Package iris provides a beautifully expressive and easy to use foundation for your next website, API, or distributed app. Source code and other details for the project are available at GitHub: 10.6.6 The only requirement is the Go Programming Language, at least version 1.8 but 1.10.2 is highly recommended. Example code: You can start the server(s) listening to any type of `net.Listener` or even `http.Server` instance. The method for initialization of the server should be passed at the end, via `Run` function. Below you'll see some useful examples: UNIX and BSD hosts can take advantage of the reuse port feature. Example code: That's all with listening, you have the full control when you need it. Let's continue by learning how to catch CONTROL+C/COMMAND+C or unix kill command and shutdown the server gracefully. In order to manually manage what to do when app is interrupted, we have to disable the default behavior with the option `WithoutInterruptHandler` and register a new interrupt handler (globally, across all possible hosts). Example code: Access to all hosts that serve your application can be provided by the `Application#Hosts` field, after the `Run` method. But the most common scenario is that you may need access to the host before the `Run` method, there are two ways of gain access to the host supervisor, read below. First way is to use the `app.NewHost` to create a new host and use one of its `Serve` or `Listen` functions to start the application via the `iris#Raw` Runner. Note that this way needs an extra import of the `net/http` package. Example Code: Second, and probably easier way is to use the `host.Configurator`. Note that this method requires an extra import statement of "github.com/kataras/iris/core/host" when using go < 1.9, if you're targeting on go1.9 then you can use the `iris#Supervisor` and omit the extra host import. All common `Runners` we saw earlier (`iris#Addr, iris#Listener, iris#Server, iris#TLS, iris#AutoTLS`) accept a variadic argument of `host.Configurator`, there are just `func(*host.Supervisor)`. Therefore the `Application` gives you the rights to modify the auto-created host supervisor through these. Example Code: Read more about listening and gracefully shutdown by navigating to: All HTTP methods are supported, developers can also register handlers for same paths for different methods. The first parameter is the HTTP Method, second parameter is the request path of the route, third variadic parameter should contains one or more iris.Handler executed by the registered order when a user requests for that specific resouce path from the server. Example code: In order to make things easier for the user, iris provides functions for all HTTP Methods. The first parameter is the request path of the route, second variadic parameter should contains one or more iris.Handler executed by the registered order when a user requests for that specific resouce path from the server. Example code: A set of routes that are being groupped by path prefix can (optionally) share the same middleware handlers and template layout. A group can have a nested group too. `.Party` is being used to group routes, developers can declare an unlimited number of (nested) groups. Example code: iris developers are able to register their own handlers for http statuses like 404 not found, 500 internal server error and so on. Example code: With the help of iris's expressionist router you can build any form of API you desire, with safety. Example code: At the previous example, we've seen static routes, group of routes, subdomains, wildcard subdomains, a small example of parameterized path with a single known parameter and custom http errors, now it's time to see wildcard parameters and macros. iris, like net/http std package registers route's handlers by a Handler, the iris' type of handler is just a func(ctx iris.Context) where context comes from github.com/kataras/iris/context. Iris has the easiest and the most powerful routing process you have ever meet. At the same time, iris has its own interpeter(yes like a programming language) for route's path syntax and their dynamic path parameters parsing and evaluation, We call them "macros" for shortcut. How? It calculates its needs and if not any special regexp needed then it just registers the route with the low-level path syntax, otherwise it pre-compiles the regexp and adds the necessary middleware(s). Standard macro types for parameters: if type is missing then parameter's type is defaulted to string, so {param} == {param:string}. If a function not found on that type then the "string"'s types functions are being used. i.e: Besides the fact that iris provides the basic types and some default "macro funcs" you are able to register your own too!. Register a named path parameter function: at the func(argument ...) you can have any standard type, it will be validated before the server starts so don't care about performance here, the only thing it runs at serve time is the returning func(paramValue string) bool. Example Code: A path parameter name should contain only alphabetical letters, symbols, containing '_' and numbers are NOT allowed. If route failed to be registered, the app will panic without any warnings if you didn't catch the second return value(error) on .Handle/.Get.... Last, do not confuse ctx.Values() with ctx.Params(). Path parameter's values goes to ctx.Params() and context's local storage that can be used to communicate between handlers and middleware(s) goes to ctx.Values(), path parameters and the rest of any custom values are separated for your own good. Run Static Files Example code: More examples can be found here: https://github.com/kataras/iris/tree/master/_examples/beginner/file-server Middleware is just a concept of ordered chain of handlers. Middleware can be registered globally, per-party, per-subdomain and per-route. Example code: iris is able to wrap and convert any external, third-party Handler you used to use to your web application. Let's convert the https://github.com/rs/cors net/http external middleware which returns a `next form` handler. Example code: Iris supports 5 template engines out-of-the-box, developers can still use any external golang template engine, as `context/context#ResponseWriter()` is an `io.Writer`. All of these five template engines have common features with common API, like Layout, Template Funcs, Party-specific layout, partial rendering and more. Example code: View engine supports bundled(https://github.com/shuLhan/go-bindata) template files too. go-bindata gives you two functions, asset and assetNames, these can be setted to each of the template engines using the `.Binary` func. Example code: A real example can be found here: https://github.com/kataras/iris/tree/master/_examples/view/embedding-templates-into-app. Enable auto-reloading of templates on each request. Useful while developers are in dev mode as they no neeed to restart their app on every template edit. Example code: Note: In case you're wondering, the code behind the view engines derives from the "github.com/kataras/iris/view" package, access to the engines' variables can be granded by "github.com/kataras/iris" package too. Each one of these template engines has different options located here: https://github.com/kataras/iris/tree/master/view . This example will show how to store and access data from a session. You don’t need any third-party library, but If you want you can use any session manager compatible or not. In this example we will only allow authenticated users to view our secret message on the /secret page. To get access to it, the will first have to visit /login to get a valid session cookie, which logs him in. Additionally he can visit /logout to revoke his access to our secret message. Example code: Running the example: Sessions persistence can be achieved using one (or more) `sessiondb`. Example Code: More examples: In this example we will create a small chat between web sockets via browser. Example Server Code: Example Client(javascript) Code: Running the example: Iris has first-class support for the MVC pattern, you'll not find these stuff anywhere else in the Go world. Example Code: // GetUserBy serves // Method: GET // Resource: http://localhost:8080/user/{username:string} // By is a reserved "keyword" to tell the framework that you're going to // bind path parameters in the function's input arguments, and it also // helps to have "Get" and "GetBy" in the same controller. // // func (c *ExampleController) GetUserBy(username string) mvc.Result { // return mvc.View{ // Name: "user/username.html", // Data: username, // } // } Can use more than one, the factory will make sure that the correct http methods are being registered for each route for this controller, uncomment these if you want: Iris web framework supports Request data, Models, Persistence Data and Binding with the fastest possible execution. Characteristics: All HTTP Methods are supported, for example if want to serve `GET` then the controller should have a function named `Get()`, you can define more than one method function to serve in the same Controller. Register custom controller's struct's methods as handlers with custom paths(even with regex parametermized path) via the `BeforeActivation` custom event callback, per-controller. Example: Persistence data inside your Controller struct (share data between requests) by defining services to the Dependencies or have a `Singleton` controller scope. Share the dependencies between controllers or register them on a parent MVC Application, and ability to modify dependencies per-controller on the `BeforeActivation` optional event callback inside a Controller, i.e Access to the `Context` as a controller's field(no manual binding is neede) i.e `Ctx iris.Context` or via a method's input argument, i.e Models inside your Controller struct (set-ed at the Method function and rendered by the View). You can return models from a controller's method or set a field in the request lifecycle and return that field to another method, in the same request lifecycle. Flow as you used to, mvc application has its own `Router` which is a type of `iris/router.Party`, the standard iris api. `Controllers` can be registered to any `Party`, including Subdomains, the Party's begin and done handlers work as expected. Optional `BeginRequest(ctx)` function to perform any initialization before the method execution, useful to call middlewares or when many methods use the same collection of data. Optional `EndRequest(ctx)` function to perform any finalization after any method executed. Session dynamic dependency via manager's `Start` to the MVC Application, i.e Inheritance, recursively. Access to the dynamic path parameters via the controller's methods' input arguments, no binding is needed. When you use the Iris' default syntax to parse handlers from a controller, you need to suffix the methods with the `By` word, uppercase is a new sub path. Example: Register one or more relative paths and able to get path parameters, i.e Response via output arguments, optionally, i.e Where `any` means everything, from custom structs to standard language's types-. `Result` is an interface which contains only that function: Dispatch(ctx iris.Context) and Get where HTTP Method function(Post, Put, Delete...). Iris has a very powerful and blazing fast MVC support, you can return any value of any type from a method function and it will be sent to the client as expected. * if `string` then it's the body. * if `string` is the second output argument then it's the content type. * if `int` then it's the status code. * if `bool` is false then it throws 404 not found http error by skipping everything else. * if `error` and not nil then (any type) response will be omitted and error's text with a 400 bad request will be rendered instead. * if `(int, error)` and error is not nil then the response result will be the error's text with the status code as `int`. * if `custom struct` or `interface{}` or `slice` or `map` then it will be rendered as json, unless a `string` content type is following. * if `mvc.Result` then it executes its `Dispatch` function, so good design patters can be used to split the model's logic where needed. Examples with good patterns to follow but not intend to be used in production of course can be found at: https://github.com/kataras/iris/tree/master/_examples/#mvc. By creating components that are independent of one another, developers are able to reuse components quickly and easily in other applications. The same (or similar) view for one application can be refactored for another application with different data because the view is simply handling how the data is being displayed to the user. If you're new to back-end web development read about the MVC architectural pattern first, a good start is that wikipedia article: https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller. But you should have a basic idea of the framework by now, we just scratched the surface. If you enjoy what you just saw and want to learn more, please follow the below links: Examples: Middleware: Home Page: Book (in-progress):
lf is a terminal file manager. Source code can be found in the repository at https://github.com/gokcehan/lf This documentation can either be read from terminal using 'lf -doc' or online at https://pkg.go.dev/github.com/gokcehan/lf You can also use 'doc' command (default '<f-1>') inside lf to view the documentation in a pager. A man page with the same content is also available in the repository at https://github.com/gokcehan/lf/blob/master/lf.1 You can run 'lf -help' to see descriptions of command line options. The following commands are provided by lf: The following command line commands are provided by lf: The following options can be used to customize the behavior of lf: The following environment variables are exported for shell commands: The following special shell commands are used to customize the behavior of lf when defined: The following commands/keybindings are provided by default: The following additional keybindings are provided by default: If the 'mouse' option is enabled, mouse buttons have the following default effects: Configuration files should be located at: Colors file should be located at: Icons file should be located at: Selection file should be located at: Marks file should be located at: Tags file should be located at: History file should be located at: You can configure these locations with the following variables given with their order of precedences and their default values: A sample configuration file can be found at https://github.com/gokcehan/lf/blob/master/etc/lfrc.example This section shows information about builtin commands. Modal commands do not take any arguments, but instead change the operation mode to read their input conveniently, and so they are meant to be assigned to keybindings. Quit lf and return to the shell. Move/scroll the current file selection upwards/downwards by one/half a page/full page. Change the current working directory to the parent directory. If the current file is a directory, then change the current directory to it, otherwise, execute the 'open' command. A default 'open' command is provided to call the default system opener asynchronously with the current file as the argument. A custom 'open' command can be defined to override this default. Change the current working directory to the next/previous jumplist item. Move the current file selection to the top/bottom of the directory. A count can be specified to move to a specific line, for example use `3G` to move to the third line. Move the current file selection to the high/middle/low of the screen. Toggle the selection of the current file or files given as arguments. Reverse the selection of all files in the current directory (i.e. 'toggle' all files). Selections in other directories are not effected by this command. You can define a new command to select all files in the directory by combining 'invert' with 'unselect' (i.e. 'cmd select-all :unselect; invert'), though this will also remove selections in other directories. Reverse the selection (i.e. 'toggle') of all files at or after the current file in the current directory. To select a contiguous block of files, use this command on the first file you want to select. Then, move down to the first file you do *not* want to select (the one after the end of the desired selection) and use this command again. This achieves an effect similar to the visual mode in vim. This command is experimental and may be removed once a better replacement for the visual mode is implemented in 'lf'. If you'd like to experiment with using this command, you should bind it to a key (e.g. 'V') for a better experience. Remove the selection of all files in all directories. Select/unselect files that match the given glob. Calculate the total size for each of the selected directories. Option 'info' should include 'size' and option 'dircounts' should be disabled to show this size. If the total size of a directory is not calculated, it will be shown as '-'. Remove all keybindings associated with the `map` command. This command can be used in the config file to remove the default keybindings. For safety purposes, `:` is left mapped to the `read` command, and `cmap` keybindings are retained so that it is still possible to exit `lf` using `:quit`. If there are no selections, save the path of the current file to the copy buffer, otherwise, copy the paths of selected files. If there are no selections, save the path of the current file to the cut buffer, otherwise, copy the paths of selected files. Copy/Move files in copy/cut buffer to the current working directory. A custom 'paste' command can be defined to override this default. Clear file paths in copy/cut buffer. Synchronize copied/cut files with server. This command is automatically called when required. Draw the screen. This command is automatically called when required. Synchronize the terminal and redraw the screen. Load modified files and directories. This command is automatically called when required. Flush the cache and reload all files and directories. Print given arguments to the message line at the bottom. Print given arguments to the message line at the bottom and also to the log file. Print given arguments to the message line at the bottom as 'errorfmt' and also to the log file. Change the working directory to the given argument. Change the current file selection to the given argument. Remove the current file or selected file(s). A custom 'delete' command can be defined to override this default. Rename the current file using the builtin method. A custom 'rename' command can be defined to override this default. Read the configuration file given in the argument. Simulate key pushes given in the argument. Read a command to evaluate. Read a shell command to execute. Read a shell command to execute piping its standard I/O to the bottom statline. Read a shell command to execute and wait for a key press in the end. Read a shell command to execute asynchronously without standard I/O. Read key(s) to find the appropriate file name match in the forward/backward direction and jump to the next/previous match. Read a pattern to search for a file name match in the forward/backward direction and jump to the next/previous match. Command 'filter' reads a pattern to filter out and only view files matching the pattern. Command 'setfilter' does the same but uses an argument to set the filter immediately. You can supply an argument to 'filter', in order to use that as the starting prompt. Save the current directory as a bookmark assigned to the given key. Change the current directory to the bookmark assigned to the given key. A special bookmark "'" holds the previous directory after a 'mark-load', 'cd', or 'select' command. Remove a bookmark assigned to the given key. Tag a file with '*' or a single width character given in the argument. You can define a new tag clearing command by combining 'tag' with 'tag-toggle' (i.e. 'cmd tag-clear :tag; tag-toggle'). Tag a file with '*' or a single width character given in the argument if the file is untagged, otherwise remove the tag. The prompt character specifies which of the several command-line modes you are in. For example, the 'read' command takes you to the ':' mode. When the cursor is at the first character in ':' mode, pressing one of the keys '!', '$', '%', or '&' takes you to the corresponding mode. You can go back with 'cmd-delete-back' ('<backspace>' by default). The command line commands should be mostly compatible with readline keybindings. A character refers to a unicode code point, a word consists of letters and digits, and a unix word consists of any non-blank characters. Quit command line mode and return to normal mode. Autocomplete the current word. Autocomplete the current word with menu selection. You need to assign keys to these commands (e.g. 'cmap <tab> cmd-menu-complete; cmap <backtab> cmd-menu-complete-back'). You can use the assigned keys assigned to display the menu and then cycle through completion options. Accept the currently selected match in menu completion and close the menu. Execute the current line. Interrupt the current shell-pipe command and return to the normal mode. Go to next/previous item in the history. Move the cursor to the left/right. Move the cursor to the beginning/end of line. Delete the next character. Delete the previous character. When at the beginning of a prompt, returns either to normal mode or to ':' mode. Delete everything up to the beginning/end of line. Delete the previous unix word. Paste the buffer content containing the last deleted item. Transpose the positions of last two characters/words. Move the cursor by one word in forward/backward direction. Delete the next word in forward direction. Capitalize/uppercase/lowercase the current word and jump to the next word. List all key mappings in normal mode or command-line editing mode. List all custom commands defined using the `cmd` command List the contents of the jump list, in order of the most recently visited locations. Each location is marked with the count that can be used with the `jump-prev` and `jump-next` commands (e.g. use `3[` to move three spaces backwards in the jump list). A '>' is used to mark the current location in the jump list. This section shows information about options to customize the behavior. Character ':' is used as the separator for list options '[]int' and '[]string'. When this option is enabled, find command starts matching patterns from the beginning of file names, otherwise, it can match at an arbitrary position. Automatically quit server when there are no clients left connected. Format string of the box drawing characters enabled by the `drawbox` option. Set the path of a cleaner file. The file should be executable. This file is called if previewing is enabled, the previewer is set, and the previously selected file had its preview cache disabled. The following arguments are passed to the file, (1) current file name, (2) width, (3) height, (4) horizontal position, (5) vertical position of preview pane and (6) next file name to be previewed respectively. Preview cleaning is disabled when the value of this option is left empty. Format strings for highlighting the cursor. `cursoractivefmt` applies in the current directory pane, `cursorparentfmt` applies in panes that show parents of the current directory, and `cursorpreviewfmt` applies in panes that preview directories. The default is to make the active cursor and the parent directory cursor inverted. The preview cursor is underlined. Some other possibilities to consider for the preview or parent cursors: an empty string for no cursor, "\033[7;2m" for dimmed inverted text (visibility varies by terminal), "\033[7;90m" for inverted text with grey (aka "brightblack") background. If the format string contains the characters `%s`, it is interpreted as a format string for `fmt.Sprintf`. Such a string should end with the terminal reset sequence. For example, "\033[4m%s\033[0m" has the same effect as "\033[4m". Cache directory contents. When this option is enabled, directory sizes show the number of items inside instead of the total size of the directory, which needs to be calculated for each directory using 'calcdirsize'. This information needs to be calculated by reading the directory and counting the items inside. Therefore, this option is disabled by default for performance reasons. This option only has an effect when 'info' has a 'size' field and the pane is wide enough to show the information. 999 items are counted per directory at most, and bigger directories are shown as '999+'. Show directories first above regular files. Show only directories. If enabled, directories will also be passed to the previewer script. This allows custom previews for directories. Draw boxes around panes with box drawing characters. Format string of file name when creating duplicate files. With the default format, copying a file `abc.txt` to the same directory will result in a duplicate file called `abc.txt.~1~`. Special expansions are provided, '%f' as the file name, '%b' for basename (file name without extension), '%e' as the extension (including the dot) and '%n' as the number of duplicates. Format string of error messages shown in the bottom message line. If the format string contains the characters `%s`, it is interpreted as a format string for `fmt.Sprintf`. Such a string should end with the terminal reset sequence. For example, "\033[4m%s\033[0m" has the same effect as "\033[4m". File separator used in environment variables 'fs' and 'fx'. Number of characters prompted for the find command. When this value is set to 0, find command prompts until there is only a single match left. When this option is enabled, search command patterns are considered as globs, otherwise they are literals. With globbing, '*' matches any sequence, '?' matches any character, and '[...]' or '[^...]' matches character sets or ranges. Otherwise, these characters are interpreted as they are. Show hidden files. On Unix systems, hidden files are determined by the value of 'hiddenfiles'. On Windows, only files with hidden attributes are considered hidden files. List of hidden file glob patterns. Patterns can be given as relative or absolute paths. Globbing supports the usual special characters, '*' to match any sequence, '?' to match any character, and '[...]' or '[^...]' to match character sets or ranges. In addition, if a pattern starts with '!', then its matches are excluded from hidden files. To add multiple patterns, use ':' as a separator. Example: '.*:lost+found:*.bak' Save command history. Show icons before each item in the list. Sets 'IFS' variable in shell commands. It works by adding the assignment to the beginning of the command string as "IFS='...'; ...". The reason is that 'IFS' variable is not inherited by the shell for security reasons. This method assumes a POSIX shell syntax and so it can fail for non-POSIX shells. This option has no effect when the value is left empty. This option does not have any effect on Windows. Ignore case in sorting and search patterns. Ignore diacritics in sorting and search patterns. Jump to the first match after each keystroke during searching. Apply filter pattern after each keystroke during filtering. List of information shown for directory items at the right side of pane. Currently supported information types are 'size', 'time', 'atime', and 'ctime'. Information is only shown when the pane width is more than twice the width of information. Format string of the file time shown in the info column when it matches this year. Format string of the file time shown in the info column when it doesn't match this year. Send mouse events as input. Show the position number for directory items at the left side of pane. When 'relativenumber' option is enabled, only the current line shows the absolute position and relative positions are shown for the rest. Format string of the position number for each line. Set the interval in seconds for periodic checks of directory updates. This works by periodically calling the 'load' command. Note that directories are already updated automatically in many cases. This option can be useful when there is an external process changing the displayed directory and you are not doing anything in lf. Periodic checks are disabled when the value of this option is set to zero. List of attributes that are preserved when copying files. Currently supported attributes are 'mode' (i.a. access mode) and 'timestamps' (i.e. modification time and access time). Note: Preserving other attribute like ownership of change/birth timestamp is desireable, but not portably supported in go. Show previews of files and directories at the right most pane. If the file has more lines than the preview pane, rest of the lines are not read. Files containing the null character (U+0000) in the read portion are considered binary files and displayed as 'binary'. Set the path of a previewer file to filter the content of regular files for previewing. The file should be executable. The following arguments are passed to the file, (1) current file name, (2) width, (3) height, (4) horizontal position, and (5) vertical position of preview pane respectively. SIGPIPE signal is sent when enough lines are read. If the previewer returns a non-zero exit code, then the preview cache for the given file is disabled. This means that if the file is selected in the future, the previewer is called once again. Preview filtering is disabled and files are displayed as they are when the value of this option is left empty. Format string of the prompt shown in the top line. Special expansions are provided, '%u' as the user name, '%h' as the host name, '%w' as the working directory, '%d' as the working directory with a trailing path separator, '%f' as the file name, and '%F' as the current filter. '%S' may be used once and will provide a spacer so that the following parts are right aligned on the screen. Home folder is shown as '~' in the working directory expansion. Directory names are automatically shortened to a single character starting from the left most parent when the prompt does not fit to the screen. List of ratios of pane widths. Number of items in the list determines the number of panes in the ui. When 'preview' option is enabled, the right most number is used for the width of preview pane. Show the position number relative to the current line. When 'number' is enabled, current line shows the absolute position, otherwise nothing is shown. Reverse the direction of sort. List of information shown in status line ruler. Currently supported information types are 'acc', 'progress', 'selection', 'filter', 'ind', 'df' and names starting with 'lf_'. `acc` shows the pressed keys (e.g. for bindings with multiple key presses or counts given to bindings). `progress` shows the progress of file operations (e.g. copying a large directory). `selection` shows the number of files that are selected, or designated for being cut/copied. `filter` shows 'F' if a filter is currently being applied. `ind` shows the current position of the cursor as well as the number of files in the current directory. `df` shows the amount of free disk space remaining. Names starting with `lf_` show the value of environment variables exported by lf. This is useful for displaying the current settings (e.g. `lf_selmode` displays the current setting for the `selmode` option). User defined options starting with `lf_user_` are also supported, so it is possible to display information set from external sources. Selection mode for commands. When set to 'all' it will use the selected files from all directories. When set to 'dir' it will only use the selected files in the current directory. Minimum number of offset lines shown at all times in the top and the bottom of the screen when scrolling. The current line is kept in the middle when this option is set to a large value that is bigger than the half of number of lines. A smaller offset can be used when the current file is close to the beginning or end of the list to show the maximum number of items. Shell executable to use for shell commands. Shell commands are executed as 'shell shellopts shellflag command -- arguments'. Command line flag used to pass shell commands. List of shell options to pass to the shell executable. Override 'ignorecase' option when the pattern contains an uppercase character. This option has no effect when 'ignorecase' is disabled. Override 'ignoredia' option when the pattern contains a character with diacritic. This option has no effect when 'ignoredia' is disabled. Sort type for directories. Currently supported sort types are 'natural', 'name', 'size', 'time', 'ctime', 'atime', and 'ext'. Format string of the file info shown in the bottom left corner. Special expansions are provided, '%p' as the file permissions, '%c' as the link count, '%u' as the user, '%g' as the group, '%s' as the file size, '%t' as the last modified time, and '%l' as the link target. The `|` character splits the format string into sections. Any section containing a failed expansion (result is a blank string) is discarded and not shown. Number of space characters to show for horizontal tabulation (U+0009) character. Format string of the tags. If the format string contains the characters `%s`, it is interpreted as a format string for `fmt.Sprintf`. Such a string should end with the terminal reset sequence. For example, "\033[4m%s\033[0m" has the same effect as "\033[4m". Marks to be considered temporary (e.g. 'abc' refers to marks 'a', 'b', and 'c'). These marks are not synced to other clients and they are not saved in the bookmarks file. Note that the special bookmark "'" is always treated as temporary and it does not need to be specified. Format string of the file modification time shown in the bottom line. Truncate character shown at the end when the file name does not fit to the pane. When a filename is too long to be shown completely, the available space is partitioned in two pieces. truncatepct defines a fraction (in percent between 0 and 100) for the size of the first piece, which will show the beginning of the filename. The second piece will show the end of the filename and will use the rest of the available space. Both pieces are separated by the truncation character (truncatechar). A value of 100 will only show the beginning of the filename, while a value of 0 will only show the end of the filename, e.g.: - `set truncatepct 100` -> "very-long-filename-tr~" (default) - `set truncatepct 50` -> "very-long-f~-truncated" - `set truncatepct 0` -> "~ng-filename-truncated" String shown after commands of shell-wait type. Searching can wrap around the file list. Scrolling can wrap around the file list. Any option that is prefixed with 'user_' is a user defined option and can be set to any string. Inside a user defined command the value will be provided in the `lf_user_{option}` environment variable. These options are not used by lf and are not persisted. The following variables are exported for shell commands: These are referred with a '$' prefix on POSIX shells (e.g. '$f'), between '%' characters on Windows cmd (e.g. '%f%'), and with a '$env:' prefix on Windows powershell (e.g. '$env:f'). Current file selection as a full path. Selected file(s) separated with the value of 'filesep' option as full path(s). Selected file(s) (i.e. 'fs') if there are any selected files, otherwise current file selection (i.e. 