that is desired, an error occurs, or the waiter times out. If a resource times out the error code returned will be request.WaiterResourceNotReadyErrorCode. This example shows a complete working Go file which will upload a file to S3 and use the Context pattern to implement timeout logic that will cancel the request if it takes too long. This example highlights how to use sessions, create a service client, make a request, handle the error, and process the response.
Package goncurses is a new curses (ncurses) library for the Go programming language. It implements all the ncurses extension libraries: form, menu and panel. Minimal operation would consist of initializing the display: It is important to always call End() before your program exits. If you fail to do so, the terminal will not perform properly and will either need to be reset or restarted completely. CAUTION: Calls to ncurses functions are normally not atomic nor reentrant and therefore extreme care should be taken to ensure ncurses functions are not called concurrently. Specifically, never write data to the same window concurrently nor accept input and send output to the same window as both alter the underlying C data structures in a non safe manner. Ideally, you should structure your program to ensure all ncurses related calls happen in a single goroutine. This is probably most easily achieved via channels and Go's built-in select. Alternatively, or additionally, you can use a mutex to protect any calls in multiple goroutines from happening concurrently. Failure to do so will result in unpredictable and undefined behaviour in your program. The examples directory contains demonstrations of many of the capabilities goncurses can provide.
Package promptui is a library providing a simple interface to create command-line prompts for go. It can be easily integrated into spf13/cobra, urfave/cli or any cli go application. promptui has two main input modes: Prompt provides a single line for user input. It supports optional live validation, confirmation and masking the input. Select provides a list of options to choose from. It supports pagination, search, detailed view and custom templates. This is an example for the Prompt mode of promptui. In this example, a prompt is created with a validator function that validates the given value to make sure its a number. If successful, it will output the chosen number in a formatted message. This is an example for the Select mode of promptui. In this example, a select is created with the days of the week as its items. When an item is selected, the selected day will be displayed in a formatted message.
Package web implements a basic web site serving framework. The two fundamental types in this package are Site and Page. A Site is an http.Handler that serves requests from a file system. Use NewSite(fsys) to create a new Site. The Site is defined primarily by the content of its file system fsys, which holds files to be served as well as templates for converting Markdown or HTML fragments into full HTML pages. A Page, which is a map[string]interface{}, is the raw data that a Site renders into a web page. Typically a Page is loaded from a *.html or *.md file in the file system fsys, although dynamic pages can be computed and passed to ServePage as well, as described in “Serving Dynamic Pages” below. For a Page loaded from the file system, the key-value pairs in the map are initialized from the YAML or JSON metadata block at the top of a Markdown or HTML file, which looks like (YAML): or (JSON): By convention, key-value pairs loaded from a metadata block use lower-case keys. For historical reasons, keys in JSON metadata are converted to lower-case when read, so that the two headers above both refer to a key with a lower-case k. A few keys have special meanings: The key-value pair “status: n” sets the HTTP response status to the integer code n. The key-value pair “redirect: url” causes requests for this page redirect to the given relative or absolute URL. The key-value pair “layout: name” selects the page layout template with the given name. See the next section, “Page Rendering”, for details about layout and rendering. In addition to these explicit key-value pairs, pages loaded from the file system have a few implicit key-value pairs added by the page loading process: The key “Content” is added during during the rendering process. See “Page Rendering” for details. A Page's content is rendered in two steps: conversion to content, and framing of content. To convert a page to content, the page's file body (its FileData key, a []byte) is parsed and executed as an HTML template, with the page itself passed as the template input data. The template output is then interpreted as Markdown (perhaps with embedded HTML), and converted to HTML. The result is stored in the page under the key “Content”, with type template.HTML. A page's conversion to content can be skipped entirely in dynamically-generated pages by setting the “Content” key before passing the page to ServePage. The second step is framing the content in the overall site HTML, which is done by executing the site template, again using the Page itself as the template input data. The site template is constructed from two files in the file system. The first file is the fsys's “site.tmpl”, which provides the overall HTML frame for the site. The second file is a layout-specific template file, selected by the Page's “layout: name” key-value pair. The renderer searches for “name.tmpl” in the directory containing the page's file, then in the parent of that directory, and so on up to the root. If no such template is found, the rendering fails and reports that error. As a special case, “layout: none” skips the second file entirely. If there is no “layout: name” key-value pair, then the renderer tries using an implicit “layout: default”, but if no such “default.tmpl” template file can be found, the renderer uses an implicit “layout: none” instead. By convention, the site template and the layout-specific template are connected as follows. The site template, at the point where the content should be rendered, executes: The layout-specific template overrides this block by defining its own template named “layout”. For example: The use of the “block” template