'f'). Id of the running client. Present working directory. Initial working directory. The value of this variable is set to the current nesting level when you run lf from a shell spawned inside lf. You can add the value of this variable to your shell prompt to make it clear that your shell runs inside lf. For example, with POSIX shells, you can use '[ -n "$LF_LEVEL" ] && PS1="$PS1""(lf level: $LF_LEVEL) "' in your shell configuration file (e.g. '~/.bashrc'). If this variable is set in the environment, use the same value. Otherwise, this is set to 'start' in Windows, 'open' in MacOS, 'xdg-open' in others. If VISUAL is set in the environment, use its value. Otherwise, use the value of the environment variable EDITOR. If neither variable is set, this is set to 'vi' on Unix, 'notepad' in Windows. If this variable is set in the environment, use the same value. Otherwise, this is set to 'less' on Unix, 'more' in Windows. If this variable is set in the environment, use the same value. Otherwise, this is set to 'sh' on Unix, 'cmd' in Windows. Absolute path to the currently running lf binary, if it can be found. Otherwise, this is set to the string 'lf'. Value of the {option}. Value of the user_{option}. Width/Height of the terminal. Value of the count associated with the current command. This section shows information about special shell commands. This shell command can be defined to override the default 'open' command when the current file is not a directory. This shell command can be defined to override the default 'paste' command. This shell command can be defined to override the default 'rename' command. This shell command can be defined to override the default 'delete' command. This shell command can be defined to be executed before changing a directory. This shell command can be defined to be executed after changing a directory. This shell command can be defined to be executed after the selection changes. This shell command can be defined to be executed before quit. The following command prefixes are used by lf: The same evaluator is used for the command line and the configuration file for read and shell commands. The difference is that prefixes are not necessary in the command line. Instead, different modes are provided to read corresponding commands. These modes are mapped to the prefix keys above by default. Characters from '#' to newline are comments and ignored: There are four special commands ('set', 'map', 'cmap', and 'cmd') for configuration. Command 'set' is used to set an option which can be boolean, integer, or string: Command 'map' is used to bind a key to a command which can be builtin command, custom command, or shell command: Command 'cmap' is used to bind a key on the command line to a command line command or any other command: You can delete an existing binding by leaving the expression empty: Command 'cmd' is used to define a custom command: You can delete an existing command by leaving the expression empty: If there is no prefix then ':' is assumed: An explicit ':' can be provided to group statements until a newline which is especially useful for 'map' and 'cmd' commands: If you need multiline you can wrap statements in '{{' and '}}' after the proper prefix. Regular keys are assigned to a command with the usual syntax: Keys combined with the shift key simply use the uppercase letter: Special keys are written in between '<' and '>' characters and always use lowercase letters: Angle brackets can be assigned with their special names: Function keys are prefixed with 'f' character: Keys combined with the control key are prefixed with 'c' character: Keys combined with the alt key are assigned in two different ways depending on the behavior of your terminal. Older terminals (e.g. xterm) may set the 8th bit of a character when the alt key is pressed. On these terminals, you can use the corresponding byte for the mapping: Newer terminals (e.g. gnome-terminal) may prefix the key with an escape key when the alt key is pressed. lf uses the escape delaying mechanism to recognize alt keys in these terminals (delay is 100ms). On these terminals, keys combined with the alt key are prefixed with 'a' character: It is possible to combine special keys with modifiers: WARNING: Some key combinations will likely be intercepted by your OS, window manager, or terminal. Other key combinations cannot be recognized by lf due to the way terminals work (e.g. `Ctrl+h` combination sends a backspace key instead). The easiest way to find out the name of a key combination and whether it will work on your system is to press the key while lf is running and read the name from the "unknown mapping" error. Mouse buttons are prefixed with 'm' character: Mouse wheel events are also prefixed with 'm' character: The usual way to map a key sequence is to assign it to a named or unnamed command. While this provides a clean way to remap builtin keys as well as other commands, it can be limiting at times. For this reason 'push' command is provided by lf. This command is used to simulate key pushes given as its arguments. You can 'map' a key to a 'push' command with an argument to create various keybindings. This is mainly useful for two purposes. First, it can be used to map a command with a command count: Second, it can be used to avoid typing the name when a command takes arguments: One thing to be careful is that since 'push' command works with keys instead of commands it is possible to accidentally create recursive bindings: These types of bindings create a deadlock when executed. Regular shell commands are the most basic command type that is useful for many purposes. For example, we can write a shell command to move selected file(s) to trash. A first attempt to write such a command may look like this: We check '$fs' to see if there are any selected files. Otherwise we just delete the current file. Since this is such a common pattern, a separate '$fx' variable is provided. We can use this variable to get rid of the conditional: The trash directory is checked each time the command is executed. We can move it outside of the command so it would only run once at startup: Since these are one liners, we can drop '{{' and '}}': Finally note that we set 'IFS' variable manually in these commands. Instead we could use the 'ifs' option to set it for all shell commands (i.e. 'set ifs "\n"'). This can be especially useful for interactive use (e.g. '$rm $f' or '$rm $fs' would simply work). This option is not set by default as it can behave unexpectedly for new users. However, use of this option is highly recommended and it is assumed in the rest of the documentation. Regular shell commands have some limitations in some cases. When an output or error message is given and the command exits afterwards, the ui is immediately resumed and there is no way to see the message without dropping to shell again. Also, even when there is no output or error, the ui still needs to be paused while the command is running. This can cause flickering on the screen for short commands and similar distractions for longer commands. Instead of pausing the ui, piping shell commands connects stdin, stdout, and stderr of the command to the statline in the bottom of the ui. This can be useful for programs following the Unix philosophy to give no output in the success case, and brief error messages or prompts in other cases. For example, following rename command prompts for overwrite in the statline if there is an existing file with the given name: You can also output error messages in the command and it will show up in the statline. For example, an alternative rename command may look like this: Note that input is line buffered and output and error are byte buffered. Waiting shell commands are similar to regular shell commands except that they wait for a key press when the command is finished. These can be useful to see the output of a program before the ui is resumed. Waiting shell commands are more appropriate than piping shell commands when the command is verbose and the output is best displayed as multiline. Asynchronous shell commands are used to start a command in the background and then resume operation without waiting for the command to finish. Stdin, stdout, and stderr of the command is neither connected to the terminal nor to the ui. One of the more advanced features in lf is remote commands. All clients connect to a server on startup. It is possible to send commands to all or any of the connected clients over the common server. This is used internally to notify file selection changes to other clients. To use this feature, you need to use a client which supports communicating with a Unix domain socket. OpenBSD implementation of netcat (nc) is one such example. You can use it to send a command to the socket file: Since such a client may not be available everywhere, lf comes bundled with a command line flag to be used as such. When using lf, you do not need to specify the address of the socket file. This is the recommended way of using remote commands since it is shorter and immune to socket file address changes: In this command 'send' is used to send the rest of the string as a command to all connected clients. You can optionally give it an id number to send a command to a single client: All clients have a unique id number but you may not be aware of the id number when you are writing a command. For this purpose, an '$id' variable is exported to the environment for shell commands. The value of this variable is set to the process id of the client. You can use it to send a remote command from a client to the server which in return sends a command back to itself. So now you can display a message in the current client by calling the following in a shell command: Since lf does not have control flow syntax, remote commands are used for such needs. For example, you can configure the number of columns in the ui with respect to the terminal width as follows: Besides 'send' command, there is a 'quit' command to quit the server when there are no connected clients left, and a 'quit!' command to force quit the server by closing client connections first: Lastly, there is a 'conn' command to connect the server as a client. This should not be needed for users. lf uses its own builtin copy and move operations by default. These are implemented as asynchronous operations and progress is shown in the bottom ruler. These commands do not overwrite existing files or directories with the same name. Instead, a suffix that is compatible with '--backup=numbered' option in GNU cp is added to the new files or directories. Only file modes and (some) timestamps can be preserved (see `preserve` option), all other attributes are ignored including ownership, context, and xattr. Special files such as character and block devices, named pipes, and sockets are skipped and links are not followed. Moving is performed using the rename operation of the underlying OS. For cross-device moving, lf falls back to copying and then deletes the original files if there are no errors. Operation errors are shown in the message line as well as the log file and they do not preemptively finish the corresponding file operation. File operations can be performed on the current selected file or alternatively on multiple files by selecting them first. When you 'copy' a file, lf doesn't actually copy the file on the disk, but only records its name to a file. The actual file copying takes place when you 'paste'. Similarly 'paste' after a 'cut' operation moves the file. You can customize copy and move operations by defining a 'paste' command. This is a special command that is called when it is defined instead of the builtin implementation. You can use the following example as a starting point: Some useful things to be considered are to use the backup ('--backup') and/or preserve attributes ('-a') options with 'cp' and 'mv' commands if they support it (i.e. GNU implementation), change the command type to asynchronous, or use 'rsync' command with progress bar option for copying and feed the progress to the client periodically with remote 'echo' calls. By default, lf does not assign 'delete' command to a key to protect new users. You can customize file deletion by defining a 'delete' command. You can also assign a key to this command if you like. An example command to move selected files to a trash folder and remove files completely after a prompt are provided in the example configuration file. There are two mechanisms implemented in lf to search a file in the current directory. Searching is the traditional method to move the selection to a file matching a given pattern. Finding is an alternative way to search for a pattern possibly using fewer keystrokes. Searching mechanism is implemented with commands 'search' (default '/'), 'search-back' (default '?'), 'search-next' (default 'n'), and 'search-prev' (default 'N'). You can enable 'globsearch' option to match with a glob pattern. Globbing supports '*' to match any sequence, '?' to match any character, and '[...]' or '[^...] to match character sets or ranges. You can enable 'incsearch' option to jump to the current match at each keystroke while typing. In this mode, you can either use 'cmd-enter' to accept the search or use 'cmd-escape' to cancel the search. You can also map some other commands with 'cmap' to accept the search and execute the command immediately afterwards. For example, you can use the right arrow key to finish the search and open the selected file with the following mapping: Finding mechanism is implemented with commands 'find' (default 'f'), 'find-back' (default 'F'), 'find-next' (default ';'), 'find-prev' (default ','). You can disable 'anchorfind' option to match a pattern at an arbitrary position in the filename instead of the beginning. You can set the number of keys to match using 'findlen' option. If you set this value to zero, then the the keys are read until there is only a single match. Default values of these two options are set to jump to the first file with the given initial. Some options effect both searching and finding. You can disable 'wrapscan' option to prevent searches to wrap around at the end of the file list. You can disable 'ignorecase' option to match cases in the pattern and the filename. This option is already automatically overridden if the pattern contains upper case characters. You can disable 'smartcase' option to disable this behavior. Two similar options 'ignoredia' and 'smartdia' are provided to control matching diacritics in latin letters. You can define a an 'open' command (default 'l' and '<right>') to configure file opening. This command is only called when the current file is not a directory, otherwise the directory is entered instead. You can define it just as you would define any other command: It is possible to use different command types: You may want to use either file extensions or mime types from 'file' command: You may want to use 'setsid' before your opener command to have persistent processes that continue to run after lf quits. Regular shell commands (i.e. '$') drop to terminal which results in a flicker for commands that finishes immediately (e.g. 'xdg-open' in the above example). If you want to use asynchronous shell commands (i.e. '&') but also want to use the terminal when necessary (e.g. 'vi' in the above exxample), you can use a remote command: Note, asynchronous shell commands run in their own process group by default so they do not require the manual use of 'setsid'. Following command is provided by default: You may also use any other existing file openers as you like. Possible options are 'libfile-mimeinfo-perl' (executable name is 'mimeopen'), 'rifle' (ranger's default file opener), or 'mimeo' to name a few. lf previews files on the preview pane by printing the file until the end or the preview pane is filled. This output can be enhanced by providing a custom preview script for filtering. This can be used to highlight source codes, list contents of archive files or view pdf or image files to name a few. For coloring lf recognizes ansi escape codes. In order to use this feature you need to set the value of 'previewer' option to the path of an executable file. Five arguments are passed to the file, (1) current file name, (2) width, (3) height, (4) horizontal position, and (5) vertical position of preview pane respectively. Output of the execution is printed in the preview pane. You may also want to use the same script in your pager mapping as well: For 'less' pager, you may instead utilize 'LESSOPEN' mechanism so that useful information about the file such as the full path of the file can still be displayed in the statusline below: Since this script is called for each file selection change it needs to be as efficient as possible and this responsibility is left to the user. You may use file extensions to determine the type of file more efficiently compared to obtaining mime types from 'file' command. Extensions can then be used to match cleanly within a conditional: Another important consideration for efficiency is the use of programs with short startup times for preview. For this reason, 'highlight' is recommended over 'pygmentize' for syntax highlighting. Besides, it is also important that the application is processing the file on the fly rather than first reading it to the memory and then do the processing afterwards. This is especially relevant for big files. lf automatically closes the previewer script output pipe with a SIGPIPE when enough lines are read. When everything else fails, you can make use of the height argument to only feed the first portion of the file to a program for preview. Note that some programs may not respond well to SIGPIPE to exit with a non-zero return code and avoid caching. You may add a trailing '|| true' command to avoid such errors: You may also use an existing preview filter as you like. Your system may already come with a preview filter named 'lesspipe'. These filters may have a mechanism to add user customizations as well. See the related documentations for more information. lf changes the working directory of the process to the current directory so that shell commands always work in the displayed directory. After quitting, it returns to the original directory where it is first launched like all shell programs. If you want to stay in the current directory after quitting, you can use one of the example lfcd wrapper shell scripts provided in the repository at https://github.com/gokcehan/lf/tree/master/etc There is a special command 'on-cd' that runs a shell command when it is defined and the directory is changed. You can define it just as you would define any other command: If you want to print escape sequences, you may redirect 'printf' output to '/dev/tty'. The following xterm specific escape sequence sets the terminal title to the working directory: This command runs whenever you change directory but not on startup. You can add an extra call to make it run on startup as well: Note that all shell commands are possible but '%' and '&' are usually more appropriate as '$' and '!' causes flickers and pauses respectively. There is also a 'pre-cd' command, that works like 'on-cd', but is run before the directory is actually changed. lf tries to automatically adapt its colors to the environment. It starts with a default colorscheme and updates colors using values of existing environment variables possibly by overwriting its previous values. Colors are set in the following order: Please refer to the corresponding man pages for more information about 'LSCOLORS' and 'LS_COLORS'. 'LF_COLORS' is provided with the same syntax as 'LS_COLORS' in case you want to configure colors only for lf but not ls. This can be useful since there are some differences between ls and lf, though one should expect the same behavior for common cases. Colors file is provided for easier configuration without environment variables. This file should consist of whitespace separated pairs with '#' character to start comments until the end of line. You can configure lf colors in two different ways. First, you can only configure 8 basic colors used by your terminal and lf should pick up those colors automatically. Depending on your terminal, you should be able to select your colors from a 24-bit palette. This is the recommended approach as colors used by other programs will also match each other. Second, you can set the values of environment variables or colors file mentioned above for fine grained customization. Note that 'LS_COLORS/LF_COLORS' are more powerful than 'LSCOLORS' and they can be used even when GNU programs are not installed on the system. You can combine this second method with the first method for best results. Lastly, you may also want to configure the colors of the prompt line to match the rest of the colors. Colors of the prompt line can be configured using the 'promptfmt' option which can include hardcoded colors as ansi escapes. See the default value of this option to have an idea about how to color this line. It is worth noting that lf uses as many colors advertised by your terminal's entry in terminfo or infocmp databases on your system. If an entry is not present, it falls back to an internal database. If your terminal supports 24-bit colors but either does not have a database entry or does not advertise all capabilities, you can enable support by setting the '$COLORTERM' variable to 'truecolor' or ensuring '$TERM' is set to a value that ends with '-truecolor'. Default lf colors are mostly taken from GNU dircolors defaults. These defaults use 8 basic colors and bold attribute. Default dircolors entries with background colors are simplified to avoid confusion with current file selection in lf. Similarly, there are only file type matchings and extension matchings are left out for simplicity. Default values are as follows given with their matching order in lf: Note that lf first tries matching file names and then falls back to file types. The full order of matchings from most specific to least are as follows: For example, given a regular text file '/path/to/README.txt', the following entries are checked in the configuration and the first one to match is used: Given a regular directory '/path/to/example.d', the following entries are checked in the configuration and the first one to match is used: Note that glob-like patterns do not actually perform glob matching due to performance reasons. For example, you can set a variable as follows: Having all entries on a single line can make it hard to read. You may instead divide it to multiple lines in between double quotes by escaping newlines with backslashes as follows: Having such a long variable definition in a shell configuration file might be undesirable. You may instead use the colors file for configuration. A sample colors file can be found at https://github.com/gokcehan/lf/blob/master/etc/colors.example You may also see the wiki page for ansi escape codes https://en.wikipedia.org/wiki/ANSI_escape_code Icons are configured using 'LF_ICONS' environment variable or an icons file. The variable uses the same syntax as 'LS_COLORS/LF_COLORS'. Instead of colors, you should put a single characters as values of entries. Icons file should consist of whitespace separated pairs with '#' character to start comments until the end of line. Do not forget to enable 'icons' option to see the icons. Default values are as follows given with their matching order in lf: A sample icons file can be found at https://github.com/gokcehan/lf/blob/master/etc/icons.example
Package iris provides a beautifully expressive and easy to use foundation for your next website, API, or distributed app. Source code and other details for the project are available at GitHub: 11.1.1 The only requirement is the Go Programming Language, at least version 1.8 but 1.11.1 and above is highly recommended. Example code: You can start the server(s) listening to any type of `net.Listener` or even `http.Server` instance. The method for initialization of the server should be passed at the end, via `Run` function. Below you'll see some useful examples: UNIX and BSD hosts can take advantage of the reuse port feature. Example code: That's all with listening, you have the full control when you need it. Let's continue by learning how to catch CONTROL+C/COMMAND+C or unix kill command and shutdown the server gracefully. In order to manually manage what to do when app is interrupted, we have to disable the default behavior with the option `WithoutInterruptHandler` and register a new interrupt handler (globally, across all possible hosts). Example code: Access to all hosts that serve your application can be provided by the `Application#Hosts` field, after the `Run` method. But the most common scenario is that you may need access to the host before the `Run` method, there are two ways of gain access to the host supervisor, read below. First way is to use the `app.NewHost` to create a new host and use one of its `Serve` or `Listen` functions to start the application via the `iris#Raw` Runner. Note that this way needs an extra import of the `net/http` package. Example Code: Second, and probably easier way is to use the `host.Configurator`. Note that this method requires an extra import statement of "github.com/kataras/iris/core/host" when using go < 1.9, if you're targeting on go1.9 then you can use the `iris#Supervisor` and omit the extra host import. All common `Runners` we saw earlier (`iris#Addr, iris#Listener, iris#Server, iris#TLS, iris#AutoTLS`) accept a variadic argument of `host.Configurator`, there are just `func(*host.Supervisor)`. Therefore the `Application` gives you the rights to modify the auto-created host supervisor through these. Example Code: Read more about listening and gracefully shutdown by navigating to: All HTTP methods are supported, developers can also register handlers for same paths for different methods. The first parameter is the HTTP Method, second parameter is the request path of the route, third variadic parameter should contains one or more iris.Handler executed by the registered order when a user requests for that specific resouce path from the server. Example code: In order to make things easier for the user, iris provides functions for all HTTP Methods. The first parameter is the request path of the route, second variadic parameter should contains one or more iris.Handler executed by the registered order when a user requests for that specific resouce path from the server. Example code: A set of routes that are being groupped by path prefix can (optionally) share the same middleware handlers and template layout. A group can have a nested group too. `.Party` is being used to group routes, developers can declare an unlimited number of (nested) groups. Example code: iris developers are able to register their own handlers for http statuses like 404 not found, 500 internal server error and so on. Example code: With the help of iris's expressionist router you can build any form of API you desire, with safety. Example code: At the previous example, we've seen static routes, group of routes, subdomains, wildcard subdomains, a small example of parameterized path with a single known parameter and custom http errors, now it's time to see wildcard parameters and macros. iris, like net/http std package registers route's handlers by a Handler, the iris' type of handler is just a func(ctx iris.Context) where context comes from github.com/kataras/iris/context. Iris has the easiest and the most powerful routing process you have ever meet. At the same time, iris has its own interpeter(yes like a programming language) for route's path syntax and their dynamic path parameters parsing and evaluation, We call them "macros" for shortcut. How? It calculates its needs and if not any special regexp needed then it just registers the route with the low-level path syntax, otherwise it pre-compiles the regexp and adds the necessary middleware(s). Standard macro types for parameters: if type is missing then parameter's type is defaulted to string, so {param} == {param:string}. If a function not found on that type then the "string"'s types functions are being used. i.e: Besides the fact that iris provides the basic types and some default "macro funcs" you are able to register your own too!. Register a named path parameter function: at the func(argument ...) you can have any standard type, it will be validated before the server starts so don't care about performance here, the only thing it runs at serve time is the returning func(paramValue string) bool. Example Code: Last, do not confuse ctx.Values() with ctx.Params(). Path parameter's values goes to ctx.Params() and context's local storage that can be used to communicate between handlers and middleware(s) goes to ctx.Values(), path parameters and the rest of any custom values are separated for your own good. Run Static Files Example code: More examples can be found here: https://github.com/kataras/iris/tree/master/_examples/beginner/file-server Middleware is just a concept of ordered chain of handlers. Middleware can be registered globally, per-party, per-subdomain and per-route. Example code: iris is able to wrap and convert any external, third-party Handler you used to use to your web application. Let's convert the https://github.com/rs/cors net/http external middleware which returns a `next form` handler. Example code: Iris supports 5 template engines out-of-the-box, developers can still use any external golang template engine, as `context/context#ResponseWriter()` is an `io.Writer`. All of these five template engines have common features with common API, like Layout, Template Funcs, Party-specific layout, partial rendering and more. Example code: View engine supports bundled(https://github.com/shuLhan/go-bindata) template files too. go-bindata gives you two functions, asset and assetNames, these can be setted to each of the template engines using the `.Binary` func. Example code: A real example can be found here: https://github.com/kataras/iris/tree/master/_examples/view/embedding-templates-into-app. Enable auto-reloading of templates on each request. Useful while developers are in dev mode as they no neeed to restart their app on every template edit. Example code: Note: In case you're wondering, the code behind the view engines derives from the "github.com/kataras/iris/view" package, access to the engines' variables can be granded by "github.com/kataras/iris" package too. Each one of these template engines has different options located here: https://github.com/kataras/iris/tree/master/view . This example will show how to store and access data from a session. You don’t need any third-party library, but If you want you can use any session manager compatible or not. In this example we will only allow authenticated users to view our secret message on the /secret page. To get access to it, the will first have to visit /login to get a valid session cookie, which logs him in. Additionally he can visit /logout to revoke his access to our secret message. Example code: Running the example: Sessions persistence can be achieved using one (or more) `sessiondb`. Example Code: More examples: In this example we will create a small chat between web sockets via browser. Example Server Code: Example Client(javascript) Code: Running the example: Iris has first-class support for the MVC pattern, you'll not find these stuff anywhere else in the Go world. Example Code: // GetUserBy serves // Method: GET // Resource: http://localhost:8080/user/{username:string} // By is a reserved "keyword" to tell the framework that you're going to // bind path parameters in the function's input arguments, and it also // helps to have "Get" and "GetBy" in the same controller. // // func (c *ExampleController) GetUserBy(username string) mvc.Result { // return mvc.View{ // Name: "user/username.html", // Data: username, // } // } Can use more than one, the factory will make sure that the correct http methods are being registered for each route for this controller, uncomment these if you want: Iris web framework supports Request data, Models, Persistence Data and Binding with the fastest possible execution. Characteristics: All HTTP Methods are supported, for example if want to serve `GET` then the controller should have a function named `Get()`, you can define more than one method function to serve in the same Controller. Register custom controller's struct's methods as handlers with custom paths(even with regex parametermized path) via the `BeforeActivation` custom event callback, per-controller. Example: Persistence data inside your Controller struct (share data between requests) by defining services to the Dependencies or have a `Singleton` controller scope. Share the dependencies between controllers or register them on a parent MVC Application, and ability to modify dependencies per-controller on the `BeforeActivation` optional event callback inside a Controller, i.e Access to the `Context` as a controller's field(no manual binding is neede) i.e `Ctx iris.Context` or via a method's input argument, i.e Models inside your Controller struct (set-ed at the Method function and rendered by the View). You can return models from a controller's method or set a field in the request lifecycle and return that field to another method, in the same request lifecycle. Flow as you used to, mvc application has its own `Router` which is a type of `iris/router.Party`, the standard iris api. `Controllers` can be registered to any `Party`, including Subdomains, the Party's begin and done handlers work as expected. Optional `BeginRequest(ctx)` function to perform any initialization before the method execution, useful to call middlewares or when many methods use the same collection of data. Optional `EndRequest(ctx)` function to perform any finalization after any method executed. Session dynamic dependency via manager's `Start` to the MVC Application, i.e Inheritance, recursively. Access to the dynamic path parameters via the controller's methods' input arguments, no binding is needed. When you use the Iris' default syntax to parse handlers from a controller, you need to suffix the methods with the `By` word, uppercase is a new sub path. Example: Register one or more relative paths and able to get path parameters, i.e Response via output arguments, optionally, i.e Where `any` means everything, from custom structs to standard language's types-. `Result` is an interface which contains only that function: Dispatch(ctx iris.Context) and Get where HTTP Method function(Post, Put, Delete...). Iris has a very powerful and blazing fast MVC support, you can return any value of any type from a method function and it will be sent to the client as expected. * if `string` then it's the body. * if `string` is the second output argument then it's the content type. * if `int` then it's the status code. * if `bool` is false then it throws 404 not found http error by skipping everything else. * if `error` and not nil then (any type) response will be omitted and error's text with a 400 bad request will be rendered instead. * if `(int, error)` and error is not nil then the response result will be the error's text with the status code as `int`. * if `custom struct` or `interface{}` or `slice` or `map` then it will be rendered as json, unless a `string` content type is following. * if `mvc.Result` then it executes its `Dispatch` function, so good design patters can be used to split the model's logic where needed. Examples with good patterns to follow but not intend to be used in production of course can be found at: https://github.com/kataras/iris/tree/master/_examples/#mvc. By creating components that are independent of one another, developers are able to reuse components quickly and easily in other applications. The same (or similar) view for one application can be refactored for another application with different data because the view is simply handling how the data is being displayed to the user. If you're new to back-end web development read about the MVC architectural pattern first, a good start is that wikipedia article: https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller. But you should have a basic idea of the framework by now, we just scratched the surface. If you enjoy what you just saw and want to learn more, please follow the below links: Examples: Middleware: Home Page: Book (in-progress):
Package restful, a lean package for creating REST-style WebServices without magic. A WebService has a collection of Route objects that dispatch incoming Http Requests to a function calls. Typically, a WebService has a root path (e.g. /users) and defines common MIME types for its routes. WebServices must be added to a container (see below) in order to handler Http requests from a server. A Route is defined by a HTTP method, an URL path and (optionally) the MIME types it consumes (Content-Type) and produces (Accept). This package has the logic to find the best matching Route and if found, call its Function. The (*Request, *Response) arguments provide functions for reading information from the request and writing information back to the response. See the example https://github.com/emicklei/go-restful/blob/master/examples/restful-user-resource.go with a full implementation. A Route parameter can be specified using the format "uri/{var[:regexp]}" or the special version "uri/{var:*}" for matching the tail of the path. For example, /persons/{name:[A-Z][A-Z]} can be used to restrict values for the parameter "name" to only contain capital alphabetic characters. Regular expressions must use the standard Go syntax as described in the regexp package. (https://code.google.com/p/re2/wiki/Syntax) This feature requires the use of a CurlyRouter. A Container holds a collection of WebServices, Filters and a http.ServeMux for multiplexing http requests. Using the statements "restful.Add(...) and restful.Filter(...)" will register WebServices and Filters to the Default Container. The Default container of go-restful uses the http.DefaultServeMux. You can create your own Container and create a new http.Server for that particular container. A filter dynamically intercepts requests and responses to transform or use the information contained in the requests or responses. You can use filters to perform generic logging, measurement, authentication, redirect, set response headers etc. In the restful package there are three hooks into the request,response flow where filters can be added. Each filter must define a FilterFunction: Use the following statement to pass the request,response pair to the next filter or RouteFunction These are processed before any registered WebService. These are processed before any Route of a WebService. These are processed before calling the function associated with the Route. See the example https://github.com/emicklei/go-restful/blob/master/examples/restful-filters.go with full implementations. Two encodings are supported: gzip and deflate. To enable this for all responses: If a Http request includes the Accept-Encoding header then the response content will be compressed using the specified encoding. Alternatively, you can create a Filter that performs the encoding and install it per WebService or Route. See the example https://github.com/emicklei/go-restful/blob/master/examples/restful-encoding-filter.go By installing a pre-defined container filter, your Webservice(s) can respond to the OPTIONS Http request. By installing the filter of a CrossOriginResourceSharing (CORS), your WebService(s) can handle CORS requests. Unexpected things happen. If a request cannot be processed because of a failure, your service needs to tell via the response what happened and why. For this reason HTTP status codes exist and it is important to use the correct code in every exceptional situation. If path or query parameters are not valid (content or type) then use http.StatusBadRequest. Despite a valid URI, the resource requested may not be available If the application logic could not process the request (or write the response) then use http.StatusInternalServerError. The request has a valid URL but the method (GET,PUT,POST,...) is not allowed. The request does not have or has an unknown Accept Header set for this operation. The request does not have or has an unknown Content-Type Header set for this operation. In addition to setting the correct (error) Http status code, you can choose to write a ServiceError message on the response. This package has several options that affect the performance of your service. It is important to understand them and how you can change it. The default router is the RouterJSR311 which is an implementation of its spec (http://jsr311.java.net/nonav/releases/1.1/spec/spec.html). However, it uses regular expressions for all its routes which, depending on your usecase, may consume a significant amount of time. The CurlyRouter implementation is more lightweight that also allows you to use wildcards and expressions, but only if needed. DoNotRecover controls whether panics will be caught to return HTTP 500. If set to true, Route functions are responsible for handling any error situation. Default value is false; it will recover from panics. This has performance implications. SetCacheReadEntity controls whether the response data ([]byte) is cached such that ReadEntity is repeatable. If you expect to read large amounts of payload data, and you do not use this feature, you should set it to false. This package has the means to produce detail logging of the complete Http request matching process and filter invocation. Enabling this feature requires you to set a log.Logger instance such as: (c) 2012-2014, http://ernestmicklei.com. MIT License
Package rtcp implements encoding and decoding of RTCP packets according to RFCs 3550 and 5506. RTCP is a sister protocol of the Real-time Transport Protocol (RTP). Its basic functionality and packet structure is defined in RFC 3550. RTCP provides out-of-band statistics and control information for an RTP session. It partners with RTP in the delivery and packaging of multimedia data, but does not transport any media data itself. The primary function of RTCP is to provide feedback on the quality of service (QoS) in media distribution by periodically sending statistics information such as transmitted octet and packet counts, packet loss, packet delay variation, and round-trip delay time to participants in a streaming multimedia session. An application may use this information to control quality of service parameters, perhaps by limiting flow, or using a different codec. Decoding RTCP packets: Encoding RTCP packets:
Goserial is a simple go package to allow you to read and write from the serial port as a stream of bytes. It aims to have the same API on all platforms, including windows. As an added bonus, the windows package does not use cgo, so you can cross compile for windows from another platform. Unfortunately goinstall does not currently let you cross compile so you will have to do it manually: Currently there is very little in the way of configurability. You can set the baud rate. Then you can Read(), Write(), or Close() the connection. Read() will block until at least one byte is returned. Write is the same. There is currently no exposed way to set the timeouts, though patches are welcome. Currently all ports are opened with 8 data bits, 1 stop bit, no parity, no hardware flow control, and no software flow control. This works fine for many real devices and many faux serial devices including usb-to-serial converters and bluetooth serial ports. You may Read() and Write() simulantiously on the same connection (from different goroutines). Example usage:
Package iris provides a beautifully expressive and easy to use foundation for your next website, API, or distributed app. Source code and other details for the project are available at GitHub: 11.1.1 The only requirement is the Go Programming Language, at least version 1.8 but 1.11.1 and above is highly recommended. Example code: You can start the server(s) listening to any type of `net.Listener` or even `http.Server` instance. The method for initialization of the server should be passed at the end, via `Run` function. Below you'll see some useful examples: UNIX and BSD hosts can take advantage of the reuse port feature. Example code: That's all with listening, you have the full control when you need it. Let's continue by learning how to catch CONTROL+C/COMMAND+C or unix kill command and shutdown the server gracefully. In order to manually manage what to do when app is interrupted, we have to disable the default behavior with the option `WithoutInterruptHandler` and register a new interrupt handler (globally, across all possible hosts). Example code: Access to all hosts that serve your application can be provided by the `Application#Hosts` field, after the `Run` method. But the most common scenario is that you may need access to the host before the `Run` method, there are two ways of gain access to the host supervisor, read below. First way is to use the `app.NewHost` to create a new host and use one of its `Serve` or `Listen` functions to start the application via the `iris#Raw` Runner. Note that this way needs an extra import of the `net/http` package. Example Code: Second, and probably easier way is to use the `host.Configurator`. Note that this method requires an extra import statement of "github.com/kataras/iris/core/host" when using go < 1.9, if you're targeting on go1.9 then you can use the `iris#Supervisor` and omit the extra host import. All common `Runners` we saw earlier (`iris#Addr, iris#Listener, iris#Server, iris#TLS, iris#AutoTLS`) accept a variadic argument of `host.Configurator`, there are just `func(*host.Supervisor)`. Therefore the `Application` gives you the rights to modify the auto-created host supervisor through these. Example Code: Read more about listening and gracefully shutdown by navigating to: All HTTP methods are supported, developers can also register handlers for same paths for different methods. The first parameter is the HTTP Method, second parameter is the request path of the route, third variadic parameter should contains one or more iris.Handler executed by the registered order when a user requests for that specific resouce path from the server. Example code: In order to make things easier for the user, iris provides functions for all HTTP Methods. The first parameter is the request path of the route, second variadic parameter should contains one or more iris.Handler executed by the registered order when a user requests for that specific resouce path from the server. Example code: A set of routes that are being groupped by path prefix can (optionally) share the same middleware handlers and template layout. A group can have a nested group too. `.Party` is being used to group routes, developers can declare an unlimited number of (nested) groups. Example code: iris developers are able to register their own handlers for http statuses like 404 not found, 500 internal server error and so on. Example code: With the help of iris's expressionist router you can build any form of API you desire, with safety. Example code: At the previous example, we've seen static routes, group of routes, subdomains, wildcard subdomains, a small example of parameterized path with a single known parameter and custom http errors, now it's time to see wildcard parameters and macros. iris, like net/http std package registers route's handlers by a Handler, the iris' type of handler is just a func(ctx iris.Context) where context comes from github.com/kataras/iris/context. Iris has the easiest and the most powerful routing process you have ever meet. At the same time, iris has its own interpeter(yes like a programming language) for route's path syntax and their dynamic path parameters parsing and evaluation, We call them "macros" for shortcut. How? It calculates its needs and if not any special regexp needed then it just registers the route with the low-level path syntax, otherwise it pre-compiles the regexp and adds the necessary middleware(s). Standard macro types for parameters: if type is missing then parameter's type is defaulted to string, so {param} == {param:string}. If a function not found on that type then the "string"'s types functions are being used. i.e: Besides the fact that iris provides the basic types and some default "macro funcs" you are able to register your own too!. Register a named path parameter function: at the func(argument ...) you can have any standard type, it will be validated before the server starts so don't care about performance here, the only thing it runs at serve time is the returning func(paramValue string) bool. Example Code: Last, do not confuse ctx.Values() with ctx.Params(). Path parameter's values goes to ctx.Params() and context's local storage that can be used to communicate between handlers and middleware(s) goes to ctx.Values(), path parameters and the rest of any custom values are separated for your own good. Run Static Files Example code: More examples can be found here: https://github.com/kataras/iris/tree/master/_examples/beginner/file-server Middleware is just a concept of ordered chain of handlers. Middleware can be registered globally, per-party, per-subdomain and per-route. Example code: iris is able to wrap and convert any external, third-party Handler you used to use to your web application. Let's convert the https://github.com/rs/cors net/http external middleware which returns a `next form` handler. Example code: Iris supports 5 template engines out-of-the-box, developers can still use any external golang template engine, as `context/context#ResponseWriter()` is an `io.Writer`. All of these five template engines have common features with common API, like Layout, Template Funcs, Party-specific layout, partial rendering and more. Example code: View engine supports bundled(https://github.com/shuLhan/go-bindata) template files too. go-bindata gives you two functions, asset and assetNames, these can be setted to each of the template engines using the `.Binary` func. Example code: A real example can be found here: https://github.com/kataras/iris/tree/master/_examples/view/embedding-templates-into-app. Enable auto-reloading of templates on each request. Useful while developers are in dev mode as they no neeed to restart their app on every template edit. Example code: Note: In case you're wondering, the code behind the view engines derives from the "github.com/kataras/iris/view" package, access to the engines' variables can be granded by "github.com/kataras/iris" package too. Each one of these template engines has different options located here: https://github.com/kataras/iris/tree/master/view . This example will show how to store and access data from a session. You don’t need any third-party library, but If you want you can use any session manager compatible or not. In this example we will only allow authenticated users to view our secret message on the /secret page. To get access to it, the will first have to visit /login to get a valid session cookie, which logs him in. Additionally he can visit /logout to revoke his access to our secret message. Example code: Running the example: Sessions persistence can be achieved using one (or more) `sessiondb`. Example Code: More examples: In this example we will create a small chat between web sockets via browser. Example Server Code: Example Client(javascript) Code: Running the example: Iris has first-class support for the MVC pattern, you'll not find these stuff anywhere else in the Go world. Example Code: // GetUserBy serves // Method: GET // Resource: http://localhost:8080/user/{username:string} // By is a reserved "keyword" to tell the framework that you're going to // bind path parameters in the function's input arguments, and it also // helps to have "Get" and "GetBy" in the same controller. // // func (c *ExampleController) GetUserBy(username string) mvc.Result { // return mvc.View{ // Name: "user/username.html", // Data: username, // } // } Can use more than one, the factory will make sure that the correct http methods are being registered for each route for this controller, uncomment these if you want: Iris web framework supports Request data, Models, Persistence Data and Binding with the fastest possible execution. Characteristics: All HTTP Methods are supported, for example if want to serve `GET` then the controller should have a function named `Get()`, you can define more than one method function to serve in the same Controller. Register custom controller's struct's methods as handlers with custom paths(even with regex parametermized path) via the `BeforeActivation` custom event callback, per-controller. Example: Persistence data inside your Controller struct (share data between requests) by defining services to the Dependencies or have a `Singleton` controller scope. Share the dependencies between controllers or register them on a parent MVC Application, and ability to modify dependencies per-controller on the `BeforeActivation` optional event callback inside a Controller, i.e Access to the `Context` as a controller's field(no manual binding is neede) i.e `Ctx iris.Context` or via a method's input argument, i.e Models inside your Controller struct (set-ed at the Method function and rendered by the View). You can return models from a controller's method or set a field in the request lifecycle and return that field to another method, in the same request lifecycle. Flow as you used to, mvc application has its own `Router` which is a type of `iris/router.Party`, the standard iris api. `Controllers` can be registered to any `Party`, including Subdomains, the Party's begin and done handlers work as expected. Optional `BeginRequest(ctx)` function to perform any initialization before the method execution, useful to call middlewares or when many methods use the same collection of data. Optional `EndRequest(ctx)` function to perform any finalization after any method executed. Session dynamic dependency via manager's `Start` to the MVC Application, i.e Inheritance, recursively. Access to the dynamic path parameters via the controller's methods' input arguments, no binding is needed. When you use the Iris' default syntax to parse handlers from a controller, you need to suffix the methods with the `By` word, uppercase is a new sub path. Example: Register one or more relative paths and able to get path parameters, i.e Response via output arguments, optionally, i.e Where `any` means everything, from custom structs to standard language's types-. `Result` is an interface which contains only that function: Dispatch(ctx iris.Context) and Get where HTTP Method function(Post, Put, Delete...). Iris has a very powerful and blazing fast MVC support, you can return any value of any type from a method function and it will be sent to the client as expected. * if `string` then it's the body. * if `string` is the second output argument then it's the content type. * if `int` then it's the status code. * if `bool` is false then it throws 404 not found http error by skipping everything else. * if `error` and not nil then (any type) response will be omitted and error's text with a 400 bad request will be rendered instead. * if `(int, error)` and error is not nil then the response result will be the error's text with the status code as `int`. * if `custom struct` or `interface{}` or `slice` or `map` then it will be rendered as json, unless a `string` content type is following. * if `mvc.Result` then it executes its `Dispatch` function, so good design patters can be used to split the model's logic where needed. Examples with good patterns to follow but not intend to be used in production of course can be found at: https://github.com/kataras/iris/tree/master/_examples/#mvc. By creating components that are independent of one another, developers are able to reuse components quickly and easily in other applications. The same (or similar) view for one application can be refactored for another application with different data because the view is simply handling how the data is being displayed to the user. If you're new to back-end web development read about the MVC architectural pattern first, a good start is that wikipedia article: https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller. But you should have a basic idea of the framework by now, we just scratched the surface. If you enjoy what you just saw and want to learn more, please follow the below links: Examples: Middleware: Home Page: Book (in-progress):
Goserial is a simple go package to allow you to read and write from the serial port as a stream of bytes. It aims to have the same API on all platforms, including windows. As an added bonus, the windows package does not use cgo, so you can cross compile for windows from another platform. Unfortunately goinstall does not currently let you cross compile so you will have to do it manually: Currently there is very little in the way of configurability. You can set the baud rate. Then you can Read(), Write(), or Close() the connection. Read() will block until at least one byte is returned. Write is the same. There is currently no exposed way to set the timeouts, though patches are welcome. Currently all ports are opened with 8 data bits, 1 stop bit, no parity, no hardware flow control, and no software flow control. This works fine for many real devices and many faux serial devices including usb-to-serial converters and bluetooth serial ports. You may Read() and Write() simulantiously on the same connection (from different goroutines). Example usage:
Package restful , a lean package for creating REST-style WebServices without magic. A WebService has a collection of Route objects that dispatch incoming Http Requests to a function calls. Typically, a WebService has a root path (e.g. /users) and defines common MIME types for its routes. WebServices must be added to a container (see below) in order to handler Http requests from a server. A Route is defined by a HTTP method, an URL path and (optionally) the MIME types it consumes (Content-Type) and produces (Accept). This package has the logic to find the best matching Route and if found, call its Function. The (*Request, *Response) arguments provide functions for reading information from the request and writing information back to the response. See the example https://github.com/emicklei/go-restful/blob/master/examples/restful-user-resource.go with a full implementation. A Route parameter can be specified using the format "uri/{var[:regexp]}" or the special version "uri/{var:*}" for matching the tail of the path. For example, /persons/{name:[A-Z][A-Z]} can be used to restrict values for the parameter "name" to only contain capital alphabetic characters. Regular expressions must use the standard Go syntax as described in the regexp package. (https://code.google.com/p/re2/wiki/Syntax) This feature requires the use of a CurlyRouter. A Container holds a collection of WebServices, Filters and a http.ServeMux for multiplexing http requests. Using the statements "restful.Add(...) and restful.Filter(...)" will register WebServices and Filters to the Default Container. The Default container of go-restful uses the http.DefaultServeMux. You can create your own Container and create a new http.Server for that particular container. A filter dynamically intercepts requests and responses to transform or use the information contained in the requests or responses. You can use filters to perform generic logging, measurement, authentication, redirect, set response headers etc. In the restful package there are three hooks into the request,response flow where filters can be added. Each filter must define a FilterFunction: Use the following statement to pass the request,response pair to the next filter or RouteFunction These are processed before any registered WebService. These are processed before any Route of a WebService. These are processed before calling the function associated with the Route. See the example https://github.com/emicklei/go-restful/blob/master/examples/restful-filters.go with full implementations. Two encodings are supported: gzip and deflate. To enable this for all responses: If a Http request includes the Accept-Encoding header then the response content will be compressed using the specified encoding. Alternatively, you can create a Filter that performs the encoding and install it per WebService or Route. See the example https://github.com/emicklei/go-restful/blob/master/examples/restful-encoding-filter.go By installing a pre-defined container filter, your Webservice(s) can respond to the OPTIONS Http request. By installing the filter of a CrossOriginResourceSharing (CORS), your WebService(s) can handle CORS requests. Unexpected things happen. If a request cannot be processed because of a failure, your service needs to tell via the response what happened and why. For this reason HTTP status codes exist and it is important to use the correct code in every exceptional situation. If path or query parameters are not valid (content or type) then use http.StatusBadRequest. Despite a valid URI, the resource requested may not be available If the application logic could not process the request (or write the response) then use http.StatusInternalServerError. The request has a valid URL but the method (GET,PUT,POST,...) is not allowed. The request does not have or has an unknown Accept Header set for this operation. The request does not have or has an unknown Content-Type Header set for this operation. In addition to setting the correct (error) Http status code, you can choose to write a ServiceError message on the response. This package has several options that affect the performance of your service. It is important to understand them and how you can change it. DoNotRecover controls whether panics will be caught to return HTTP 500. If set to false, the container will recover from panics. Default value is true If content encoding is enabled then the default strategy for getting new gzip/zlib writers and readers is to use a sync.Pool. Because writers are expensive structures, performance is even more improved when using a preloaded cache. You can also inject your own implementation. This package has the means to produce detail logging of the complete Http request matching process and filter invocation. Enabling this feature requires you to set an implementation of restful.StdLogger (e.g. log.Logger) instance such as: The restful.SetLogger() method allows you to override the logger used by the package. By default restful uses the standard library `log` package and logs to stdout. Different logging packages are supported as long as they conform to `StdLogger` interface defined in the `log` sub-package, writing an adapter for your preferred package is simple. (c) 2012-2015, http://ernestmicklei.com. MIT License
Package iris provides a beautifully expressive and easy to use foundation for your next website, API, or distributed app. Source code and other details for the project are available at GitHub: 10.0.0 The only requirement is the Go Programming Language, at least version 1.8 but 1.9 is highly recommended. Example code: You can start the server(s) listening to any type of `net.Listener` or even `http.Server` instance. The method for initialization of the server should be passed at the end, via `Run` function. Below you'll see some useful examples: UNIX and BSD hosts can take advantage of the reuse port feature. Example code: That's all with listening, you have the full control when you need it. Let's continue by learning how to catch CONTROL+C/COMMAND+C or unix kill command and shutdown the server gracefully. In order to manually manage what to do when app is interrupted, we have to disable the default behavior with the option `WithoutInterruptHandler` and register a new interrupt handler (globally, across all possible hosts). Example code: Access to all hosts that serve your application can be provided by the `Application#Hosts` field, after the `Run` method. But the most common scenario is that you may need access to the host before the `Run` method, there are two ways of gain access to the host supervisor, read below. First way is to use the `app.NewHost` to create a new host and use one of its `Serve` or `Listen` functions to start the application via the `iris#Raw` Runner. Note that this way needs an extra import of the `net/http` package. Example Code: Second, and probably easier way is to use the `host.Configurator`. Note that this method requires an extra import statement of "github.com/alphayan/iris/core/host" when using go < 1.9, if you're targeting on go1.9 then you can use the `iris#Supervisor` and omit the extra host import. All common `Runners` we saw earlier (`iris#Addr, iris#Listener, iris#Server, iris#TLS, iris#AutoTLS`) accept a variadic argument of `host.Configurator`, there are just `func(*host.Supervisor)`. Therefore the `Application` gives you the rights to modify the auto-created host supervisor through these. Example Code: Read more about listening and gracefully shutdown by navigating to: All HTTP methods are supported, developers can also register handlers for same paths for different methods. The first parameter is the HTTP Method, second parameter is the request path of the route, third variadic parameter should contains one or more iris.Handler executed by the registered order when a user requests for that specific resouce path from the server. Example code: In order to make things easier for the user, iris provides functions for all HTTP Methods. The first parameter is the request path of the route, second variadic parameter should contains one or more iris.Handler executed by the registered order when a user requests for that specific resouce path from the server. Example code: A set of routes that are being groupped by path prefix can (optionally) share the same middleware handlers and template layout. A group can have a nested group too. `.Party` is being used to group routes, developers can declare an unlimited number of (nested) groups. Example code: iris developers are able to register their own handlers for http statuses like 404 not found, 500 internal server error and so on. Example code: With the help of iris's expressionist router you can build any form of API you desire, with safety. Example code: At the previous example, we've seen static routes, group of routes, subdomains, wildcard subdomains, a small example of parameterized path with a single known parameter and custom http errors, now it's time to see wildcard parameters and macros. iris, like net/http std package registers route's handlers by a Handler, the iris' type of handler is just a func(ctx iris.Context) where context comes from github.com/alphayan/iris/context. Iris has the easiest and the most powerful routing process you have ever meet. At the same time, iris has its own interpeter(yes like a programming language) for route's path syntax and their dynamic path parameters parsing and evaluation, We call them "macros" for shortcut. How? It calculates its needs and if not any special regexp needed then it just registers the route with the low-level path syntax, otherwise it pre-compiles the regexp and adds the necessary middleware(s). Standard macro types for parameters: if type is missing then parameter's type is defaulted to string, so {param} == {param:string}. If a function not found on that type then the "string"'s types functions are being used. i.e: Besides the fact that iris provides the basic types and some default "macro funcs" you are able to register your own too!. Register a named path parameter function: at the func(argument ...) you can have any standard type, it will be validated before the server starts so don't care about performance here, the only thing it runs at serve time is the returning func(paramValue string) bool. Example Code: A path parameter name should contain only alphabetical letters, symbols, containing '_' and numbers are NOT allowed. If route failed to be registered, the app will panic without any warnings if you didn't catch the second return value(error) on .Handle/.Get.... Last, do not confuse ctx.Values() with ctx.Params(). Path parameter's values goes to ctx.Params() and context's local storage that can be used to communicate between handlers and middleware(s) goes to ctx.Values(), path parameters and the rest of any custom values are separated for your own good. Run Static Files Example code: More examples can be found here: https://github.com/alphayan/iris/tree/master/_examples/beginner/file-server Middleware is just a concept of ordered chain of handlers. Middleware can be registered globally, per-party, per-subdomain and per-route. Example code: iris is able to wrap and convert any external, third-party Handler you used to use to your web application. Let's convert the https://github.com/rs/cors net/http external middleware which returns a `next form` handler. Example code: Iris supports 5 template engines out-of-the-box, developers can still use any external golang template engine, as `context/context#ResponseWriter()` is an `io.Writer`. All of these five template engines have common features with common API, like Layout, Template Funcs, Party-specific layout, partial rendering and more. Example code: View engine supports bundled(https://github.com/jteeuwen/go-bindata) template files too. go-bindata gives you two functions, asset and assetNames, these can be setted to each of the template engines using the `.Binary` func. Example code: A real example can be found here: https://github.com/alphayan/iris/tree/master/_examples/view/embedding-templates-into-app. Enable auto-reloading of templates on each request. Useful while developers are in dev mode as they no neeed to restart their app on every template edit. Example code: Note: In case you're wondering, the code behind the view engines derives from the "github.com/alphayan/iris/view" package, access to the engines' variables can be granded by "github.com/alphayan/iris" package too. Each one of these template engines has different options located here: https://github.com/alphayan/iris/tree/master/view . This example will show how to store and access data from a session. You don’t need any third-party library, but If you want you can use any session manager compatible or not. In this example we will only allow authenticated users to view our secret message on the /secret page. To get access to it, the will first have to visit /login to get a valid session cookie, which logs him in. Additionally he can visit /logout to revoke his access to our secret message. Example code: Running the example: Sessions persistence can be achieved using one (or more) `sessiondb`. Example Code: More examples: In this example we will create a small chat between web sockets via browser. Example Server Code: Example Client(javascript) Code: Running the example: Iris has first-class support for the MVC pattern, you'll not find these stuff anywhere else in the Go world. Example Code: // GetUserBy serves // Method: GET // Resource: http://localhost:8080/user/{username:string} // By is a reserved "keyword" to tell the framework that you're going to // bind path parameters in the function's input arguments, and it also // helps to have "Get" and "GetBy" in the same controller. // // func (c *ExampleController) GetUserBy(username string) mvc.Result { // return mvc.View{ // Name: "user/username.html", // Data: username, // } // } Can use more than one, the factory will make sure that the correct http methods are being registered for each route for this controller, uncomment these if you want: Iris web framework supports Request data, Models, Persistence Data and Binding with the fastest possible execution. Characteristics: All HTTP Methods are supported, for example if want to serve `GET` then the controller should have a function named `Get()`, you can define more than one method function to serve in the same Controller. Register custom controller's struct's methods as handlers with custom paths(even with regex parametermized path) via the `BeforeActivation` custom event callback, per-controller. Example: Persistence data inside your Controller struct (share data between requests) by defining services to the Dependencies or have a `Singleton` controller scope. Share the dependencies between controllers or register them on a parent MVC Application, and ability to modify dependencies per-controller on the `BeforeActivation` optional event callback inside a Controller, i.e Access to the `Context` as a controller's field(no manual binding is neede) i.e `Ctx iris.Context` or via a method's input argument, i.e Models inside your Controller struct (set-ed at the Method function and rendered by the View). You can return models from a controller's method or set a field in the request lifecycle and return that field to another method, in the same request lifecycle. Flow as you used to, mvc application has its own `Router` which is a type of `iris/router.Party`, the standard iris api. `Controllers` can be registered to any `Party`, including Subdomains, the Party's begin and done handlers work as expected. Optional `BeginRequest(ctx)` function to perform any initialization before the method execution, useful to call middlewares or when many methods use the same collection of data. Optional `EndRequest(ctx)` function to perform any finalization after any method executed. Session dynamic dependency via manager's `Start` to the MVC Application, i.e Inheritance, recursively. Access to the dynamic path parameters via the controller's methods' input arguments, no binding is needed. When you use the Iris' default syntax to parse handlers from a controller, you need to suffix the methods with the `By` word, uppercase is a new sub path. Example: Register one or more relative paths and able to get path parameters, i.e Response via output arguments, optionally, i.e Where `any` means everything, from custom structs to standard language's types-. `Result` is an interface which contains only that function: Dispatch(ctx iris.Context) and Get where HTTP Method function(Post, Put, Delete...). Iris has a very powerful and blazing fast MVC support, you can return any value of any type from a method function and it will be sent to the client as expected. * if `string` then it's the body. * if `string` is the second output argument then it's the content type. * if `int` then it's the status code. * if `bool` is false then it throws 404 not found http error by skipping everything else. * if `error` and not nil then (any type) response will be omitted and error's text with a 400 bad request will be rendered instead. * if `(int, error)` and error is not nil then the response result will be the error's text with the status code as `int`. * if `custom struct` or `interface{}` or `slice` or `map` then it will be rendered as json, unless a `string` content type is following. * if `mvc.Result` then it executes its `Dispatch` function, so good design patters can be used to split the model's logic where needed. Examples with good patterns to follow but not intend to be used in production of course can be found at: https://github.com/alphayan/iris/tree/master/_examples/#mvc. By creating components that are independent of one another, developers are able to reuse components quickly and easily in other applications. The same (or similar) view for one application can be refactored for another application with different data because the view is simply handling how the data is being displayed to the user. If you're new to back-end web development read about the MVC architectural pattern first, a good start is that wikipedia article: https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller. But you should have a basic idea of the framework by now, we just scratched the surface. If you enjoy what you just saw and want to learn more, please follow the below links: Examples: Middleware: Home Page: Book (in-progress):
The package defines a single interface and a few implementations of the interface. The externalization of the loop flow control makes it easy to test the internal functions of background goroutines by, for instance, only running the loop once while under test. The design is that any errors which need to be returned from the loop will be passed back on a channel whose implementation is left up to the individual Looper. Calling methods can wait on execution and for any resulting errors by calling the Wait() method on the Looper. In this example, we are going to run a FreeLooper with 5 iterations. In the course of running, an error is generated, which the parent function captures and outputs. As a result of the error only 3 of the 5 iterations are completed and the output reflects this.