construct ensures that if there is no layout-specific template, the content will still be rendered. In this web server, templates can themselves be invoked as functions. See https://pkg.go.dev/rsc.io/tmplfunc for more details about that feature. During page rendering, both when rendering a page to content and when framing the content, the following template functions are available (in addition to those provided by the template package itself and the per-template functions just mentioned). In all functions taking a file path f, if the path begins with a slash, it is interpreted relative to the fsys root. Otherwise, it is interpreted relative to the directory of the current page's URL. The “{{add x y}}”, “{{sub x y}}”, “{{mul x y}}”, and “{{div x y}}” functions provide basic math on arguments of type int. The “{{code f [start [end]]}}” function returns a template.HTML of a formatted display of code lines from the file f. If both start and end are omitted, then the display shows the entire file. If only the start line is specified, then the display shows that single line. If both start and end are specified, then the display shows a range of lines starting at start up to and including end. The arguments start and end can take two forms: a number indicates a specific line number, and a string is taken to be a regular expresion indicating the earliest matching line in the file (or, for end, the earliest matching line after the start line). Any lines ending in “OMIT” are elided from the display. For example: The “{{data f}}” function reads the file f, decodes it as YAML, and then returns the resulting data, typically a map[string]interface{}. It is effectively shorthand for “{{yaml (file f)}}”. The “{{file f}}” function reads the file f and returns its content as a string. The “{{first n slice}}” function returns a slice of the first n elements of slice, or else slice itself when slice has fewer than n elements. The “{{markdown text}}” function interprets text (a string) as Markdown and returns the equivalent HTML as a template.HTML. The “{{page f}}” function returns the page data (a Page) for the static page contained in the file f. The lookup ignores trailing slashes in f as well as the presence or absence of extensions like .md, .html, /index.md, and /index.html, making it possible for f to be a relative or absolute URL path instead of a file path. The “{{pages glob}}” function returns a slice of page data (a []Page) for all pages loaded from files or directories in fsys matching the given glob (a string), according to the usual file path rules (if the glob starts with slash, it is interpreted relative to the fsys root, and otherwise relative to the directory of the page's URL). If the glob pattern matches a directory, the page for the directory's index.md or index.html is used. For example: The “{{raw s}}” function converts s (a string) to type template.HTML without any escaping, to allow using s as raw Markdown or HTML in the final output. The “{{yaml s}}” function decodes s (a string) as YAML and returns the resulting data. It is most useful for defining templates that accept YAML-structured data as a literal argument. For example: The “path” and “strings” functions return package objects with methods for every top-level function in these packages (except path.Split, which has more than one non-error result and would not be invokable). For example, “{{strings.ToUpper "abc"}}”. A Site is an http.Handler that serves requests by consulting the underlying file system and constructing and rendering pages, as well as serving binary and text files. To serve a request for URL path /p, if fsys has a file p/index.md, p/index.html, p.md, or p.html (in that order of preference), then the Site opens that file, parses it into a Page, renders the page as described in the “Page Rendering” section above, and responds to the request with the generated HTML. If the request URL does not match the parsed page's URL, then the Site responds with a redirect to the canonical URL. Otherwise, if fsys has a directory p and the Site can find a template “dir.tmpl” in that directory or a parent, then the Site responds with the rendering of where dir is the directory contents. Otherwise, if fsys has a file p containing valid UTF-8 text (at least up to the first kilobyte of the file) and the Site can find a template “text.tmpl” in that file's directory or a parent, and the file is not named robots.txt, and the file does not have a .css, .js, .svg, or .ts extension, then the Site responds with the rendering of where texthtml is the text file as rendered by the golang.org/x/website/internal/texthtml package. In the texthtml.Config, GoComments is set to true for file names ending in .go; the h URL query parameter, if present, is passed as Highlight, and the s URL query parameter, if set to lo:hi, is passed as a single-range Selection. If the request has the URL query parameter m=text, then the text file content is not rendered or framed and is instead served directly as a plain text response. If the request is for a file with a .ts extension the file contents are transformed from TypeScript to JavaScript and then served with a Content-Type=text/javascript header. Otherwise, if none of those cases apply but the request path p does exist in the file system, then the Site passes the request to an http.FileServer serving from fsys. This last case handles binary static content as well as textual static content excluded from the text file case above. Otherwise, the Site responds with the rendering of where err is the “not exist” error returned by fs.Stat(fsys, p). (See also the “Serving Errors” section below.) Of course, a web site may wish to serve more than static content. To allow dynamically generated web pages to make use of page rendering and site templates, the Site.ServePage method can be called with a dynamically generated Page value, which will then be rendered and served as the result of the request. If an error occurs while serving a request r, the Site responds with the rendering of If that rendering itself fails, the Site responds with status 500 and the cryptic page text “error rendering error”. The Site.ServeError and Site.ServeErrorStatus methods provide a way for dynamic servers to generate similar responses.