Package di helps implement Dependency Injection for web development. Dependency Injection aims to make dependencies accessible to its clients without them having to construct or ask for their dependencies explicitly. This raises the questions di uses factories to isolate dependency construction and make them available via struct fields. This makes them accessible to code that uses them residing in methods on those structs. To that end di provides the types Dispatcher, Binding and interfaces ApplicationFactory, RequestFactory, Controller and Router. A Controller represents a type whose methods can serve HTTP requests and exports Bindings. A Binding specifies binds an HTTP request with a specific <Verb,Path> to a method on that Controller. A Controller can be registered with a Dispatcher teaching it how to route requests. ApplicationFactory and RequestFactory encapsulate all object construction including Controllers. Dispatcher uses the factories to get hold of a Controller object for the request and call the appropriate method. The Dispatcher uses a Router to handle request multiplexing. The flow of control while serving requests looks like The example demonstrates how to wire everything up.
lf is a terminal file manager. Source code can be found in the repository at https://github.com/gokcehan/lf. This documentation can either be read from terminal using 'lf -doc' or online at https://godoc.org/github.com/gokcehan/lf. You can also use 'doc' command (default '<f-1>') inside lf to view the documentation in a pager. You can run 'lf -help' to see descriptions of command line options. The following commands are provided by lf: The following command line commands are provided by lf: The following options can be used to customize the behavior of lf: The following environment variables are exported for shell commands: The following commands/keybindings are provided by default: The following additional keybindings are provided by default: Configuration files should be located at: Marks file should be located at: History file should be located at: You can configure the default values of following variables to change these locations: A sample configuration file can be found at https://github.com/gokcehan/lf/blob/master/etc/lfrc.example. This section shows information about builtin commands. Modal commands do not take any arguments, but instead change the operation mode to read their input conveniently, and so they are meant to be assigned to keybindings. Quit lf and return to the shell. Move the current file selection upwards/downwards by one/half a page/full page. Change the current working directory to the parent directory. If the current file is a directory, then change the current directory to it, otherwise, execute the 'open' command. A default 'open' command is provided to call the default system opener asynchronously with the current file as the argument. A custom 'open' command can be defined to override this default. (See also 'OPENER' variable and 'Opening Files' section) Move the current file selection to the top/bottom of the directory. Toggle the selection of the current file or files given as arguments. Reverse the selection of all files in the current directory (i.e. 'toggle' all files). Selections in other directories are not effected by this command. You can define a new command to select all files in the directory by combining 'invert' with 'unselect' (i.e. `cmd select-all :unselect; invert`), though this will also remove selections in other directories. Remove the selection of all files in all directories. Select files that match the given glob. Unselect files that match the given glob. If there are no selections, save the path of the current file to the copy buffer, otherwise, copy the paths of selected files. If there are no selections, save the path of the current file to the cut buffer, otherwise, copy the paths of selected files. Copy/Move files in copy/cut buffer to the current working directory. Clear file paths in copy/cut buffer. Synchronize copied/cut files with server. This command is automatically called when required. Draw the screen. This command is automatically called when required. Synchronize the terminal and redraw the screen. Load modified files and directories. This command is automatically called when required. Flush the cache and reload all files and directories. Print given arguments to the message line at the bottom. Print given arguments to the message line at the bottom and also to the log file. Print given arguments to the message line at the bottom in red color and also to the log file. Change the working directory to the given argument. Change the current file selection to the given argument. Remove the current file or selected file(s). Rename the current file using the builtin method. A custom 'rename' command can be defined to override this default. Read the configuration file given in the argument. Simulate key pushes given in the argument. Read a command to evaluate. Read a shell command to execute. (See also 'Prefixes' and 'Shell Commands' sections) Read a shell command to execute piping its standard I/O to the bottom statline. (See also 'Prefixes' and 'Piping Shell Commands' sections) Read a shell command to execute and wait for a key press in the end. (See also 'Prefixes' and 'Waiting Shell Commands' sections) Read a shell command to execute synchronously without standard I/O. Read key(s) to find the appropriate file name match in the forward/backward direction and jump to the next/previous match. (See also 'anchorfind', 'findlen', 'wrapscan', 'ignorecase', 'smartcase', 'ignoredia', and 'smartdia' options and 'Searching Files' section) Read a pattern to search for a file name match in the forward/backward direction and jump to the next/previous match. (See also 'globsearch', 'incsearch', 'wrapscan', 'ignorecase', 'smartcase', 'ignoredia', and 'smartdia' options and 'Searching Files' section) Save the current directory as a bookmark assigned to the given key. Change the current directory to the bookmark assigned to the given key. A special bookmark "'" holds the previous directory after a 'mark-load', 'cd', or 'select' command. Remove a bookmark assigned to the given key. This section shows information about command line commands. These should be mostly compatible with readline keybindings. A character refers to a unicode code point, a word consists of letters and digits, and a unix word consists of any non-blank characters. Quit command line mode and return to normal mode. Autocomplete the current word. Execute the current line. Interrupt the current shell-pipe command and return to the normal mode. Go to next/previous item in the history. Move the cursor to the left/right. Move the cursor to the beginning/end of line. Delete the next character in forward/backward direction. Delete everything up to the beginning/end of line. Delete the previous unix word. Paste the buffer content containing the last deleted item. Transpose the positions of last two characters/words. Move the cursor by one word in forward/backward direction. Delete the next word in forward direction. Capitalize/uppercase/lowercase the current word and jump to the next word. This section shows information about options to customize the behavior. Character ':' is used as the separator for list options '[]int' and '[]string'. When this option is enabled, find command starts matching patterns from the beginning of file names, otherwise, it can match at an arbitrary position. When this option is enabled, directory sizes show the number of items inside instead of the size of directory file. The former needs to be calculated by reading the directory and counting the items inside. The latter is directly provided by the operating system and it does not require any calculation, though it is non-intuitive and it can often be misleading. This option is disabled by default for performance reasons. This option only has an effect when 'info' has a 'size' field and the pane is wide enough to show the information. A thousand items are counted per directory at most, and bigger directories are shown as '999+'. Show directories first above regular files. Draw boxes around panes with box drawing characters. Format string of error messages shown in the bottom message line. File separator used in environment variables 'fs' and 'fx'. Number of characters prompted for the find command. When this value is set to 0, find command prompts until there is only a single match left. When this option is enabled, search command patterns are considered as globs, otherwise they are literals. With globbing, '*' matches any sequence, '?' matches any character, and '[...]' or '[^...] matches character sets or ranges. Otherwise, these characters are interpreted as they are. Show hidden files. On unix systems, hidden files are determined by the value of 'hiddenfiles'. On windows, only files with hidden attributes are considered hidden files. List of hidden file glob patterns. Patterns can be given as relative or absolute paths. Globbing supports the usual special characters, '*' to match any sequence, '?' to match any character, and '[...]' or '[^...] to match character sets or ranges. In addition, if a pattern starts with '!', then its matches are excluded from hidden files. Show icons before each item in the list. By default, only two icons, 🗀 (U+1F5C0) and 🗎 (U+1F5CE), are used for directories and files respectively, as they are supported in the unicode standard. Icons can be configured with an environment variable named 'LF_ICONS'. The syntax of this variable is similar to 'LS_COLORS'. See the wiki page for an example icon configuration. Sets 'IFS' variable in shell commands. It works by adding the assignment to the beginning of the command string as 'IFS='...'; ...'. The reason is that 'IFS' variable is not inherited by the shell for security reasons. This method assumes a POSIX shell syntax and so it can fail for non-POSIX shells. This option has no effect when the value is left empty. This option does not have any effect on windows. Ignore case in search patterns. Ignore diacritics in search patterns. Jump to the first match after each keystroke during searching. List of information shown for directory items at the right side of pane. Currently supported information types are 'size', 'time', 'atime', and 'ctime'. Information is only shown when the pane width is more than twice the width of information. Show the position number for directory items at the left side of pane. When 'relativenumber' is enabled, only the current line shows the absolute position and relative positions are shown for the rest. Set the interval in seconds for periodic checks of directory updates. This works by periodically calling the 'load' command. Note that directories are already updated automatically in many cases. This option can be useful when there is an external process changing the displayed directory and you are not doing anything in lf. Periodic checks are disabled when the value of this option is set to zero. Show previews of files and directories at the right most pane. If the file has more lines than the preview pane, rest of the lines are not read. Files containing the null character (U+0000) in the read portion are considered binary files and displayed as 'binary'. Set the path of a previewer file to filter the content of regular files for previewing. The file should be executable. Two arguments are passed to the file, first is the current file name, and second is the height of preview pane. SIGPIPE signal is sent when enough lines are read. Preview filtering is disabled and files are displayed as they are when the value of this option is left empty. Format string of the prompt shown in the top line. Special expansions are provided, '%u' as the user name, '%h' as the host name, '%w' as the working directory, and '%f' as the file name. Home folder is shown as '~' in the working directory expansion. Directory names are automatically shortened to a single character starting from the left most parent when the prompt does not fit to the screen. List of ratios of pane widths. Number of items in the list determines the number of panes in the ui. When 'preview' option is enabled, the right most number is used for the width of preview pane. Show the position number relative to the current line. When 'number' is enabled, current line shows the absolute position, otherwise nothing is shown. Reverse the direction of sort. Minimum number of offset lines shown at all times in the top and the bottom of the screen when scrolling. The current line is kept in the middle when this option is set to a large value that is bigger than the half of number of lines. A smaller offset can be used when the current file is close to the beginning or end of the list to show the maximum number of items. Shell executable to use for shell commands. Shell commands are executed as 'shell shellopts -c command -- arguments'. On windows, '/c' is used instead of '-c' which should work in 'cmd' and 'powershell'. List of shell options to pass to the shell executable. Override 'ignorecase' option when the pattern contains an uppercase character. This option has no effect when 'ignorecase' is disabled. Override 'ignoredia' option when the pattern contains a character with diacritic. This option has no effect when 'ignoredia' is disabled. Sort type for directories. Currently supported sort types are 'natural', 'name', 'size', 'time', 'ctime', 'atime', and 'ext'. Number of space characters to show for horizontal tabulation (U+0009) character. Format string of the file modification time shown in the bottom line. Truncate character shown at the end when the file name does not fit to the pane. Searching can wrap around the file list. Scrolling can wrap around the file list. The following variables are exported for shell commands: These are referred with a '$' prefix on POSIX shells (e.g. '$f'), between '%' characters on Windows cmd (e.g. '%f%'), and with a '$env:' prefix on Windows powershell (e.g. '$env:f'). Current file selection as a full path. Selected file(s) separated with the value of 'filesep' option as full path(s). Selected file(s) (i.e. 'fs') if there are any selected files, otherwise current file selection (i.e. 'f'). Id of the running client. The value of this variable is set to the current nesting level when you run lf from a shell spawned inside lf. You can add the value of this variable to your shell prompt to make it clear that your shell runs inside lf. For example, with POSIX shells, you can use '[ -n "$LF_LEVEL" ] && PS1="$PS1""(lf level: $LF_LEVEL) "' in your shell configuration file (e.g. '~/.bashrc'). If this variable is set in the environment, use the same value, otherwise set the value to 'start' in Windows, 'open' in MacOS, 'xdg-open' in others. If this variable is set in the environment, use the same value, otherwise set the value to 'vi' on unix, 'notepad' in Windows. If this variable is set in the environment, use the same value, otherwise set the value to 'less' on unix, 'more' in Windows. If this variable is set in the environment, use the same value, otherwise set the value to 'sh' on unix, 'cmd' in Windows. The following command prefixes are used by lf: The same evaluator is used for the command line and the configuration file for read and shell commands. The difference is that prefixes are not necessary in the command line. Instead, different modes are provided to read corresponding commands. These modes are mapped to the prefix keys above by default. Characters from '#' to newline are comments and ignored: There are three special commands ('set', 'map', and 'cmd') and their variants for configuration. Command 'set' is used to set an option which can be boolean, integer, or string: Command 'map' is used to bind a key to a command which can be builtin command, custom command, or shell command: Command 'cmap' is used to bind a key to a command line command which can only be one of the builtin commands: You can delete an existing binding by leaving the expression empty: Command 'cmd' is used to define a custom command: You can delete an existing command by leaving the expression empty: If there is no prefix then ':' is assumed: An explicit ':' can be provided to group statements until a newline which is especially useful for 'map' and 'cmd' commands: If you need multiline you can wrap statements in '{{' and '}}' after the proper prefix. Regular keys are assigned to a command with the usual syntax: Keys combined with the shift key simply use the uppercase letter: Special keys are written in between '<' and '>' characters and always use lowercase letters: Angle brackets can be assigned with their special names: Function keys are prefixed with 'f' character: Keys combined with the control key are prefixed with 'c' character: Keys combined with the alt key are assigned in two different ways depending on the behavior of your terminal. Older terminals (e.g. xterm) may set the 8th bit of a character when the alt key is pressed. On these terminals, you can use the corresponding byte for the mapping: Newer terminals (e.g. gnome-terminal) may prefix the key with an escape key when the alt key is pressed. lf uses the escape delaying mechanism to recognize alt keys in these terminals (delay is 100ms). On these terminals, keys combined with the alt key are prefixed with 'a' character: Please note that, some key combinations are not possible due to the way terminals work (e.g. control and h combination sends a backspace key instead). The easiest way to find the name of a key combination is to press the key while lf is running and read the name of the key from the unknown mapping error. The usual way to map a key sequence is to assign it to a named or unnamed command. While this provides a clean way to remap builtin keys as well as other commands, it can be limiting at times. For this reason 'push' command is provided by lf. This command is used to simulate key pushes given as its arguments. You can 'map' a key to a 'push' command with an argument to create various keybindings. This is mainly useful for two purposes. First, it can be used to map a command with a command count: Second, it can be used to avoid typing the name when a command takes arguments: One thing to be careful is that since 'push' command works with keys instead of commands it is possible to accidentally create recursive bindings: These types of bindings create a deadlock when executed. Regular shell commands are the most basic command type that is useful for many purposes. For example, we can write a shell command to move selected file(s) to trash. A first attempt to write such a command may look like this: We check '$fs' to see if there are any selected files. Otherwise we just delete the current file. Since this is such a common pattern, a separate '$fx' variable is provided. We can use this variable to get rid of the conditional: The trash directory is checked each time the command is executed. We can move it outside of the command so it would only run once at startup: Since these are one liners, we can drop '{{' and '}}': Finally note that we set 'IFS' variable manually in these commands. Instead we could use the 'ifs' option to set it for all shell commands (i.e. 'set ifs "\n"'). This can be especially useful for interactive use (e.g. '$rm $f' or '$rm $fs' would simply work). This option is not set by default as it can behave unexpectedly for new users. However, use of this option is highly recommended and it is assumed in the rest of the documentation. Regular shell commands have some limitations in some cases. When an output or error message is given and the command exits afterwards, the ui is immediately resumed and there is no way to see the message without dropping to shell again. Also, even when there is no output or error, the ui still needs to be paused while the command is running. This can cause flickering on the screen for short commands and similar distractions for longer commands. Instead of pausing the ui, piping shell commands connects stdin, stdout, and stderr of the command to the statline in the bottom of the ui. This can be useful for programs following the unix philosophy to give no output in the success case, and brief error messages or prompts in other cases. For example, following rename command prompts for overwrite in the statline if there is an existing file with the given name: You can also output error messages in the command and it will show up in the statline. For example, an alternative rename command may look like this: One thing to be careful is that although input is still line buffered, output and error are byte buffered and verbose commands will be very slow to display. Waiting shell commands are similar to regular shell commands except that they wait for a key press when the command is finished. These can be useful to see the output of a program before the ui is resumed. Waiting shell commands are more appropriate than piping shell commands when the command is verbose and the output is best displayed as multiline. Asynchronous shell commands are used to start a command in the background and then resume operation without waiting for the command to finish. Stdin, stdout, and stderr of the command is neither connected to the terminal nor to the ui. One of the more advanced features in lf is remote commands. All clients connect to a server on startup. It is possible to send commands to all or any of the connected clients over the common server. This is used internally to notify file selection changes to other clients. To use this feature, you need to use a client which supports communicating with a UNIX-domain socket. OpenBSD implementation of netcat (nc) is one such example. You can use it to send a command to the socket file: Since such a client may not be available everywhere, lf comes bundled with a command line flag to be used as such. When using lf, you do not need to specify the address of the socket file. This is the recommended way of using remote commands since it is shorter and immune to socket file address changes: In this command 'send' is used to send the rest of the string as a command to all connected clients. You can optionally give it an id number to send a command to a single client: All clients have a unique id number but you may not be aware of the id number when you are writing a command. For this purpose, an '$id' variable is exported to the environment for shell commands. You can use it to send a remote command from a client to the server which in return sends a command back to itself. So now you can display a message in the current client by calling the following in a shell command: Since lf does not have control flow syntax, remote commands are used for such needs. For example, you can configure the number of columns in the ui with respect to the terminal width as follows: Besides 'send' command, there are also two commands to get or set the current file selection. Two possible modes 'copy' and 'move' specify whether selected files are to be copied or moved. File names are separated by newline character. Setting the file selection is done with 'save' command: Getting the file selection is similarly done with 'load' command: There is a 'quit' command to close client connections and quit the server: Lastly, there is a 'conn' command to connect the server as a client. This should not be needed for users. lf uses its own builtin copy and move operations by default. These are implemented as asynchronous operations and progress is shown in the bottom ruler. These commands do not overwrite existing files or directories with the same name. Instead, a suffix that is compatible with '--backup=numbered' option in GNU cp is added to the new files or directories. Only file modes are preserved and all other attributes are ignored including ownership, timestamps, context, links, and xattr. Special files such as character and block devices, named pipes, and sockets are skipped and links are followed. Moving is performed using the rename operation of the underlying OS. For cross-device moving, lf falls back to copying and then deletes the original files if there are no errors. Operation errors are shown in the message line as well as the log file and they do not preemptively finish the corresponding file operation. File operations can be performed on the current selected file or alternatively on multiple files by selecting them first. When you 'copy' a file, lf doesn't actually copy the file on the disk, but only records its name to memory. The actual file copying takes place when you 'paste'. Similarly 'paste' after a 'cut' operation moves the file. You can customize copy and move operations by defining a 'paste' command. This is a special command that is called when it is defined instead of the builtin implementation. You can use the following example as a starting point: Some useful things to be considered are to use the backup ('--backup') and/or preserve attributes ('-a') options with 'cp' and 'mv' commands if they support it (i.e. GNU implementation), change the command type to asynchronous, or use 'rsync' command with progress bar option for copying and feed the progress to the client periodically with remote 'echo' calls. By default, lf does not assign 'delete' command to a key to protect new users. You can customize file deletion by defining a 'delete' command. You can also assign a key to this command if you like. An example command to move selected files to a trash folder and remove files completely after a prompt are provided in the example configuration file. There are two mechanisms implemented in lf to search a file in the current directory. Searching is the traditional method to move the selection to a file matching a given pattern. Finding is an alternative way to search for a pattern possibly using fewer keystrokes. Searching mechanism is implemented with commands 'search' (default '/'), 'search-back' (default '?'), 'search-next' (default 'n'), and 'search-prev' (default 'N'). You can enable 'globsearch' option to match with a glob pattern. Globbing supports '*' to match any sequence, '?' to match any character, and '[...]' or '[^...] to match character sets or ranges. You can enable 'incsearch' option to jump to the current match at each keystroke while typing. In this mode, you can either use 'cmd-enter' to accept the search or use 'cmd-escape' to cancel the search. Alternatively, you can also map some other commands with 'cmap' to accept the search and execute the command immediately afterwards. Possible candidates are 'up', 'down' and their variants, 'updir', and 'open' commands. For example, you can use arrow keys to finish the search with the following mappings: Finding mechanism is implemented with commands 'find' (default 'f'), 'find-back' (default 'F'), 'find-next' (default ';'), 'find-prev' (default ','). You can disable 'anchorfind' option to match a pattern at an arbitrary position in the filename instead of the beginning. You can set the number of keys to match using 'findlen' option. If you set this value to zero, then the the keys are read until there is only a single match. Default values of these two options are set to jump to the first file with the given initial. Some options effect both searching and finding. You can disable 'wrapscan' option to prevent searches to wrap around at the end of the file list. You can disable 'ignorecase' option to match cases in the pattern and the filename. This option is already automatically overridden if the pattern contains upper case characters. You can disable 'smartcase' option to disable this behavior. Two similar options 'ignoredia' and 'smartdia' are provided to control matching diacritics in latin letters. You can define a an 'open' command (default 'l' and '<right>') to configure file opening. This command is only called when the current file is not a directory, otherwise the directory is entered instead. You can define it just as you would define any other command: It is possible to use different command types: You may want to use either file extensions or mime types from 'file' command: You may want to use 'setsid' before your opener command to have persistent processes that continue to run after lf quits. Following command is provided by default: You may also use any other existing file openers as you like. Possible options are 'libfile-mimeinfo-perl' (executable name is 'mimeopen'), 'rifle' (ranger's default file opener), or 'mimeo' to name a few. lf previews files on the preview pane by printing the file until the end or the preview pane is filled. This output can be enhanced by providing a custom preview script for filtering. This can be used to highlight source codes, list contents of archive files or view pdf or image files as text to name few. For coloring lf recognizes ansi escape codes. In order to use this feature you need to set the value of 'previewer' option to the path of an executable file. lf passes the current file name as the first argument and the height of the preview pane as the second argument when running this file. Output of the execution is printed in the preview pane. You may want to use the same script in your pager mapping as well if any: Since this script is called for each file selection change it needs to be as efficient as possible and this responsibility is left to the user. You may use file extensions to determine the type of file more efficiently compared to obtaining mime types from 'file' command. Extensions can then be used to match cleanly within a conditional: Another important consideration for efficiency is the use of programs with short startup times for preview. For this reason, 'highlight' is recommended over 'pygmentize' for syntax highlighting. Besides, it is also important that the application is processing the file on the fly rather than first reading it to the memory and then do the processing afterwards. This is especially relevant for big files. lf automatically closes the previewer script output pipe with a SIGPIPE when enough lines are read. When everything else fails, you can make use of the height argument to only feed the first portion of the file to a program for preview. lf changes the working directory of the process to the current directory so that shell commands always work in the displayed directory. After quitting, it returns to the original directory where it is first launched like all shell programs. If you want to stay in the current directory after quitting, you can use one of the example wrapper shell scripts provided in the repository. There is a special command 'on-cd' that runs a shell command when it is defined and the directory is changed. You can define it just as you would define any other command: This command runs whenever you change directory but not on startup. You can add an extra call to make it run on startup as well: Note that all shell commands are possible but `%` and `&` are usually more appropriate as `$` and `!` causes flickers and pauses respectively. lf tries to automatically adapt its colors to the environment. On startup, first '$LS_COLORS' environment variable is checked. This variable is used by GNU ls to configure its colors based on file types and extensions. The value of this variable is often set by GNU dircolors in a shell configuration file. dircolors program itself can be configured with a configuration file. dircolors supports 256 colors along with common attributes such as bold and underline. If '$LS_COLORS' variable is not set, '$LSCOLORS' variable is checked instead. This variable is used by ls programs on unix systems such as Mac and BSDs. This variable has a simple syntax and supports 8 colors and bold attribute. If both of these environment variables are not set, then lf fallbacks to its default colorscheme. Default lf colors are taken from GNU dircolors defaults. These defaults use 8 basic colors and bold attribute. It is worth noting that lf uses as many colors are advertised by your terminal's entry in your systems terminfo or infocmp database, if this is not present lf will default to an internal database. For terminals supporting 24-bit (or "true") color that do not have a database entry (or one that does not advertise all capabilities), support can be enabled by either setting the '$COLORTERM' variable to "truecolor" or ensuring '$TERM' is set to a value that ends with "-truecolor". Keeping this in mind, you can configure lf colors in two different ways. First, you can configure 8 basic colors used by your terminal and lf should pick up those colors automatically. Depending on your terminal, you should be able to select your colors from a 24-bit palette. This is the recommended approach as colors used by other programs will also match each other. Second, you can set the values of environmental variables mentioned above for fine grained customization. This is useful to change colors used for different file types and extensions. '$LS_COLORS' is more powerful than '$LSCOLORS' and it can be used even when GNU programs are not installed on the system. You can combine this second method with the first method for best results. lf can also be configured to ignore your terminal theme and output colors "as they were intended" by translating all numbered colors into a 24-bit output that matches the description; this can be enabled by setting the environment variable '$TCELL_TRUECOLOR' to "on" (or any text except ""/nothing or "disable"). Lastly, you may also want to configure the colors of the prompt line to match the rest of the colors. Colors of the prompt line can be configured using the 'promptfmt' option which can include hardcoded colors as ansi escapes. See the default value of this option to have an idea about how to color this line.
Goserial is a simple go package to allow you to read and write from the serial port as a stream of bytes. It aims to have the same API on all platforms, including windows. As an added bonus, the windows package does not use cgo, so you can cross compile for windows from another platform. Unfortunately goinstall does not currently let you cross compile so you will have to do it manually: Currently there is very little in the way of configurability. You can set the baud rate. Then you can Read(), Write(), or Close() the connection. Read() will block until at least one byte is returned. Write is the same. There is currently no exposed way to set the timeouts, though patches are welcome. Currently all ports are opened with 8 data bits, 1 stop bit, no parity, no hardware flow control, and no software flow control. This works fine for many real devices and many faux serial devices including usb-to-serial converters and bluetooth serial ports. You may Read() and Write() simulantiously on the same connection (from different goroutines). Example usage:
Package restful , a lean package for creating REST-style WebServices without magic. A WebService has a collection of Route objects that dispatch incoming Http Requests to a function calls. Typically, a WebService has a root path (e.g. /users) and defines common MIME types for its routes. WebServices must be added to a container (see below) in order to handler Http requests from a server. A Route is defined by a HTTP method, an URL path and (optionally) the MIME types it consumes (Content-Type) and produces (Accept). This package has the logic to find the best matching Route and if found, call its Function. The (*Request, *Response) arguments provide functions for reading information from the request and writing information back to the response. See the example https://github.com/emicklei/go-restful/blob/master/examples/restful-user-resource.go with a full implementation. A Route parameter can be specified using the format "uri/{var[:regexp]}" or the special version "uri/{var:*}" for matching the tail of the path. For example, /persons/{name:[A-Z][A-Z]} can be used to restrict values for the parameter "name" to only contain capital alphabetic characters. Regular expressions must use the standard Go syntax as described in the regexp package. (https://code.google.com/p/re2/wiki/Syntax) This feature requires the use of a CurlyRouter. A Container holds a collection of WebServices, Filters and a http.ServeMux for multiplexing http requests. Using the statements "restful.Add(...) and restful.Filter(...)" will register WebServices and Filters to the Default Container. The Default container of go-restful uses the http.DefaultServeMux. You can create your own Container and create a new http.Server for that particular container. A filter dynamically intercepts requests and responses to transform or use the information contained in the requests or responses. You can use filters to perform generic logging, measurement, authentication, redirect, set response headers etc. In the restful package there are three hooks into the request,response flow where filters can be added. Each filter must define a FilterFunction: Use the following statement to pass the request,response pair to the next filter or RouteFunction These are processed before any registered WebService. These are processed before any Route of a WebService. These are processed before calling the function associated with the Route. See the example https://github.com/emicklei/go-restful/blob/master/examples/restful-filters.go with full implementations. Two encodings are supported: gzip and deflate. To enable this for all responses: If a Http request includes the Accept-Encoding header then the response content will be compressed using the specified encoding. Alternatively, you can create a Filter that performs the encoding and install it per WebService or Route. See the example https://github.com/emicklei/go-restful/blob/master/examples/restful-encoding-filter.go By installing a pre-defined container filter, your Webservice(s) can respond to the OPTIONS Http request. By installing the filter of a CrossOriginResourceSharing (CORS), your WebService(s) can handle CORS requests. Unexpected things happen. If a request cannot be processed because of a failure, your service needs to tell via the response what happened and why. For this reason HTTP status codes exist and it is important to use the correct code in every exceptional situation. If path or query parameters are not valid (content or type) then use http.StatusBadRequest. Despite a valid URI, the resource requested may not be available If the application logic could not process the request (or write the response) then use http.StatusInternalServerError. The request has a valid URL but the method (GET,PUT,POST,...) is not allowed. The request does not have or has an unknown Accept Header set for this operation. The request does not have or has an unknown Content-Type Header set for this operation. In addition to setting the correct (error) Http status code, you can choose to write a ServiceError message on the response. This package has several options that affect the performance of your service. It is important to understand them and how you can change it. DoNotRecover controls whether panics will be caught to return HTTP 500. If set to false, the container will recover from panics. Default value is true If content encoding is enabled then the default strategy for getting new gzip/zlib writers and readers is to use a sync.Pool. Because writers are expensive structures, performance is even more improved when using a preloaded cache. You can also inject your own implementation. This package has the means to produce detail logging of the complete Http request matching process and filter invocation. Enabling this feature requires you to set an implementation of restful.StdLogger (e.g. log.Logger) instance such as: The restful.SetLogger() method allows you to override the logger used by the package. By default restful uses the standard library `log` package and logs to stdout. Different logging packages are supported as long as they conform to `StdLogger` interface defined in the `log` sub-package, writing an adapter for your preferred package is simple. (c) 2012-2015, http://ernestmicklei.com. MIT License
lf is a terminal file manager. Source code can be found in the repository at https://github.com/gokcehan/lf. This documentation can either be read from terminal using 'lf -doc' or online at https://godoc.org/github.com/gokcehan/lf. You can also use 'doc' command (default '<f-1>') inside lf to view the documentation in a pager. You can run 'lf -help' to see descriptions of command line options. The following commands are provided by lf: The following command line commands are provided by lf: The following options can be used to customize the behavior of lf: The following environment variables are exported for shell commands: The following commands/keybindings are provided by default: The following additional keybindings are provided by default: Configuration files should be located at: Marks file should be located at: History file should be located at: You can configure the default values of following variables to change these locations: A sample configuration file can be found at https://github.com/gokcehan/lf/blob/master/etc/lfrc.example. This section shows information about builtin commands. Modal commands do not take any arguments, but instead change the operation mode to read their input conveniently, and so they are meant to be assigned to keybindings. Quit lf and return to the shell. Move the current file selection upwards/downwards by one/half a page/full page. Change the current working directory to the parent directory. If the current file is a directory, then change the current directory to it, otherwise, execute the 'open' command. A default 'open' command is provided to call the default system opener asynchronously with the current file as the argument. A custom 'open' command can be defined to override this default. (See also 'OPENER' variable and 'Opening Files' section) Move the current file selection to the top/bottom of the directory. Toggle the selection of the current file or files given as arguments. Reverse the selection of all files in the current directory (i.e. 'toggle' all files). Selections in other directories are not effected by this command. You can define a new command to select all files in the directory by combining 'invert' with 'unselect' (i.e. `cmd select-all :unselect; invert`), though this will also remove selections in other directories. Remove the selection of all files in all directories. Select files that match the given glob. Unselect files that match the given glob. If there are no selections, save the path of the current file to the copy buffer, otherwise, copy the paths of selected files. If there are no selections, save the path of the current file to the cut buffer, otherwise, copy the paths of selected files. Copy/Move files in copy/cut buffer to the current working directory. Clear file paths in copy/cut buffer. Synchronize copied/cut files with server. This command is automatically called when required. Draw the screen. This command is automatically called when required. Synchronize the terminal and redraw the screen. Load modified files and directories. This command is automatically called when required. Flush the cache and reload all files and directories. Print given arguments to the message line at the bottom. Print given arguments to the message line at the bottom and also to the log file. Print given arguments to the message line at the bottom in red color and also to the log file. Change the working directory to the given argument. Change the current file selection to the given argument. Remove the current file or selected file(s). Rename the current file using the builtin method. A custom 'rename' command can be defined to override this default. Read the configuration file given in the argument. Simulate key pushes given in the argument. Read a command to evaluate. Read a shell command to execute. (See also 'Prefixes' and 'Shell Commands' sections) Read a shell command to execute piping its standard I/O to the bottom statline. (See also 'Prefixes' and 'Piping Shell Commands' sections) Read a shell command to execute and wait for a key press in the end. (See also 'Prefixes' and 'Waiting Shell Commands' sections) Read a shell command to execute synchronously without standard I/O. Read key(s) to find the appropriate file name match in the forward/backward direction and jump to the next/previous match. (See also 'anchorfind', 'findlen', 'wrapscan', 'ignorecase', 'smartcase', 'ignoredia', and 'smartdia' options and 'Searching Files' section) Read a pattern to search for a file name match in the forward/backward direction and jump to the next/previous match. (See also 'globsearch', 'incsearch', 'wrapscan', 'ignorecase', 'smartcase', 'ignoredia', and 'smartdia' options and 'Searching Files' section) Save the current directory as a bookmark assigned to the given key. Change the current directory to the bookmark assigned to the given key. A special bookmark "'" holds the previous directory after a 'mark-load', 'cd', or 'select' command. Remove a bookmark assigned to the given key. This section shows information about command line commands. These should be mostly compatible with readline keybindings. A character refers to a unicode code point, a word consists of letters and digits, and a unix word consists of any non-blank characters. Quit command line mode and return to normal mode. Autocomplete the current word. Autocomplete the current word, then you can press the binded key/s again to cycle completition options. Autocomplete the current word, then you can press the binded key/s again to cycle completition options backwards. Execute the current line. Interrupt the current shell-pipe command and return to the normal mode. Go to next/previous item in the history. Move the cursor to the left/right. Move the cursor to the beginning/end of line. Delete the next character in forward/backward direction. Delete everything up to the beginning/end of line. Delete the previous unix word. Paste the buffer content containing the last deleted item. Transpose the positions of last two characters/words. Move the cursor by one word in forward/backward direction. Delete the next word in forward direction. Capitalize/uppercase/lowercase the current word and jump to the next word. This section shows information about options to customize the behavior. Character ':' is used as the separator for list options '[]int' and '[]string'. When this option is enabled, find command starts matching patterns from the beginning of file names, otherwise, it can match at an arbitrary position. When this option is enabled, directory sizes show the number of items inside instead of the size of directory file. The former needs to be calculated by reading the directory and counting the items inside. The latter is directly provided by the operating system and it does not require any calculation, though it is non-intuitive and it can often be misleading. This option is disabled by default for performance reasons. This option only has an effect when 'info' has a 'size' field and the pane is wide enough to show the information. A thousand items are counted per directory at most, and bigger directories are shown as '999+'. Show directories first above regular files. Draw boxes around panes with box drawing characters. Format string of error messages shown in the bottom message line. File separator used in environment variables 'fs' and 'fx'. Number of characters prompted for the find command. When this value is set to 0, find command prompts until there is only a single match left. When this option is enabled, search command patterns are considered as globs, otherwise they are literals. With globbing, '*' matches any sequence, '?' matches any character, and '[...]' or '[^...] matches character sets or ranges. Otherwise, these characters are interpreted as they are. Show hidden files. On unix systems, hidden files are determined by the value of 'hiddenfiles'. On windows, only files with hidden attributes are considered hidden files. List of hidden file glob patterns. Patterns can be given as relative or absolute paths. Globbing supports the usual special characters, '*' to match any sequence, '?' to match any character, and '[...]' or '[^...] to match character sets or ranges. In addition, if a pattern starts with '!', then its matches are excluded from hidden files. Show icons before each item in the list. By default, only two icons, 🗀 (U+1F5C0) and 🗎 (U+1F5CE), are used for directories and files respectively, as they are supported in the unicode standard. Icons can be configured with an environment variable named 'LF_ICONS'. The syntax of this variable is similar to 'LS_COLORS'. See the wiki page for an example icon configuration. Sets 'IFS' variable in shell commands. It works by adding the assignment to the beginning of the command string as 'IFS='...'; ...'. The reason is that 'IFS' variable is not inherited by the shell for security reasons. This method assumes a POSIX shell syntax and so it can fail for non-POSIX shells. This option has no effect when the value is left empty. This option does not have any effect on windows. Ignore case in sorting and search patterns. Ignore diacritics in sorting and search patterns. Jump to the first match after each keystroke during searching. List of information shown for directory items at the right side of pane. Currently supported information types are 'size', 'time', 'atime', and 'ctime'. Information is only shown when the pane width is more than twice the width of information. Send mouse events as input. Show the position number for directory items at the left side of pane. When 'relativenumber' is enabled, only the current line shows the absolute position and relative positions are shown for the rest. Set the interval in seconds for periodic checks of directory updates. This works by periodically calling the 'load' command. Note that directories are already updated automatically in many cases. This option can be useful when there is an external process changing the displayed directory and you are not doing anything in lf. Periodic checks are disabled when the value of this option is set to zero. Show previews of files and directories at the right most pane. If the file has more lines than the preview pane, rest of the lines are not read. Files containing the null character (U+0000) in the read portion are considered binary files and displayed as 'binary'. Set the path of a previewer file to filter the content of regular files for previewing. The file should be executable. Five arguments are passed to the file, first is the current file name; the second, third, fourth, and fifth are width, height, horizontal position, and vertical position of preview pane respectively. SIGPIPE signal is sent when enough lines are read. If the previewer returns a non-zero exit code, then the preview cache for the given file is disabled. This means that if the file is selected in the future, the previewer is called once again. Preview filtering is disabled and files are displayed as they are when the value of this option is left empty. Set the path of a cleaner file. This file will be called if previewing is enabled, the previewer is set, and the previously selected file had its preview cache disabled. The file should be executable. One argument is passed to the file; the path to the file whose preview should be cleaned. Preview clearing is disabled when the value of this option is left empty. Format string of the prompt shown in the top line. Special expansions are provided, '%u' as the user name, '%h' as the host name, '%w' as the working directory, '%d' as the working directory with a trailing path separator, and '%f' as the file name. Home folder is shown as '~' in the working directory expansion. Directory names are automatically shortened to a single character starting from the left most parent when the prompt does not fit to the screen. List of ratios of pane widths. Number of items in the list determines the number of panes in the ui. When 'preview' option is enabled, the right most number is used for the width of preview pane. Show the position number relative to the current line. When 'number' is enabled, current line shows the absolute position, otherwise nothing is shown. Reverse the direction of sort. Minimum number of offset lines shown at all times in the top and the bottom of the screen when scrolling. The current line is kept in the middle when this option is set to a large value that is bigger than the half of number of lines. A smaller offset can be used when the current file is close to the beginning or end of the list to show the maximum number of items. Shell executable to use for shell commands. On unix, a POSIX compatible shell is required. Shell commands are executed as 'shell shellopts -c command -- arguments'. On windows, '/c' is used instead of '-c' which should work in 'cmd' and 'powershell'. List of shell options to pass to the shell executable. Override 'ignorecase' option when the pattern contains an uppercase character. This option has no effect when 'ignorecase' is disabled. Override 'ignoredia' option when the pattern contains a character with diacritic. This option has no effect when 'ignoredia' is disabled. Sort type for directories. Currently supported sort types are 'natural', 'name', 'size', 'time', 'ctime', 'atime', and 'ext'. Number of space characters to show for horizontal tabulation (U+0009) character. Format string of the file modification time shown in the bottom line. Truncate character shown at the end when the file name does not fit to the pane. Searching can wrap around the file list. Scrolling can wrap around the file list. The following variables are exported for shell commands: These are referred with a '$' prefix on POSIX shells (e.g. '$f'), between '%' characters on Windows cmd (e.g. '%f%'), and with a '$env:' prefix on Windows powershell (e.g. '$env:f'). Current file selection as a full path. Selected file(s) separated with the value of 'filesep' option as full path(s). Selected file(s) (i.e. 'fs') if there are any selected files, otherwise current file selection (i.e. 'f'). Id of the running client. The value of this variable is set to the current nesting level when you run lf from a shell spawned inside lf. You can add the value of this variable to your shell prompt to make it clear that your shell runs inside lf. For example, with POSIX shells, you can use '[ -n "$LF_LEVEL" ] && PS1="$PS1""(lf level: $LF_LEVEL) "' in your shell configuration file (e.g. '~/.bashrc'). If this variable is set in the environment, use the same value, otherwise set the value to 'start' in Windows, 'open' in MacOS, 'xdg-open' in others. If this variable is set in the environment, use the same value, otherwise set the value to 'vi' on unix, 'notepad' in Windows. If this variable is set in the environment, use the same value, otherwise set the value to 'less' on unix, 'more' in Windows. If this variable is set in the environment, use the same value, otherwise set the value to 'sh' on unix, 'cmd' in Windows. The following command prefixes are used by lf: The same evaluator is used for the command line and the configuration file for read and shell commands. The difference is that prefixes are not necessary in the command line. Instead, different modes are provided to read corresponding commands. These modes are mapped to the prefix keys above by default. Characters from '#' to newline are comments and ignored: There are three special commands ('set', 'map', and 'cmd') and their variants for configuration. Command 'set' is used to set an option which can be boolean, integer, or string: Command 'map' is used to bind a key to a command which can be builtin command, custom command, or shell command: Command 'cmap' is used to bind a key to a command line command which can only be one of the builtin commands: You can delete an existing binding by leaving the expression empty: Command 'cmd' is used to define a custom command: You can delete an existing command by leaving the expression empty: If there is no prefix then ':' is assumed: An explicit ':' can be provided to group statements until a newline which is especially useful for 'map' and 'cmd' commands: If you need multiline you can wrap statements in '{{' and '}}' after the proper prefix. Regular keys are assigned to a command with the usual syntax: Keys combined with the shift key simply use the uppercase letter: Special keys are written in between '<' and '>' characters and always use lowercase letters: Angle brackets can be assigned with their special names: Function keys are prefixed with 'f' character: Keys combined with the control key are prefixed with 'c' character: Keys combined with the alt key are assigned in two different ways depending on the behavior of your terminal. Older terminals (e.g. xterm) may set the 8th bit of a character when the alt key is pressed. On these terminals, you can use the corresponding byte for the mapping: Newer terminals (e.g. gnome-terminal) may prefix the key with an escape key when the alt key is pressed. lf uses the escape delaying mechanism to recognize alt keys in these terminals (delay is 100ms). On these terminals, keys combined with the alt key are prefixed with 'a' character: Please note that, some key combinations are not possible due to the way terminals work (e.g. control and h combination sends a backspace key instead). The easiest way to find the name of a key combination is to press the key while lf is running and read the name of the key from the unknown mapping error. Mouse buttons are prefixed with 'm' character: Mouse wheel events are also prefixed with 'm' character: The usual way to map a key sequence is to assign it to a named or unnamed command. While this provides a clean way to remap builtin keys as well as other commands, it can be limiting at times. For this reason 'push' command is provided by lf. This command is used to simulate key pushes given as its arguments. You can 'map' a key to a 'push' command with an argument to create various keybindings. This is mainly useful for two purposes. First, it can be used to map a command with a command count: Second, it can be used to avoid typing the name when a command takes arguments: One thing to be careful is that since 'push' command works with keys instead of commands it is possible to accidentally create recursive bindings: These types of bindings create a deadlock when executed. Regular shell commands are the most basic command type that is useful for many purposes. For example, we can write a shell command to move selected file(s) to trash. A first attempt to write such a command may look like this: We check '$fs' to see if there are any selected files. Otherwise we just delete the current file. Since this is such a common pattern, a separate '$fx' variable is provided. We can use this variable to get rid of the conditional: The trash directory is checked each time the command is executed. We can move it outside of the command so it would only run once at startup: Since these are one liners, we can drop '{{' and '}}': Finally note that we set 'IFS' variable manually in these commands. Instead we could use the 'ifs' option to set it for all shell commands (i.e. 'set ifs "\n"'). This can be especially useful for interactive use (e.g. '$rm $f' or '$rm $fs' would simply work). This option is not set by default as it can behave unexpectedly for new users. However, use of this option is highly recommended and it is assumed in the rest of the documentation. Regular shell commands have some limitations in some cases. When an output or error message is given and the command exits afterwards, the ui is immediately resumed and there is no way to see the message without dropping to shell again. Also, even when there is no output or error, the ui still needs to be paused while the command is running. This can cause flickering on the screen for short commands and similar distractions for longer commands. Instead of pausing the ui, piping shell commands connects stdin, stdout, and stderr of the command to the statline in the bottom of the ui. This can be useful for programs following the unix philosophy to give no output in the success case, and brief error messages or prompts in other cases. For example, following rename command prompts for overwrite in the statline if there is an existing file with the given name: You can also output error messages in the command and it will show up in the statline. For example, an alternative rename command may look like this: Note that input is line buffered and output and error are byte buffered. Waiting shell commands are similar to regular shell commands except that they wait for a key press when the command is finished. These can be useful to see the output of a program before the ui is resumed. Waiting shell commands are more appropriate than piping shell commands when the command is verbose and the output is best displayed as multiline. Asynchronous shell commands are used to start a command in the background and then resume operation without waiting for the command to finish. Stdin, stdout, and stderr of the command is neither connected to the terminal nor to the ui. One of the more advanced features in lf is remote commands. All clients connect to a server on startup. It is possible to send commands to all or any of the connected clients over the common server. This is used internally to notify file selection changes to other clients. To use this feature, you need to use a client which supports communicating with a UNIX-domain socket. OpenBSD implementation of netcat (nc) is one such example. You can use it to send a command to the socket file: Since such a client may not be available everywhere, lf comes bundled with a command line flag to be used as such. When using lf, you do not need to specify the address of the socket file. This is the recommended way of using remote commands since it is shorter and immune to socket file address changes: In this command 'send' is used to send the rest of the string as a command to all connected clients. You can optionally give it an id number to send a command to a single client: All clients have a unique id number but you may not be aware of the id number when you are writing a command. For this purpose, an '$id' variable is exported to the environment for shell commands. You can use it to send a remote command from a client to the server which in return sends a command back to itself. So now you can display a message in the current client by calling the following in a shell command: Since lf does not have control flow syntax, remote commands are used for such needs. For example, you can configure the number of columns in the ui with respect to the terminal width as follows: Besides 'send' command, there are also two commands to get or set the current file selection. Two possible modes 'copy' and 'move' specify whether selected files are to be copied or moved. File names are separated by newline character. Setting the file selection is done with 'save' command: Getting the file selection is similarly done with 'load' command: There is a 'quit' command to close client connections and quit the server: Lastly, there is a 'conn' command to connect the server as a client. This should not be needed for users. lf uses its own builtin copy and move operations by default. These are implemented as asynchronous operations and progress is shown in the bottom ruler. These commands do not overwrite existing files or directories with the same name. Instead, a suffix that is compatible with '--backup=numbered' option in GNU cp is added to the new files or directories. Only file modes are preserved and all other attributes are ignored including ownership, timestamps, context, and xattr. Special files such as character and block devices, named pipes, and sockets are skipped and links are not followed. Moving is performed using the rename operation of the underlying OS. For cross-device moving, lf falls back to copying and then deletes the original files if there are no errors. Operation errors are shown in the message line as well as the log file and they do not preemptively finish the corresponding file operation. File operations can be performed on the current selected file or alternatively on multiple files by selecting them first. When you 'copy' a file, lf doesn't actually copy the file on the disk, but only records its name to memory. The actual file copying takes place when you 'paste'. Similarly 'paste' after a 'cut' operation moves the file. You can customize copy and move operations by defining a 'paste' command. This is a special command that is called when it is defined instead of the builtin implementation. You can use the following example as a starting point: Some useful things to be considered are to use the backup ('--backup') and/or preserve attributes ('-a') options with 'cp' and 'mv' commands if they support it (i.e. GNU implementation), change the command type to asynchronous, or use 'rsync' command with progress bar option for copying and feed the progress to the client periodically with remote 'echo' calls. By default, lf does not assign 'delete' command to a key to protect new users. You can customize file deletion by defining a 'delete' command. You can also assign a key to this command if you like. An example command to move selected files to a trash folder and remove files completely after a prompt are provided in the example configuration file. There are two mechanisms implemented in lf to search a file in the current directory. Searching is the traditional method to move the selection to a file matching a given pattern. Finding is an alternative way to search for a pattern possibly using fewer keystrokes. Searching mechanism is implemented with commands 'search' (default '/'), 'search-back' (default '?'), 'search-next' (default 'n'), and 'search-prev' (default 'N'). You can enable 'globsearch' option to match with a glob pattern. Globbing supports '*' to match any sequence, '?' to match any character, and '[...]' or '[^...] to match character sets or ranges. You can enable 'incsearch' option to jump to the current match at each keystroke while typing. In this mode, you can either use 'cmd-enter' to accept the search or use 'cmd-escape' to cancel the search. Alternatively, you can also map some other commands with 'cmap' to accept the search and execute the command immediately afterwards. Possible candidates are 'up', 'down' and their variants, 'top', 'bottom', 'updir', and 'open' commands. For example, you can use arrow keys to finish the search with the following mappings: Finding mechanism is implemented with commands 'find' (default 'f'), 'find-back' (default 'F'), 'find-next' (default ';'), 'find-prev' (default ','). You can disable 'anchorfind' option to match a pattern at an arbitrary position in the filename instead of the beginning. You can set the number of keys to match using 'findlen' option. If you set this value to zero, then the the keys are read until there is only a single match. Default values of these two options are set to jump to the first file with the given initial. Some options effect both searching and finding. You can disable 'wrapscan' option to prevent searches to wrap around at the end of the file list. You can disable 'ignorecase' option to match cases in the pattern and the filename. This option is already automatically overridden if the pattern contains upper case characters. You can disable 'smartcase' option to disable this behavior. Two similar options 'ignoredia' and 'smartdia' are provided to control matching diacritics in latin letters. You can define a an 'open' command (default 'l' and '<right>') to configure file opening. This command is only called when the current file is not a directory, otherwise the directory is entered instead. You can define it just as you would define any other command: It is possible to use different command types: You may want to use either file extensions or mime types from 'file' command: You may want to use 'setsid' before your opener command to have persistent processes that continue to run after lf quits. Following command is provided by default: You may also use any other existing file openers as you like. Possible options are 'libfile-mimeinfo-perl' (executable name is 'mimeopen'), 'rifle' (ranger's default file opener), or 'mimeo' to name a few. lf previews files on the preview pane by printing the file until the end or the preview pane is filled. This output can be enhanced by providing a custom preview script for filtering. This can be used to highlight source codes, list contents of archive files or view pdf or image files as text to name few. For coloring lf recognizes ansi escape codes. In order to use this feature you need to set the value of 'previewer' option to the path of an executable file. lf passes the current file name as the first argument and the height of the preview pane as the second argument when running this file. Output of the execution is printed in the preview pane. You may want to use the same script in your pager mapping as well if any: For 'less' pager, you may instead utilize 'LESSOPEN' mechanism so that useful information about the file such as the full path of the file can be displayed in the statusline below: Since this script is called for each file selection change it needs to be as efficient as possible and this responsibility is left to the user. You may use file extensions to determine the type of file more efficiently compared to obtaining mime types from 'file' command. Extensions can then be used to match cleanly within a conditional: Another important consideration for efficiency is the use of programs with short startup times for preview. For this reason, 'highlight' is recommended over 'pygmentize' for syntax highlighting. Besides, it is also important that the application is processing the file on the fly rather than first reading it to the memory and then do the processing afterwards. This is especially relevant for big files. lf automatically closes the previewer script output pipe with a SIGPIPE when enough lines are read. When everything else fails, you can make use of the height argument to only feed the first portion of the file to a program for preview. Note that some programs may not respond well to SIGPIPE to exit with a non-zero return code and avoid caching. You may add a trailing '|| true' command to avoid such errors: You may also use an existing preview filter as you like. Your system may already come with a preview filter named 'lesspipe'. These filters may have a mechanism to add user customizations as well. See the related documentations for more information. lf changes the working directory of the process to the current directory so that shell commands always work in the displayed directory. After quitting, it returns to the original directory where it is first launched like all shell programs. If you want to stay in the current directory after quitting, you can use one of the example wrapper shell scripts provided in the repository. There is a special command 'on-cd' that runs a shell command when it is defined and the directory is changed. You can define it just as you would define any other command: If you want to print escape sequences, you may redirect 'printf' output to '/dev/tty'. The following xterm specific escape sequence sets the terminal title to the working directory: This command runs whenever you change directory but not on startup. You can add an extra call to make it run on startup as well: Note that all shell commands are possible but `%` and `&` are usually more appropriate as `$` and `!` causes flickers and pauses respectively. lf tries to automatically adapt its colors to the environment. It starts with a default colorscheme and updates colors using values of existing environment variables possibly by overwriting its previous values. Colors are set in the following order: Please refer to the corresponding man pages for more information about 'LSCOLORS' and 'LS_COLORS'. 'LF_COLORS' is provided with the same syntax as 'LS_COLORS' in case you want to configure colors only for lf but not ls. This can be useful since there are some differences between ls and lf, though one should expect the same behavior for common cases. You can configure lf colors in two different ways. First, you can only configure 8 basic colors used by your terminal and lf should pick up those colors automatically. Depending on your terminal, you should be able to select your colors from a 24-bit palette. This is the recommended approach as colors used by other programs will also match each other. Second, you can set the values of environmental variables mentioned above for fine grained customization. Note that 'LS_COLORS/LF_COLORS' are more powerful than 'LSCOLORS' and they can be used even when GNU programs are not installed on the system. You can combine this second method with the first method for best results. Lastly, you may also want to configure the colors of the prompt line to match the rest of the colors. Colors of the prompt line can be configured using the 'promptfmt' option which can include hardcoded colors as ansi escapes. See the default value of this option to have an idea about how to color this line. It is worth noting that lf uses as many colors are advertised by your terminal's entry in your systems terminfo or infocmp database, if this is not present lf will default to an internal database. For terminals supporting 24-bit (or "true") color that do not have a database entry (or one that does not advertise all capabilities), support can be enabled by either setting the '$COLORTERM' variable to "truecolor" or ensuring '$TERM' is set to a value that ends with "-truecolor". Default lf colors are mostly taken from GNU dircolors defaults. These defaults use 8 basic colors and bold attribute. Default dircolors entries with background colors are simplified to avoid confusion with current file selection in lf. Similarly, there are only file type matchings and extension matchings are left out for simplicity. Default values are as follows given with their matching order in lf: Note that, lf first tries matching file names and then falls back to file types. The full order of matchings from most specific to least are as follows: For example, given a regular text file '/path/to/README.txt', the following entries are checked in the configuration and the first one to match is used: Given a regular directory '/path/to/example.d', the following entries are checked in the configuration and the first one to match is used: Note that glob-like patterns do not actually perform glob matching due to performance reasons. For example, you can set a variable as follows: Having all entries on a single line can make it hard to read. You may instead divide it to multiple lines in between double quotes by escaping newlines with backslashes as follows: Having such a long variable definition in a shell configuration file might be undesirable. You may instead put this definition in a separate file and source it in your shell configuration file as follows: See the wiki page for ansi escape codes https://en.wikipedia.org/wiki/ANSI_escape_code. Icons are configured using 'LF_ICONS' environment variable. This variable uses the same syntax as 'LS_COLORS/LF_COLORS'. Instead of colors, you should put a single characters as values of entries. Do not forget to enable 'icons' option to see the icons. Default values are as follows given with their matching order in lf: See the wiki page for an example icons configuration https://github.com/gokcehan/lf/wiki/Icons.
Package restful, a lean package for creating REST-style WebServices without magic. A WebService has a collection of Route objects that dispatch incoming Http Requests to a function calls. Typically, a WebService has a root path (e.g. /users) and defines common MIME types for its routes. WebServices must be added to a container (see below) in order to handler Http requests from a server. A Route is defined by a HTTP method, an URL path and (optionally) the MIME types it consumes (Content-Type) and produces (Accept). This package has the logic to find the best matching Route and if found, call its Function. The (*Request, *Response) arguments provide functions for reading information from the request and writing information back to the response. See the example https://github.com/emicklei/go-restful/blob/master/examples/restful-user-resource.go with a full implementation. A Route parameter can be specified using the format "uri/{var[:regexp]}" or the special version "uri/{var:*}" for matching the tail of the path. For example, /persons/{name:[A-Z][A-Z]} can be used to restrict values for the parameter "name" to only contain capital alphabetic characters. Regular expressions must use the standard Go syntax as described in the regexp package. (https://code.google.com/p/re2/wiki/Syntax) This feature requires the use of a CurlyRouter. A Container holds a collection of WebServices, Filters and a http.ServeMux for multiplexing http requests. Using the statements "restful.Add(...) and restful.Filter(...)" will register WebServices and Filters to the Default Container. The Default container of go-restful uses the http.DefaultServeMux. You can create your own Container and create a new http.Server for that particular container. A filter dynamically intercepts requests and responses to transform or use the information contained in the requests or responses. You can use filters to perform generic logging, measurement, authentication, redirect, set response headers etc. In the restful package there are three hooks into the request,response flow where filters can be added. Each filter must define a FilterFunction: Use the following statement to pass the request,response pair to the next filter or RouteFunction These are processed before any registered WebService. These are processed before any Route of a WebService. These are processed before calling the function associated with the Route. See the example https://github.com/emicklei/go-restful/blob/master/examples/restful-filters.go with full implementations. Two encodings are supported: gzip and deflate. To enable this for all responses: If a Http request includes the Accept-Encoding header then the response content will be compressed using the specified encoding. Alternatively, you can create a Filter that performs the encoding and install it per WebService or Route. See the example https://github.com/emicklei/go-restful/blob/master/examples/restful-encoding-filter.go By installing a pre-defined container filter, your Webservice(s) can respond to the OPTIONS Http request. By installing the filter of a CrossOriginResourceSharing (CORS), your WebService(s) can handle CORS requests. Unexpected things happen. If a request cannot be processed because of a failure, your service needs to tell via the response what happened and why. For this reason HTTP status codes exist and it is important to use the correct code in every exceptional situation. If path or query parameters are not valid (content or type) then use http.StatusBadRequest. Despite a valid URI, the resource requested may not be available If the application logic could not process the request (or write the response) then use http.StatusInternalServerError. The request has a valid URL but the method (GET,PUT,POST,...) is not allowed. The request does not have or has an unknown Accept Header set for this operation. The request does not have or has an unknown Content-Type Header set for this operation. In addition to setting the correct (error) Http status code, you can choose to write a ServiceError message on the response. This package has several options that affect the performance of your service. It is important to understand them and how you can change it. The default router is the RouterJSR311 which is an implementation of its spec (http://jsr311.java.net/nonav/releases/1.1/spec/spec.html). However, it uses regular expressions for all its routes which, depending on your usecase, may consume a significant amount of time. The CurlyRouter implementation is more lightweight that also allows you to use wildcards and expressions, but only if needed. DoNotRecover controls whether panics will be caught to return HTTP 500. If set to true, Route functions are responsible for handling any error situation. Default value is false; it will recover from panics. This has performance implications. SetCacheReadEntity controls whether the response data ([]byte) is cached such that ReadEntity is repeatable. If you expect to read large amounts of payload data, and you do not use this feature, you should set it to false. This package has the means to produce detail logging of the complete Http request matching process and filter invocation. Enabling this feature requires you to set a log.Logger instance such as: (c) 2012-2014, http://ernestmicklei.com. MIT License
Goserial is a simple go package to allow you to read and write from the serial port as a stream of bytes. It aims to have the same API on all platforms, including windows. As an added bonus, the windows package does not use cgo, so you can cross compile for windows from another platform. Unfortunately goinstall does not currently let you cross compile so you will have to do it manually: Currently there is very little in the way of configurability. You can set the baud rate. Then you can Read(), Write(), or Close() the connection. Read() will block until at least one byte is returned. Write is the same. There is currently no exposed way to set the timeouts, though patches are welcome. Currently all ports are opened with 8 data bits, 1 stop bit, no parity, no hardware flow control, and no software flow control. This works fine for many real devices and many faux serial devices including usb-to-serial converters and bluetooth serial ports. You may Read() and Write() simulantiously on the same connection (from different goroutines). Example usage:
Package restful , a lean package for creating REST-style WebServices without magic. A WebService has a collection of Route objects that dispatch incoming Http Requests to a function calls. Typically, a WebService has a root path (e.g. /users) and defines common MIME types for its routes. WebServices must be added to a container (see below) in order to handler Http requests from a server. A Route is defined by a HTTP method, an URL path and (optionally) the MIME types it consumes (Content-Type) and produces (Accept). This package has the logic to find the best matching Route and if found, call its Function. The (*Request, *Response) arguments provide functions for reading information from the request and writing information back to the response. See the example https://github.com/emicklei/go-restful/blob/master/examples/restful-user-resource.go with a full implementation. A Route parameter can be specified using the format "uri/{var[:regexp]}" or the special version "uri/{var:*}" for matching the tail of the path. For example, /persons/{name:[A-Z][A-Z]} can be used to restrict values for the parameter "name" to only contain capital alphabetic characters. Regular expressions must use the standard Go syntax as described in the regexp package. (https://code.google.com/p/re2/wiki/Syntax) This feature requires the use of a CurlyRouter. A Container holds a collection of WebServices, Filters and a http.ServeMux for multiplexing http requests. Using the statements "restful.Add(...) and restful.Filter(...)" will register WebServices and Filters to the Default Container. The Default container of go-restful uses the http.DefaultServeMux. You can create your own Container and create a new http.Server for that particular container. A filter dynamically intercepts requests and responses to transform or use the information contained in the requests or responses. You can use filters to perform generic logging, measurement, authentication, redirect, set response headers etc. In the restful package there are three hooks into the request,response flow where filters can be added. Each filter must define a FilterFunction: Use the following statement to pass the request,response pair to the next filter or RouteFunction These are processed before any registered WebService. These are processed before any Route of a WebService. These are processed before calling the function associated with the Route. See the example https://github.com/emicklei/go-restful/blob/master/examples/restful-filters.go with full implementations. Two encodings are supported: gzip and deflate. To enable this for all responses: If a Http request includes the Accept-Encoding header then the response content will be compressed using the specified encoding. Alternatively, you can create a Filter that performs the encoding and install it per WebService or Route. See the example https://github.com/emicklei/go-restful/blob/master/examples/restful-encoding-filter.go By installing a pre-defined container filter, your Webservice(s) can respond to the OPTIONS Http request. By installing the filter of a CrossOriginResourceSharing (CORS), your WebService(s) can handle CORS requests. Unexpected things happen. If a request cannot be processed because of a failure, your service needs to tell via the response what happened and why. For this reason HTTP status codes exist and it is important to use the correct code in every exceptional situation. If path or query parameters are not valid (content or type) then use http.StatusBadRequest. Despite a valid URI, the resource requested may not be available If the application logic could not process the request (or write the response) then use http.StatusInternalServerError. The request has a valid URL but the method (GET,PUT,POST,...) is not allowed. The request does not have or has an unknown Accept Header set for this operation. The request does not have or has an unknown Content-Type Header set for this operation. In addition to setting the correct (error) Http status code, you can choose to write a ServiceError message on the response. This package has several options that affect the performance of your service. It is important to understand them and how you can change it. DoNotRecover controls whether panics will be caught to return HTTP 500. If set to false, the container will recover from panics. Default value is true If content encoding is enabled then the default strategy for getting new gzip/zlib writers and readers is to use a sync.Pool. Because writers are expensive structures, performance is even more improved when using a preloaded cache. You can also inject your own implementation. This package has the means to produce detail logging of the complete Http request matching process and filter invocation. Enabling this feature requires you to set an implementation of restful.StdLogger (e.g. log.Logger) instance such as: The restful.SetLogger() method allows you to override the logger used by the package. By default restful uses the standard library `log` package and logs to stdout. Different logging packages are supported as long as they conform to `StdLogger` interface defined in the `log` sub-package, writing an adapter for your preferred package is simple. (c) 2012-2015, http://ernestmicklei.com. MIT License
This package provides a simple and effective way to collect errors while simplifies the flow complexity of sequential and conditional safety checks. The exported 'NewErr' and 'NewErrOr' alows initialization with or without a previous 'Errs'. Theses functions work like a wrap around the built-in and 'juju/errors' constructor functions. Once initialized, 'errs.NewErr' and 'errs.NewErrWithCause' work as a replacement of 'errors.NewErr' and 'errors.NewErrWithCause' that appends the generated jujuErr to the inner errors. Also the function 'errs.Append' appends the submitted error arguments to the inner slice. A primary use case for this library is to append multiple errors while doing a sequence of checkings. Would become with github.com/juju/errors: And with bulkerrs: There's no longer need to check if the error is nil. Additionally, bulkerrs makes easy to integrate the errors appendings in the application control flow: Would become: And if needed, like in github.com/juju/errors, it's possible to add extra context, and have an advanced control of the application flow: When you want to check to see if an error is of a particular type, a helper function is normally exported by the package that returned the error, like the 'os' package does. The underlying cause of the error is available using the 'Cause' function. The result of the 'Error()' call on an annotated error is the annotations joined with colons, then the result of the 'Error()' method for the underlying error that was the cause. Obviously recording the file, line and functions is not very useful if you cannot get them back out again. will return something like: The first error was generated by an external system, so there was no location associated. The second, fourth, and last lines were generated with Trace calls, and the other two through Annotate. Sometimes when responding to an error you want to return a more specific error for the situation. This returns an error where the complete error stack is still available, and 'errors.Cause()' will return the 'NotFound' error.
Package restful, a lean package for creating REST-style WebServices without magic. A WebService has a collection of Route objects that dispatch incoming Http Requests to a function calls. Typically, a WebService has a root path (e.g. /users) and defines common MIME types for its routes. WebServices must be added to a container (see below) in order to handler Http requests from a server. A Route is defined by a HTTP method, an URL path and (optionally) the MIME types it consumes (Content-Type) and produces (Accept). This package has the logic to find the best matching Route and if found, call its Function. The (*Request, *Response) arguments provide functions for reading information from the request and writing information back to the response. See the example https://github.com/emicklei/go-restful/blob/master/examples/restful-user-resource.go with a full implementation. A Route parameter can be specified using the format "uri/{var[:regexp]}" or the special version "uri/{var:*}" for matching the tail of the path. For example, /persons/{name:[A-Z][A-Z]} can be used to restrict values for the parameter "name" to only contain capital alphabetic characters. Regular expressions must use the standard Go syntax as described in the regexp package. (https://code.google.com/p/re2/wiki/Syntax) This feature requires the use of a CurlyRouter. A Container holds a collection of WebServices, Filters and a http.ServeMux for multiplexing http requests. Using the statements "restful.Add(...) and restful.Filter(...)" will register WebServices and Filters to the Default Container. The Default container of go-restful uses the http.DefaultServeMux. You can create your own Container and create a new http.Server for that particular container. A filter dynamically intercepts requests and responses to transform or use the information contained in the requests or responses. You can use filters to perform generic logging, measurement, authentication, redirect, set response headers etc. In the restful package there are three hooks into the request,response flow where filters can be added. Each filter must define a FilterFunction: Use the following statement to pass the request,response pair to the next filter or RouteFunction These are processed before any registered WebService. These are processed before any Route of a WebService. These are processed before calling the function associated with the Route. See the example https://github.com/emicklei/go-restful/blob/master/examples/restful-filters.go with full implementations. Two encodings are supported: gzip and deflate. To enable this for all responses: If a Http request includes the Accept-Encoding header then the response content will be compressed using the specified encoding. Alternatively, you can create a Filter that performs the encoding and install it per WebService or Route. See the example https://github.com/emicklei/go-restful/blob/master/examples/restful-encoding-filter.go By installing a pre-defined container filter, your Webservice(s) can respond to the OPTIONS Http request. By installing the filter of a CrossOriginResourceSharing (CORS), your WebService(s) can handle CORS requests. Unexpected things happen. If a request cannot be processed because of a failure, your service needs to tell via the response what happened and why. For this reason HTTP status codes exist and it is important to use the correct code in every exceptional situation. If path or query parameters are not valid (content or type) then use http.StatusBadRequest. Despite a valid URI, the resource requested may not be available If the application logic could not process the request (or write the response) then use http.StatusInternalServerError. The request has a valid URL but the method (GET,PUT,POST,...) is not allowed. The request does not have or has an unknown Accept Header set for this operation. The request does not have or has an unknown Content-Type Header set for this operation. In addition to setting the correct (error) Http status code, you can choose to write a ServiceError message on the response. This package has several options that affect the performance of your service. It is important to understand them and how you can change it. The default router is the RouterJSR311 which is an implementation of its spec (http://jsr311.java.net/nonav/releases/1.1/spec/spec.html). However, it uses regular expressions for all its routes which, depending on your usecase, may consume a significant amount of time. The CurlyRouter implementation is more lightweight that also allows you to use wildcards and expressions, but only if needed. DoNotRecover controls whether panics will be caught to return HTTP 500. If set to true, Route functions are responsible for handling any error situation. Default value is false; it will recover from panics. This has performance implications. SetCacheReadEntity controls whether the response data ([]byte) is cached such that ReadEntity is repeatable. If you expect to read large amounts of payload data, and you do not use this feature, you should set it to false. This package has the means to produce detail logging of the complete Http request matching process and filter invocation. Enabling this feature requires you to set a log.Logger instance such as: (c) 2012-2014, http://ernestmicklei.com. MIT License
Package restful, a lean package for creating REST-style WebServices without magic. A WebService has a collection of Route objects that dispatch incoming Http Requests to a function calls. Typically, a WebService has a root path (e.g. /users) and defines common MIME types for its routes. WebServices must be added to a container (see below) in order to handler Http requests from a server. A Route is defined by a HTTP method, an URL path and (optionally) the MIME types it consumes (Content-Type) and produces (Accept). This package has the logic to find the best matching Route and if found, call its Function. The (*Request, *Response) arguments provide functions for reading information from the request and writing information back to the response. See the example https://github.com/emicklei/go-restful/blob/master/examples/restful-user-resource.go with a full implementation. A Route parameter can be specified using the format "uri/{var[:regexp]}" or the special version "uri/{var:*}" for matching the tail of the path. For example, /persons/{name:[A-Z][A-Z]} can be used to restrict values for the parameter "name" to only contain capital alphabetic characters. Regular expressions must use the standard Go syntax as described in the regexp package. (https://code.google.com/p/re2/wiki/Syntax) This feature requires the use of a CurlyRouter. A Container holds a collection of WebServices, Filters and a http.ServeMux for multiplexing http requests. Using the statements "restful.Add(...) and restful.Filter(...)" will register WebServices and Filters to the Default Container. The Default container of go-restful uses the http.DefaultServeMux. You can create your own Container and create a new http.Server for that particular container. A filter dynamically intercepts requests and responses to transform or use the information contained in the requests or responses. You can use filters to perform generic logging, measurement, authentication, redirect, set response headers etc. In the restful package there are three hooks into the request,response flow where filters can be added. Each filter must define a FilterFunction: Use the following statement to pass the request,response pair to the next filter or RouteFunction These are processed before any registered WebService. These are processed before any Route of a WebService. These are processed before calling the function associated with the Route. See the example https://github.com/emicklei/go-restful/blob/master/examples/restful-filters.go with full implementations. Two encodings are supported: gzip and deflate. To enable this for all responses: If a Http request includes the Accept-Encoding header then the response content will be compressed using the specified encoding. Alternatively, you can create a Filter that performs the encoding and install it per WebService or Route. See the example https://github.com/emicklei/go-restful/blob/master/examples/restful-encoding-filter.go By installing a pre-defined container filter, your Webservice(s) can respond to the OPTIONS Http request. By installing the filter of a CrossOriginResourceSharing (CORS), your WebService(s) can handle CORS requests. Unexpected things happen. If a request cannot be processed because of a failure, your service needs to tell via the response what happened and why. For this reason HTTP status codes exist and it is important to use the correct code in every exceptional situation. If path or query parameters are not valid (content or type) then use http.StatusBadRequest. Despite a valid URI, the resource requested may not be available If the application logic could not process the request (or write the response) then use http.StatusInternalServerError. The request has a valid URL but the method (GET,PUT,POST,...) is not allowed. The request does not have or has an unknown Accept Header set for this operation. The request does not have or has an unknown Content-Type Header set for this operation. In addition to setting the correct (error) Http status code, you can choose to write a ServiceError message on the response. This package has several options that affect the performance of your service. It is important to understand them and how you can change it. The default router is the RouterJSR311 which is an implementation of its spec (http://jsr311.java.net/nonav/releases/1.1/spec/spec.html). However, it uses regular expressions for all its routes which, depending on your usecase, may consume a significant amount of time. The CurlyRouter implementation is more lightweight that also allows you to use wildcards and expressions, but only if needed. DoNotRecover controls whether panics will be caught to return HTTP 500. If set to true, Route functions are responsible for handling any error situation. Default value is false; it will recover from panics. This has performance implications. SetCacheReadEntity controls whether the response data ([]byte) is cached such that ReadEntity is repeatable. If you expect to read large amounts of payload data, and you do not use this feature, you should set it to false. This package has the means to produce detail logging of the complete Http request matching process and filter invocation. Enabling this feature requires you to set a log.Logger instance such as: (c) 2012-2014, http://ernestmicklei.com. MIT License
Package restful, a lean package for creating REST-style WebServices without magic. A WebService has a collection of Route objects that dispatch incoming Http Requests to a function calls. Typically, a WebService has a root path (e.g. /users) and defines common MIME types for its routes. WebServices must be added to a container (see below) in order to handler Http requests from a server. A Route is defined by a HTTP method, an URL path and (optionally) the MIME types it consumes (Content-Type) and produces (Accept). This package has the logic to find the best matching Route and if found, call its Function. The (*Request, *Response) arguments provide functions for reading information from the request and writing information back to the response. See the example https://github.com/emicklei/go-restful/blob/master/examples/restful-user-resource.go with a full implementation. A Route parameter can be specified using the format "uri/{var[:regexp]}" or the special version "uri/{var:*}" for matching the tail of the path. For example, /persons/{name:[A-Z][A-Z]} can be used to restrict values for the parameter "name" to only contain capital alphabetic characters. Regular expressions must use the standard Go syntax as described in the regexp package. (https://code.google.com/p/re2/wiki/Syntax) This feature requires the use of a CurlyRouter. A Container holds a collection of WebServices, Filters and a http.ServeMux for multiplexing http requests. Using the statements "restful.Add(...) and restful.Filter(...)" will register WebServices and Filters to the Default Container. The Default container of go-restful uses the http.DefaultServeMux. You can create your own Container and create a new http.Server for that particular container. A filter dynamically intercepts requests and responses to transform or use the information contained in the requests or responses. You can use filters to perform generic logging, measurement, authentication, redirect, set response headers etc. In the restful package there are three hooks into the request,response flow where filters can be added. Each filter must define a FilterFunction: Use the following statement to pass the request,response pair to the next filter or RouteFunction These are processed before any registered WebService. These are processed before any Route of a WebService. These are processed before calling the function associated with the Route. See the example https://github.com/emicklei/go-restful/blob/master/examples/restful-filters.go with full implementations. Two encodings are supported: gzip and deflate. To enable this for all responses: If a Http request includes the Accept-Encoding header then the response content will be compressed using the specified encoding. Alternatively, you can create a Filter that performs the encoding and install it per WebService or Route. See the example https://github.com/emicklei/go-restful/blob/master/examples/restful-encoding-filter.go By installing a pre-defined container filter, your Webservice(s) can respond to the OPTIONS Http request. By installing the filter of a CrossOriginResourceSharing (CORS), your WebService(s) can handle CORS requests. Unexpected things happen. If a request cannot be processed because of a failure, your service needs to tell via the response what happened and why. For this reason HTTP status codes exist and it is important to use the correct code in every exceptional situation. If path or query parameters are not valid (content or type) then use http.StatusBadRequest. Despite a valid URI, the resource requested may not be available If the application logic could not process the request (or write the response) then use http.StatusInternalServerError. The request has a valid URL but the method (GET,PUT,POST,...) is not allowed. The request does not have or has an unknown Accept Header set for this operation. The request does not have or has an unknown Content-Type Header set for this operation. In addition to setting the correct (error) Http status code, you can choose to write a ServiceError message on the response. This package has several options that affect the performance of your service. It is important to understand them and how you can change it. The default router is the RouterJSR311 which is an implementation of its spec (http://jsr311.java.net/nonav/releases/1.1/spec/spec.html). However, it uses regular expressions for all its routes which, depending on your usecase, may consume a significant amount of time. The CurlyRouter implementation is more lightweight that also allows you to use wildcards and expressions, but only if needed. DoNotRecover controls whether panics will be caught to return HTTP 500. If set to true, Route functions are responsible for handling any error situation. Default value is false; it will recover from panics. This has performance implications. SetCacheReadEntity controls whether the response data ([]byte) is cached such that ReadEntity is repeatable. If you expect to read large amounts of payload data, and you do not use this feature, you should set it to false. This package has the means to produce detail logging of the complete Http request matching process and filter invocation. Enabling this feature requires you to set a log.Logger instance such as: (c) 2012-2014, http://ernestmicklei.com. MIT License
Package restful , a lean package for creating REST-style WebServices without magic. A WebService has a collection of Route objects that dispatch incoming Http Requests to a function calls. Typically, a WebService has a root path (e.g. /users) and defines common MIME types for its routes. WebServices must be added to a container (see below) in order to handler Http requests from a server. A Route is defined by a HTTP method, an URL path and (optionally) the MIME types it consumes (Content-Type) and produces (Accept). This package has the logic to find the best matching Route and if found, call its Function. The (*Request, *Response) arguments provide functions for reading information from the request and writing information back to the response. See the example https://github.com/emicklei/go-restful/blob/master/examples/restful-user-resource.go with a full implementation. A Route parameter can be specified using the format "uri/{var[:regexp]}" or the special version "uri/{var:*}" for matching the tail of the path. For example, /persons/{name:[A-Z][A-Z]} can be used to restrict values for the parameter "name" to only contain capital alphabetic characters. Regular expressions must use the standard Go syntax as described in the regexp package. (https://code.google.com/p/re2/wiki/Syntax) This feature requires the use of a CurlyRouter. A Container holds a collection of WebServices, Filters and a http.ServeMux for multiplexing http requests. Using the statements "restful.Add(...) and restful.Filter(...)" will register WebServices and Filters to the Default Container. The Default container of go-restful uses the http.DefaultServeMux. You can create your own Container and create a new http.Server for that particular container. A filter dynamically intercepts requests and responses to transform or use the information contained in the requests or responses. You can use filters to perform generic logging, measurement, authentication, redirect, set response headers etc. In the restful package there are three hooks into the request,response flow where filters can be added. Each filter must define a FilterFunction: Use the following statement to pass the request,response pair to the next filter or RouteFunction These are processed before any registered WebService. These are processed before any Route of a WebService. These are processed before calling the function associated with the Route. See the example https://github.com/emicklei/go-restful/blob/master/examples/restful-filters.go with full implementations. Two encodings are supported: gzip and deflate. To enable this for all responses: If a Http request includes the Accept-Encoding header then the response content will be compressed using the specified encoding. Alternatively, you can create a Filter that performs the encoding and install it per WebService or Route. See the example https://github.com/emicklei/go-restful/blob/master/examples/restful-encoding-filter.go By installing a pre-defined container filter, your Webservice(s) can respond to the OPTIONS Http request. By installing the filter of a CrossOriginResourceSharing (CORS), your WebService(s) can handle CORS requests. Unexpected things happen. If a request cannot be processed because of a failure, your service needs to tell via the response what happened and why. For this reason HTTP status codes exist and it is important to use the correct code in every exceptional situation. If path or query parameters are not valid (content or type) then use http.StatusBadRequest. Despite a valid URI, the resource requested may not be available If the application logic could not process the request (or write the response) then use http.StatusInternalServerError. The request has a valid URL but the method (GET,PUT,POST,...) is not allowed. The request does not have or has an unknown Accept Header set for this operation. The request does not have or has an unknown Content-Type Header set for this operation. In addition to setting the correct (error) Http status code, you can choose to write a ServiceError message on the response. This package has several options that affect the performance of your service. It is important to understand them and how you can change it. DoNotRecover controls whether panics will be caught to return HTTP 500. If set to false, the container will recover from panics. Default value is true If content encoding is enabled then the default strategy for getting new gzip/zlib writers and readers is to use a sync.Pool. Because writers are expensive structures, performance is even more improved when using a preloaded cache. You can also inject your own implementation. This package has the means to produce detail logging of the complete Http request matching process and filter invocation. Enabling this feature requires you to set an implementation of restful.StdLogger (e.g. log.Logger) instance such as: The restful.SetLogger() method allows you to override the logger used by the package. By default restful uses the standard library `log` package and logs to stdout. Different logging packages are supported as long as they conform to `StdLogger` interface defined in the `log` sub-package, writing an adapter for your preferred package is simple. (c) 2012-2015, http://ernestmicklei.com. MIT License
Package restful , a lean package for creating REST-style WebServices without magic. A WebService has a collection of Route objects that dispatch incoming Http Requests to a function calls. Typically, a WebService has a root path (e.g. /users) and defines common MIME types for its routes. WebServices must be added to a container (see below) in order to handler Http requests from a server. A Route is defined by a HTTP method, an URL path and (optionally) the MIME types it consumes (Content-Type) and produces (Accept). This package has the logic to find the best matching Route and if found, call its Function. The (*Request, *Response) arguments provide functions for reading information from the request and writing information back to the response. See the example https://github.com/yansong-easemob/go-restful/blob/v3/examples/user-resource/restful-user-resource.go with a full implementation. A Route parameter can be specified using the format "uri/{var[:regexp]}" or the special version "uri/{var:*}" for matching the tail of the path. For example, /persons/{name:[A-Z][A-Z]} can be used to restrict values for the parameter "name" to only contain capital alphabetic characters. Regular expressions must use the standard Go syntax as described in the regexp package. (https://code.google.com/p/re2/wiki/Syntax) This feature requires the use of a CurlyRouter. A Container holds a collection of WebServices, Filters and a http.ServeMux for multiplexing http requests. Using the statements "restful.Add(...) and restful.Filter(...)" will register WebServices and Filters to the Default Container. The Default container of go-restful uses the http.DefaultServeMux. You can create your own Container and create a new http.Server for that particular container. A filter dynamically intercepts requests and responses to transform or use the information contained in the requests or responses. You can use filters to perform generic logging, measurement, authentication, redirect, set response headers etc. In the restful package there are three hooks into the request,response flow where filters can be added. Each filter must define a FilterFunction: Use the following statement to pass the request,response pair to the next filter or RouteFunction These are processed before any registered WebService. These are processed before any Route of a WebService. These are processed before calling the function associated with the Route. See the example https://github.com/yansong-easemob/go-restful/blob/v3/examples/filters/restful-filters.go with full implementations. Two encodings are supported: gzip and deflate. To enable this for all responses: If a Http request includes the Accept-Encoding header then the response content will be compressed using the specified encoding. Alternatively, you can create a Filter that performs the encoding and install it per WebService or Route. See the example https://github.com/yansong-easemob/go-restful/blob/v3/examples/encoding/restful-encoding-filter.go By installing a pre-defined container filter, your Webservice(s) can respond to the OPTIONS Http request. By installing the filter of a CrossOriginResourceSharing (CORS), your WebService(s) can handle CORS requests. Unexpected things happen. If a request cannot be processed because of a failure, your service needs to tell via the response what happened and why. For this reason HTTP status codes exist and it is important to use the correct code in every exceptional situation. If path or query parameters are not valid (content or type) then use http.StatusBadRequest. Despite a valid URI, the resource requested may not be available If the application logic could not process the request (or write the response) then use http.StatusInternalServerError. The request has a valid URL but the method (GET,PUT,POST,...) is not allowed. The request does not have or has an unknown Accept Header set for this operation. The request does not have or has an unknown Content-Type Header set for this operation. In addition to setting the correct (error) Http status code, you can choose to write a ServiceError message on the response. This package has several options that affect the performance of your service. It is important to understand them and how you can change it. DoNotRecover controls whether panics will be caught to return HTTP 500. If set to false, the container will recover from panics. Default value is true If content encoding is enabled then the default strategy for getting new gzip/zlib writers and readers is to use a sync.Pool. Because writers are expensive structures, performance is even more improved when using a preloaded cache. You can also inject your own implementation. This package has the means to produce detail logging of the complete Http request matching process and filter invocation. Enabling this feature requires you to set an implementation of restful.StdLogger (e.g. log.Logger) instance such as: The restful.SetLogger() method allows you to override the logger used by the package. By default restful uses the standard library `log` package and logs to stdout. Different logging packages are supported as long as they conform to `StdLogger` interface defined in the `log` sub-package, writing an adapter for your preferred package is simple. (c) 2012-2015, http://ernestmicklei.com. MIT License
Package restful, a lean package for creating REST-style WebServices without magic. A WebService has a collection of Route objects that dispatch incoming Http Requests to a function calls. Typically, a WebService has a root path (e.g. /users) and defines common MIME types for its routes. WebServices must be added to a container (see below) in order to handler Http requests from a server. A Route is defined by a HTTP method, an URL path and (optionally) the MIME types it consumes (Content-Type) and produces (Accept). This package has the logic to find the best matching Route and if found, call its Function. The (*Request, *Response) arguments provide functions for reading information from the request and writing information back to the response. See the example https://github.com/emicklei/go-restful/blob/master/examples/restful-user-resource.go with a full implementation. A Route parameter can be specified using the format "uri/{var[:regexp]}" or the special version "uri/{var:*}" for matching the tail of the path. For example, /persons/{name:[A-Z][A-Z]} can be used to restrict values for the parameter "name" to only contain capital alphabetic characters. Regular expressions must use the standard Go syntax as described in the regexp package. (https://code.google.com/p/re2/wiki/Syntax) This feature requires the use of a CurlyRouter. A Container holds a collection of WebServices, Filters and a http.ServeMux for multiplexing http requests. Using the statements "restful.Add(...) and restful.Filter(...)" will register WebServices and Filters to the Default Container. The Default container of go-restful uses the http.DefaultServeMux. You can create your own Container and create a new http.Server for that particular container. A filter dynamically intercepts requests and responses to transform or use the information contained in the requests or responses. You can use filters to perform generic logging, measurement, authentication, redirect, set response headers etc. In the restful package there are three hooks into the request,response flow where filters can be added. Each filter must define a FilterFunction: Use the following statement to pass the request,response pair to the next filter or RouteFunction These are processed before any registered WebService. These are processed before any Route of a WebService. These are processed before calling the function associated with the Route. See the example https://github.com/emicklei/go-restful/blob/master/examples/restful-filters.go with full implementations. Two encodings are supported: gzip and deflate. To enable this for all responses: If a Http request includes the Accept-Encoding header then the response content will be compressed using the specified encoding. Alternatively, you can create a Filter that performs the encoding and install it per WebService or Route. See the example https://github.com/emicklei/go-restful/blob/master/examples/restful-encoding-filter.go By installing a pre-defined container filter, your Webservice(s) can respond to the OPTIONS Http request. By installing the filter of a CrossOriginResourceSharing (CORS), your WebService(s) can handle CORS requests. Unexpected things happen. If a request cannot be processed because of a failure, your service needs to tell via the response what happened and why. For this reason HTTP status codes exist and it is important to use the correct code in every exceptional situation. If path or query parameters are not valid (content or type) then use http.StatusBadRequest. Despite a valid URI, the resource requested may not be available If the application logic could not process the request (or write the response) then use http.StatusInternalServerError. The request has a valid URL but the method (GET,PUT,POST,...) is not allowed. The request does not have or has an unknown Accept Header set for this operation. The request does not have or has an unknown Content-Type Header set for this operation. In addition to setting the correct (error) Http status code, you can choose to write a ServiceError message on the response. This package has several options that affect the performance of your service. It is important to understand them and how you can change it. The default router is the RouterJSR311 which is an implementation of its spec (http://jsr311.java.net/nonav/releases/1.1/spec/spec.html). However, it uses regular expressions for all its routes which, depending on your usecase, may consume a significant amount of time. The CurlyRouter implementation is more lightweight that also allows you to use wildcards and expressions, but only if needed. DoNotRecover controls whether panics will be caught to return HTTP 500. If set to true, Route functions are responsible for handling any error situation. Default value is false; it will recover from panics. This has performance implications. SetCacheReadEntity controls whether the response data ([]byte) is cached such that ReadEntity is repeatable. If you expect to read large amounts of payload data, and you do not use this feature, you should set it to false. This package has the means to produce detail logging of the complete Http request matching process and filter invocation. Enabling this feature requires you to set a log.Logger instance such as: (c) 2012-2014, http://ernestmicklei.com. MIT License
Package iris provides a beautifully expressive and easy to use foundation for your next website, API, or distributed app. Source code and other details for the project are available at GitHub: 8.4.4 The only requirement is the Go Programming Language, at least version 1.8 but 1.9 is highly recommended. Example code: You can start the server(s) listening to any type of `net.Listener` or even `http.Server` instance. The method for initialization of the server should be passed at the end, via `Run` function. Below you'll see some useful examples: UNIX and BSD hosts can take advandage of the reuse port feature. Example code: That's all with listening, you have the full control when you need it. Let's continue by learning how to catch CONTROL+C/COMMAND+C or unix kill command and shutdown the server gracefully. In order to manually manage what to do when app is interrupted, we have to disable the default behavior with the option `WithoutInterruptHandler` and register a new interrupt handler (globally, across all possible hosts). Example code: Access to all hosts that serve your application can be provided by the `Application#Hosts` field, after the `Run` method. But the most common scenario is that you may need access to the host before the `Run` method, there are two ways of gain access to the host supervisor, read below. First way is to use the `app.NewHost` to create a new host and use one of its `Serve` or `Listen` functions to start the application via the `iris#Raw` Runner. Note that this way needs an extra import of the `net/http` package. Example Code: Second, and probably easier way is to use the `host.Configurator`. Note that this method requires an extra import statement of "github.com/kataras/iris/core/host" when using go < 1.9, if you're targeting on go1.9 then you can use the `iris#Supervisor` and omit the extra host import. All common `Runners` we saw earlier (`iris#Addr, iris#Listener, iris#Server, iris#TLS, iris#AutoTLS`) accept a variadic argument of `host.Configurator`, there are just `func(*host.Supervisor)`. Therefore the `Application` gives you the rights to modify the auto-created host supervisor through these. Example Code: Read more about listening and gracefully shutdown by navigating to: All HTTP methods are supported, developers can also register handlers for same paths for different methods. The first parameter is the HTTP Method, second parameter is the request path of the route, third variadic parameter should contains one or more iris.Handler executed by the registered order when a user requests for that specific resouce path from the server. Example code: In order to make things easier for the user, iris provides functions for all HTTP Methods. The first parameter is the request path of the route, second variadic parameter should contains one or more iris.Handler executed by the registered order when a user requests for that specific resouce path from the server. Example code: A set of routes that are being groupped by path prefix can (optionally) share the same middleware handlers and template layout. A group can have a nested group too. `.Party` is being used to group routes, developers can declare an unlimited number of (nested) groups. Example code: iris developers are able to register their own handlers for http statuses like 404 not found, 500 internal server error and so on. Example code: With the help of iris's expressionist router you can build any form of API you desire, with safety. Example code: Iris has first-class support for the MVC pattern, you'll not find these stuff anywhere else in the Go world. Example Code: Iris web framework supports Request data, Models, Persistence Data and Binding with the fastest possible execution. Characteristics: All HTTP Methods are supported, for example if want to serve `GET` then the controller should have a function named `Get()`, you can define more than one method function to serve in the same Controller struct. Persistence data inside your Controller struct (share data between requests) via `iris:"persistence"` tag right to the field or Bind using `app.Controller("/" , new(myController), theBindValue)`. Models inside your Controller struct (set-ed at the Method function and rendered by the View) via `iris:"model"` tag right to the field, i.e User UserModel `iris:"model" name:"user"` view will recognise it as `{{.user}}`. If `name` tag is missing then it takes the field's name, in this case the `"User"`. Access to the request path and its parameters via the `Path and Params` fields. Access to the template file that should be rendered via the `Tmpl` field. Access to the template data that should be rendered inside the template file via `Data` field. Access to the template layout via the `Layout` field. Access to the low-level `iris.Context` via the `Ctx` field. Get the relative request path by using the controller's name via `RelPath()`. Get the relative template path directory by using the controller's name via `RelTmpl()`. Flow as you used to, `Controllers` can be registered to any `Party`, including Subdomains, the Party's begin and done handlers work as expected. Optional `BeginRequest(ctx)` function to perform any initialization before the method execution, useful to call middlewares or when many methods use the same collection of data. Optional `EndRequest(ctx)` function to perform any finalization after any method executed. Inheritance, recursively, see for example our `mvc.SessionController/iris.SessionController`, it has the `mvc.Controller/iris.Controller` as an embedded field and it adds its logic to its `BeginRequest`. Source file: https://github.com/kataras/iris/blob/master/mvc/session_controller.go. Read access to the current route via the `Route` field. Support for more than one input arguments (map to dynamic request path parameters). Register one or more relative paths and able to get path parameters, i.e By creating components that are independent of one another, developers are able to reuse components quickly and easily in other applications. The same (or similar) view for one application can be refactored for another application with different data because the view is simply handling how the data is being displayed to the user. If you're new to back-end web development read about the MVC architectural pattern first, a good start is that wikipedia article: https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller. Follow the examples below, - Hello world: https://github.com/kataras/iris/blob/master/_examples/mvc/hello-world/main.go - Session Controller usage: https://github.com/kataras/iris/blob/master/_examples/mvc/session-controller/main.go - A simple but featured Controller with model and views: https://github.com/kataras/iris/tree/master/_examples/mvc/controller-with-model-and-view At the previous example, we've seen static routes, group of routes, subdomains, wildcard subdomains, a small example of parameterized path with a single known parameter and custom http errors, now it's time to see wildcard parameters and macros. iris, like net/http std package registers route's handlers by a Handler, the iris' type of handler is just a func(ctx iris.Context) where context comes from github.com/kataras/iris/context. Iris has the easiest and the most powerful routing process you have ever meet. At the same time, iris has its own interpeter(yes like a programming language) for route's path syntax and their dynamic path parameters parsing and evaluation, We call them "macros" for shortcut. How? It calculates its needs and if not any special regexp needed then it just registers the route with the low-level path syntax, otherwise it pre-compiles the regexp and adds the necessary middleware(s). Standard macro types for parameters: if type is missing then parameter's type is defaulted to string, so {param} == {param:string}. If a function not found on that type then the "string"'s types functions are being used. i.e: Besides the fact that iris provides the basic types and some default "macro funcs" you are able to register your own too!. Register a named path parameter function: at the func(argument ...) you can have any standard type, it will be validated before the server starts so don't care about performance here, the only thing it runs at serve time is the returning func(paramValue string) bool. Example Code: A path parameter name should contain only alphabetical letters, symbols, containing '_' and numbers are NOT allowed. If route failed to be registered, the app will panic without any warnings if you didn't catch the second return value(error) on .Handle/.Get.... Last, do not confuse ctx.Values() with ctx.Params(). Path parameter's values goes to ctx.Params() and context's local storage that can be used to communicate between handlers and middleware(s) goes to ctx.Values(), path parameters and the rest of any custom values are separated for your own good. Run Static Files Example code: More examples can be found here: https://github.com/kataras/iris/tree/master/_examples/beginner/file-server Middleware is just a concept of ordered chain of handlers. Middleware can be registered globally, per-party, per-subdomain and per-route. Example code: iris is able to wrap and convert any external, third-party Handler you used to use to your web application. Let's convert the https://github.com/rs/cors net/http external middleware which returns a `next form` handler. Example code: Iris supports 5 template engines out-of-the-box, developers can still use any external golang template engine, as `context/context#ResponseWriter()` is an `io.Writer`. All of these five template engines have common features with common API, like Layout, Template Funcs, Party-specific layout, partial rendering and more. Example code: View engine supports bundled(https://github.com/jteeuwen/go-bindata) template files too. go-bindata gives you two functions, asset and assetNames, these can be setted to each of the template engines using the `.Binary` func. Example code: A real example can be found here: https://github.com/kataras/iris/tree/master/_examples/view/embedding-templates-into-app. Enable auto-reloading of templates on each request. Useful while developers are in dev mode as they no neeed to restart their app on every template edit. Example code: Note: In case you're wondering, the code behind the view engines derives from the "github.com/kataras/iris/view" package, access to the engines' variables can be granded by "github.com/kataras/iris" package too. Each one of these template engines has different options located here: https://github.com/kataras/iris/tree/master/view . This example will show how to store and access data from a session. You don’t need any third-party library, but If you want you can use any session manager compatible or not. In this example we will only allow authenticated users to view our secret message on the /secret page. To get access to it, the will first have to visit /login to get a valid session cookie, which logs him in. Additionally he can visit /logout to revoke his access to our secret message. Example code: Running the example: Sessions persistence can be achieved using one (or more) `sessiondb`. Example Code: More examples: In this example we will create a small chat between web sockets via browser. Example Server Code: Example Client(javascript) Code: Running the example: But you should have a basic idea of the framework by now, we just scratched the surface. If you enjoy what you just saw and want to learn more, please follow the below links: Examples: Middleware: Home Page: Book (in-progress):
Package restful , a lean package for creating REST-style WebServices without magic. A WebService has a collection of Route objects that dispatch incoming Http Requests to a function calls. Typically, a WebService has a root path (e.g. /users) and defines common MIME types for its routes. WebServices must be added to a container (see below) in order to handler Http requests from a server. A Route is defined by a HTTP method, an URL path and (optionally) the MIME types it consumes (Content-Type) and produces (Accept). This package has the logic to find the best matching Route and if found, call its Function. The (*Request, *Response) arguments provide functions for reading information from the request and writing information back to the response. See the example https://github.com/emicklei/go-restful/blob/master/examples/restful-user-resource.go with a full implementation. A Route parameter can be specified using the format "uri/{var[:regexp]}" or the special version "uri/{var:*}" for matching the tail of the path. For example, /persons/{name:[A-Z][A-Z]} can be used to restrict values for the parameter "name" to only contain capital alphabetic characters. Regular expressions must use the standard Go syntax as described in the regexp package. (https://code.google.com/p/re2/wiki/Syntax) This feature requires the use of a CurlyRouter. A Container holds a collection of WebServices, Filters and a http.ServeMux for multiplexing http requests. Using the statements "restful.Add(...) and restful.Filter(...)" will register WebServices and Filters to the Default Container. The Default container of go-restful uses the http.DefaultServeMux. You can create your own Container and create a new http.Server for that particular container. A filter dynamically intercepts requests and responses to transform or use the information contained in the requests or responses. You can use filters to perform generic logging, measurement, authentication, redirect, set response headers etc. In the restful package there are three hooks into the request,response flow where filters can be added. Each filter must define a FilterFunction: Use the following statement to pass the request,response pair to the next filter or RouteFunction These are processed before any registered WebService. These are processed before any Route of a WebService. These are processed before calling the function associated with the Route. See the example https://github.com/emicklei/go-restful/blob/master/examples/restful-filters.go with full implementations. Two encodings are supported: gzip and deflate. To enable this for all responses: If a Http request includes the Accept-Encoding header then the response content will be compressed using the specified encoding. Alternatively, you can create a Filter that performs the encoding and install it per WebService or Route. See the example https://github.com/emicklei/go-restful/blob/master/examples/restful-encoding-filter.go By installing a pre-defined container filter, your Webservice(s) can respond to the OPTIONS Http request. By installing the filter of a CrossOriginResourceSharing (CORS), your WebService(s) can handle CORS requests. Unexpected things happen. If a request cannot be processed because of a failure, your service needs to tell via the response what happened and why. For this reason HTTP status codes exist and it is important to use the correct code in every exceptional situation. If path or query parameters are not valid (content or type) then use http.StatusBadRequest. Despite a valid URI, the resource requested may not be available If the application logic could not process the request (or write the response) then use http.StatusInternalServerError. The request has a valid URL but the method (GET,PUT,POST,...) is not allowed. The request does not have or has an unknown Accept Header set for this operation. The request does not have or has an unknown Content-Type Header set for this operation. In addition to setting the correct (error) Http status code, you can choose to write a ServiceError message on the response. This package has several options that affect the performance of your service. It is important to understand them and how you can change it. DoNotRecover controls whether panics will be caught to return HTTP 500. If set to false, the container will recover from panics. Default value is true If content encoding is enabled then the default strategy for getting new gzip/zlib writers and readers is to use a sync.Pool. Because writers are expensive structures, performance is even more improved when using a preloaded cache. You can also inject your own implementation. This package has the means to produce detail logging of the complete Http request matching process and filter invocation. Enabling this feature requires you to set an implementation of restful.StdLogger (e.g. log.Logger) instance such as: The restful.SetLogger() method allows you to override the logger used by the package. By default restful uses the standard library `log` package and logs to stdout. Different logging packages are supported as long as they conform to `StdLogger` interface defined in the `log` sub-package, writing an adapter for your preferred package is simple. (c) 2012-2015, http://ernestmicklei.com. MIT License
Package skipper provides an HTTP routing library with flexible configuration as well as a runtime update of the routing rules. Skipper works as an HTTP reverse proxy that is responsible for mapping incoming requests to multiple HTTP backend services, based on routes that are selected by the request attributes. At the same time, both the requests and the responses can be augmented by a filter chain that is specifically defined for each route. Optionally, it can provide circuit breaker mechanism individually for each backend host. Skipper can load and update the route definitions from multiple data sources without being restarted. It provides a default executable command with a few built-in filters, however, its primary use case is to be extended with custom filters, predicates or data sources. For further information read 'Extending Skipper'. Skipper took the core design and inspiration from Vulcand: https://github.com/mailgun/vulcand. Skipper is 'go get' compatible. If needed, create a 'go workspace' first: Get the Skipper packages: Create a file with a route: Optionally, verify the syntax of the file: Start Skipper and make an HTTP request: The core of Skipper's request processing is implemented by a reverse proxy in the 'proxy' package. The proxy receives the incoming request, forwards it to the routing engine in order to receive the most specific matching route. When a route matches, the request is forwarded to all filters defined by it. The filters can modify the request or execute any kind of program logic. Once the request has been processed by all the filters, it is forwarded to the backend endpoint of the route. The response from the backend goes once again through all the filters in reverse order. Finally, it is mapped as the response of the original incoming request. Besides the default proxying mechanism, it is possible to define routes without a real network backend endpoint. One of these cases is called a 'shunt' backend, in which case one of the filters needs to handle the request providing its own response (e.g. the 'static' filter). Actually, filters themselves can instruct the request flow to shunt by calling the Serve(*http.Response) method of the filter context. Another case of a route without a network backend is the 'loopback'. A loopback route can be used to match a request, modified by filters, against the lookup tree with different conditions and then execute a different route. One example scenario can be to use a single route as an entry point to execute some calculation to get an A/B testing decision and then matching the updated request metadata for the actual destination route. This way the calculation can be executed for only those requests that don't contain information about a previously calculated decision. For further details, see the 'proxy' and 'filters' package documentation. Finding a request's route happens by matching the request attributes to the conditions in the route's definitions. Such definitions may have the following conditions: - method - path (optionally with wildcards) - path regular expressions - host regular expressions - headers - header regular expressions It is also possible to create custom predicates with any other matching criteria. The relation between the conditions in a route definition is 'and', meaning, that a request must fulfill each condition to match a route. For further details, see the 'routing' package documentation. Filters are applied in order of definition to the request and in reverse order to the response. They are used to modify request and response attributes, such as headers, or execute background tasks, like logging. Some filters may handle the requests without proxying them to service backends. Filters, depending on their implementation, may accept/require parameters, that are set specifically to the route. For further details, see the 'filters' package documentation. Each route has one of the following backends: HTTP endpoint, shunt or loopback. Backend endpoints can be any HTTP service. They are specified by their network address, including the protocol scheme, the domain name or the IP address, and optionally the port number: e.g. "https://www.example.org:4242". (The path and query are sent from the original request, or set by filters.) A shunt route means that Skipper handles the request alone and doesn't make requests to a backend service. In this case, it is the responsibility of one of the filters to generate the response. A loopback route executes the routing mechanism on current state of the request from the start, including the route lookup. This way it serves as a form of an internal redirect. Route definitions consist of the following: - request matching conditions (predicates) - filter chain (optional) - backend (either an HTTP endpoint or a shunt) The eskip package implements the in-memory and text representations of route definitions, including a parser. (Note to contributors: in order to stay compatible with 'go get', the generated part of the parser is stored in the repository. When changing the grammar, 'go generate' needs to be executed explicitly to update the parser.) For further details, see the 'eskip' package documentation Skipper has filter implementations of basic auth and OAuth2. It can be integrated with tokeninfo based OAuth2 providers. For details, see: https://godoc.org/github.com/zalando/skipper/filters/auth. Skipper's route definitions of Skipper are loaded from one or more data sources. It can receive incremental updates from those data sources at runtime. It provides three different data clients: - Kubernetes: Skipper can be used as part of a Kubernetes Ingress Controller implementation together with https://github.com/zalando-incubator/kube-ingress-aws-controller . In this scenario, Skipper uses the Kubernetes API's Ingress extensions as a source for routing. For a complete deployment example, see more details in: https://github.com/zalando-incubator/kubernetes-on-aws/ . - Innkeeper: the Innkeeper service implements a storage for large sets of Skipper routes, with an HTTP+JSON API, OAuth2 authentication and role management. See the 'innkeeper' package and https://github.com/zalando/innkeeper. - etcd: Skipper can load routes and receive updates from etcd clusters (https://github.com/coreos/etcd). See the 'etcd' package. - static file: package eskipfile implements a simple data client, which can load route definitions from a static file in eskip format. Currently, it loads the routes on startup. It doesn't support runtime updates. Skipper can use additional data sources, provided by extensions. Sources must implement the DataClient interface in the routing package. Skipper provides circuit breakers, configured either globally, based on backend hosts or based on individual routes. It supports two types of circuit breaker behavior: open on N consecutive failures, or open on N failures out of M requests. For details, see: https://godoc.org/github.com/zalando/skipper/circuit. Skipper can be started with the default executable command 'skipper', or as a library built into an application. The easiest way to start Skipper as a library is to execute the 'Run' function of the current, root package. Each option accepted by the 'Run' function is wired in the default executable as well, as a command line flag. E.g. EtcdUrls becomes -etcd-urls as a comma separated list. For command line help, enter: An additional utility, eskip, can be used to verify, print, update and delete routes from/to files or etcd (Innkeeper on the roadmap). See the cmd/eskip command package, and/or enter in the command line: Skipper doesn't use dynamically loaded plugins, however, it can be used as a library, and it can be extended with custom predicates, filters and/or custom data sources. To create a custom predicate, one needs to implement the PredicateSpec interface in the routing package. Instances of the PredicateSpec are used internally by the routing package to create the actual Predicate objects as referenced in eskip routes, with concrete arguments. Example, randompredicate.go: In the above example, a custom predicate is created, that can be referenced in eskip definitions with the name 'Random': To create a custom filter we need to implement the Spec interface of the filters package. 'Spec' is the specification of a filter, and it is used to create concrete filter instances, while the raw route definitions are processed. Example, hellofilter.go: The above example creates a filter specification, and in the routes where they are included, the filter instances will set the 'X-Hello' header for each and every response. The name of the filter is 'hello', and in a route definition it is referenced as: The easiest way to create a custom Skipper variant is to implement the required filters (as in the example above) by importing the Skipper package, and starting it with the 'Run' command. Example, hello.go: A file containing the routes, routes.eskip: Start the custom router: The 'Run' function in the root Skipper package starts its own listener but it doesn't provide the best composability. The proxy package, however, provides a standard http.Handler, so it is possible to use it in a more complex solution as a building block for routing. Skipper provides detailed logging of failures, and access logs in Apache log format. Skipper also collects detailed performance metrics, and exposes them on a separate listener endpoint for pulling snapshots. For details, see the 'logging' and 'metrics' packages documentation. The router's performance depends on the environment and on the used filters. Under ideal circumstances, and without filters, the biggest time factor is the route lookup. Skipper is able to scale to thousands of routes with logarithmic performance degradation. However, this comes at the cost of increased memory consumption, due to storing the whole lookup tree in a single structure. Benchmarks for the tree lookup can be run by: In case more aggressive scale is needed, it is possible to setup Skipper in a cascade model, with multiple Skipper instances for specific route segments.
Goserial is a simple go package to allow you to read and write from the serial port as a stream of bytes. It aims to have the same API on all platforms, including windows. As an added bonus, the windows package does not use cgo, so you can cross compile for windows from another platform. Unfortunately goinstall does not currently let you cross compile so you will have to do it manually: Currently there is very little in the way of configurability. You can set the baud rate. Then you can Read(), Write(), or Close() the connection. Read() will block until at least one byte is returned. Write is the same. There is currently no exposed way to set the timeouts, though patches are welcome. Currently all ports are opened with 8 data bits, 1 stop bit, no parity, no hardware flow control, and no software flow control. This works fine for many real devices and many faux serial devices including usb-to-serial converters and bluetooth serial ports. You may Read() and Write() simulantiously on the same connection (from different goroutines). Example usage:
Goserial is a simple go package to allow you to read and write from the serial port as a stream of bytes. It aims to have the same API on all platforms, including windows. As an added bonus, the windows package does not use cgo, so you can cross compile for windows from another platform. Unfortunately goinstall does not currently let you cross compile so you will have to do it manually: Currently there is very little in the way of configurability. You can set the baud rate. Then you can Read(), Write(), or Close() the connection. Read() will block until at least one byte is returned. Write is the same. There is currently no exposed way to set the timeouts, though patches are welcome. Currently all ports are opened with 8 data bits, 1 stop bit, no parity, no hardware flow control, and no software flow control. This works fine for many real devices and many faux serial devices including usb-to-serial converters and bluetooth serial ports. You may Read() and Write() simulantiously on the same connection (from different goroutines). Example usage:
Package tello provides an unofficial, easy-to-use, standalone API for the Ryze Tello® drone. Tello is a registered trademark of Ryze Tech. The author(s) of this package is/are in no way affiliated with Ryze, DJI, or Intel. The package has been developed by gathering together information from a variety of sources on the Internet (especially the generous contributors at https://tellopilots.com), and by examining data packets sent to/from the Tello. The package will probably be extended as more knowledge of the drone's protocol is obtained. Use this package at your own risk. The author(s) is/are in no way responsible for any damage caused either to or by the drone when using this software. The following features have been implemented... An example application using this package is available at http://github.com/SMerrony/telloterm This documentation should be consulted alongside https://github.com/SMerrony/tello/blob/master/ImplementationChart.md The drone provides two types of connection: a 'control' connection which handles all commands to and from the drone including flight, status and (still) pictures, and a 'video' connection which provides an H.264 video stream from the forward-facing camera. You must establish a control connection to use the drone, but the video connection is optional and cannot be started unless a control connection is running. Funcs vs. Channels Certain functionality is made available in two forms: single-shot function calls and streaming (channel) data flows. Eg. GetFlightData() vs. StreamFlightData(), and UpdateSticks() vs. StartStickListener(). Use whichever paradigm you prefer, but be aware that the channel-based calls should return immediately (the channels are buffered) whereas the function-based options could conceivably cause your application to pause very briefly if the Tello is very busy. (In practice, the author has not found this to be an issue.)
Goserial is a simple go package to allow you to read and write from the serial port as a stream of bytes. It aims to have the same API on all platforms, including windows. As an added bonus, the windows package does not use cgo, so you can cross compile for windows from another platform. Unfortunately goinstall does not currently let you cross compile so you will have to do it manually: Currently there is very little in the way of configurability. You can set the baud rate. Then you can Read(), Write(), or Close() the connection. Read() will block until at least one byte is returned. Write is the same. There is currently no exposed way to set the timeouts, though patches are welcome. Currently all ports are opened with 8 data bits, 1 stop bit, no parity, no hardware flow control, and no software flow control. This works fine for many real devices and many faux serial devices including usb-to-serial converters and bluetooth serial ports. You may Read() and Write() simulantiously on the same connection (from different goroutines). Example usage:
Goserial is a simple go package to allow you to read and write from the serial port as a stream of bytes. It aims to have the same API on all platforms, including windows. As an added bonus, the windows package does not use cgo, so you can cross compile for windows from another platform. Unfortunately goinstall does not currently let you cross compile so you will have to do it manually: Currently there is very little in the way of configurability. You can set the baud rate. Then you can Read(), Write(), or Close() the connection. Read() will block until at least one byte is returned. Write is the same. There is currently no exposed way to set the timeouts, though patches are welcome. Currently all ports are opened with 8 data bits, 1 stop bit, no parity, no hardware flow control, and no software flow control. This works fine for many real devices and many faux serial devices including usb-to-serial converters and bluetooth serial ports. You may Read() and Write() simulantiously on the same connection (from different goroutines). Example usage:
Package iris provides a beautifully expressive and easy to use foundation for your next website, API, or distributed app. Source code and other details for the project are available at GitHub: 10.6.6 The only requirement is the Go Programming Language, at least version 1.8 but 1.10.2 is highly recommended. Example code: You can start the server(s) listening to any type of `net.Listener` or even `http.Server` instance. The method for initialization of the server should be passed at the end, via `Run` function. Below you'll see some useful examples: UNIX and BSD hosts can take advantage of the reuse port feature. Example code: That's all with listening, you have the full control when you need it. Let's continue by learning how to catch CONTROL+C/COMMAND+C or unix kill command and shutdown the server gracefully. In order to manually manage what to do when app is interrupted, we have to disable the default behavior with the option `WithoutInterruptHandler` and register a new interrupt handler (globally, across all possible hosts). Example code: Access to all hosts that serve your application can be provided by the `Application#Hosts` field, after the `Run` method. But the most common scenario is that you may need access to the host before the `Run` method, there are two ways of gain access to the host supervisor, read below. First way is to use the `app.NewHost` to create a new host and use one of its `Serve` or `Listen` functions to start the application via the `iris#Raw` Runner. Note that this way needs an extra import of the `net/http` package. Example Code: Second, and probably easier way is to use the `host.Configurator`. Note that this method requires an extra import statement of "github.com/kataras/iris/core/host" when using go < 1.9, if you're targeting on go1.9 then you can use the `iris#Supervisor` and omit the extra host import. All common `Runners` we saw earlier (`iris#Addr, iris#Listener, iris#Server, iris#TLS, iris#AutoTLS`) accept a variadic argument of `host.Configurator`, there are just `func(*host.Supervisor)`. Therefore the `Application` gives you the rights to modify the auto-created host supervisor through these. Example Code: Read more about listening and gracefully shutdown by navigating to: All HTTP methods are supported, developers can also register handlers for same paths for different methods. The first parameter is the HTTP Method, second parameter is the request path of the route, third variadic parameter should contains one or more iris.Handler executed by the registered order when a user requests for that specific resouce path from the server. Example code: In order to make things easier for the user, iris provides functions for all HTTP Methods. The first parameter is the request path of the route, second variadic parameter should contains one or more iris.Handler executed by the registered order when a user requests for that specific resouce path from the server. Example code: A set of routes that are being groupped by path prefix can (optionally) share the same middleware handlers and template layout. A group can have a nested group too. `.Party` is being used to group routes, developers can declare an unlimited number of (nested) groups. Example code: iris developers are able to register their own handlers for http statuses like 404 not found, 500 internal server error and so on. Example code: With the help of iris's expressionist router you can build any form of API you desire, with safety. Example code: At the previous example, we've seen static routes, group of routes, subdomains, wildcard subdomains, a small example of parameterized path with a single known parameter and custom http errors, now it's time to see wildcard parameters and macros. iris, like net/http std package registers route's handlers by a Handler, the iris' type of handler is just a func(ctx iris.Context) where context comes from github.com/kataras/iris/context. Iris has the easiest and the most powerful routing process you have ever meet. At the same time, iris has its own interpeter(yes like a programming language) for route's path syntax and their dynamic path parameters parsing and evaluation, We call them "macros" for shortcut. How? It calculates its needs and if not any special regexp needed then it just registers the route with the low-level path syntax, otherwise it pre-compiles the regexp and adds the necessary middleware(s). Standard macro types for parameters: if type is missing then parameter's type is defaulted to string, so {param} == {param:string}. If a function not found on that type then the "string"'s types functions are being used. i.e: Besides the fact that iris provides the basic types and some default "macro funcs" you are able to register your own too!. Register a named path parameter function: at the func(argument ...) you can have any standard type, it will be validated before the server starts so don't care about performance here, the only thing it runs at serve time is the returning func(paramValue string) bool. Example Code: A path parameter name should contain only alphabetical letters, symbols, containing '_' and numbers are NOT allowed. If route failed to be registered, the app will panic without any warnings if you didn't catch the second return value(error) on .Handle/.Get.... Last, do not confuse ctx.Values() with ctx.Params(). Path parameter's values goes to ctx.Params() and context's local storage that can be used to communicate between handlers and middleware(s) goes to ctx.Values(), path parameters and the rest of any custom values are separated for your own good. Run Static Files Example code: More examples can be found here: https://github.com/kataras/iris/tree/master/_examples/beginner/file-server Middleware is just a concept of ordered chain of handlers. Middleware can be registered globally, per-party, per-subdomain and per-route. Example code: iris is able to wrap and convert any external, third-party Handler you used to use to your web application. Let's convert the https://github.com/rs/cors net/http external middleware which returns a `next form` handler. Example code: Iris supports 5 template engines out-of-the-box, developers can still use any external golang template engine, as `context/context#ResponseWriter()` is an `io.Writer`. All of these five template engines have common features with common API, like Layout, Template Funcs, Party-specific layout, partial rendering and more. Example code: View engine supports bundled(https://github.com/shuLhan/go-bindata) template files too. go-bindata gives you two functions, asset and assetNames, these can be setted to each of the template engines using the `.Binary` func. Example code: A real example can be found here: https://github.com/kataras/iris/tree/master/_examples/view/embedding-templates-into-app. Enable auto-reloading of templates on each request. Useful while developers are in dev mode as they no neeed to restart their app on every template edit. Example code: Note: In case you're wondering, the code behind the view engines derives from the "github.com/kataras/iris/view" package, access to the engines' variables can be granded by "github.com/kataras/iris" package too. Each one of these template engines has different options located here: https://github.com/kataras/iris/tree/master/view . This example will show how to store and access data from a session. You don’t need any third-party library, but If you want you can use any session manager compatible or not. In this example we will only allow authenticated users to view our secret message on the /secret page. To get access to it, the will first have to visit /login to get a valid session cookie, which logs him in. Additionally he can visit /logout to revoke his access to our secret message. Example code: Running the example: Sessions persistence can be achieved using one (or more) `sessiondb`. Example Code: More examples: In this example we will create a small chat between web sockets via browser. Example Server Code: Example Client(javascript) Code: Running the example: Iris has first-class support for the MVC pattern, you'll not find these stuff anywhere else in the Go world. Example Code: // GetUserBy serves // Method: GET // Resource: http://localhost:8080/user/{username:string} // By is a reserved "keyword" to tell the framework that you're going to // bind path parameters in the function's input arguments, and it also // helps to have "Get" and "GetBy" in the same controller. // // func (c *ExampleController) GetUserBy(username string) mvc.Result { // return mvc.View{ // Name: "user/username.html", // Data: username, // } // } Can use more than one, the factory will make sure that the correct http methods are being registered for each route for this controller, uncomment these if you want: Iris web framework supports Request data, Models, Persistence Data and Binding with the fastest possible execution. Characteristics: All HTTP Methods are supported, for example if want to serve `GET` then the controller should have a function named `Get()`, you can define more than one method function to serve in the same Controller. Register custom controller's struct's methods as handlers with custom paths(even with regex parametermized path) via the `BeforeActivation` custom event callback, per-controller. Example: Persistence data inside your Controller struct (share data between requests) by defining services to the Dependencies or have a `Singleton` controller scope. Share the dependencies between controllers or register them on a parent MVC Application, and ability to modify dependencies per-controller on the `BeforeActivation` optional event callback inside a Controller, i.e Access to the `Context` as a controller's field(no manual binding is neede) i.e `Ctx iris.Context` or via a method's input argument, i.e Models inside your Controller struct (set-ed at the Method function and rendered by the View). You can return models from a controller's method or set a field in the request lifecycle and return that field to another method, in the same request lifecycle. Flow as you used to, mvc application has its own `Router` which is a type of `iris/router.Party`, the standard iris api. `Controllers` can be registered to any `Party`, including Subdomains, the Party's begin and done handlers work as expected. Optional `BeginRequest(ctx)` function to perform any initialization before the method execution, useful to call middlewares or when many methods use the same collection of data. Optional `EndRequest(ctx)` function to perform any finalization after any method executed. Session dynamic dependency via manager's `Start` to the MVC Application, i.e Inheritance, recursively. Access to the dynamic path parameters via the controller's methods' input arguments, no binding is needed. When you use the Iris' default syntax to parse handlers from a controller, you need to suffix the methods with the `By` word, uppercase is a new sub path. Example: Register one or more relative paths and able to get path parameters, i.e Response via output arguments, optionally, i.e Where `any` means everything, from custom structs to standard language's types-. `Result` is an interface which contains only that function: Dispatch(ctx iris.Context) and Get where HTTP Method function(Post, Put, Delete...). Iris has a very powerful and blazing fast MVC support, you can return any value of any type from a method function and it will be sent to the client as expected. * if `string` then it's the body. * if `string` is the second output argument then it's the content type. * if `int` then it's the status code. * if `bool` is false then it throws 404 not found http error by skipping everything else. * if `error` and not nil then (any type) response will be omitted and error's text with a 400 bad request will be rendered instead. * if `(int, error)` and error is not nil then the response result will be the error's text with the status code as `int`. * if `custom struct` or `interface{}` or `slice` or `map` then it will be rendered as json, unless a `string` content type is following. * if `mvc.Result` then it executes its `Dispatch` function, so good design patters can be used to split the model's logic where needed. Examples with good patterns to follow but not intend to be used in production of course can be found at: https://github.com/kataras/iris/tree/master/_examples/#mvc. By creating components that are independent of one another, developers are able to reuse components quickly and easily in other applications. The same (or similar) view for one application can be refactored for another application with different data because the view is simply handling how the data is being displayed to the user. If you're new to back-end web development read about the MVC architectural pattern first, a good start is that wikipedia article: https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller. But you should have a basic idea of the framework by now, we just scratched the surface. If you enjoy what you just saw and want to learn more, please follow the below links: Examples: Middleware: Home Page: Book (in-progress):
WARNING: I wrote this library mainly to learn about Go concurrency patterns. Tests pass, but don't use it in production. Package netchan enables using Go channels to communicate over a network: one peer sends messages to a channel and netchan forwards them over a connection to the other peer, where they are received from another channel of the same type. Net-chans are unidirectional: on one side of the connection a net-chan is opened for sending, on the other side the same net-chan (identified by name) is opened for receiving. But it is possible to open multiple net-chans, in both directions, on a single connection. The connection can be any io.ReadWriteCloser like a TCP connection or unix domain sockets. The user is in charge of establishing the connection, which is then handed over to a netchan.Session. A basic netchan session, where a peer sends some integers to the other, looks like the following (error handling aside). On the send side: On the receive side: All methods that Session provides can be called safely from multiple goroutines. Netchan uses gob to serialize messages (https://golang.org/pkg/encoding/gob/). Any data to be transmitted using netchan must obey gob's laws. In particular, channels cannot be sent, but it is possible to send net-chans' names. When a session shuts down (because Quit is called or because of an error), some goroutines could hang forever trying to receive or send on a net-chan. For this reason, Session provides the methods Done and Err. Done returns a channel that never gets any message and is closed when an error occurs; Err returns the error that occurred. Their intended use: Some errors are not caught by netchan. For example, if one peer opens a net-chan with the wrong direction, both peers might end up waiting to receive messages, but none of them will send anything. It is advised to use timeouts to identify this kind of errors. Net-chans are independent of each other: an idle channel does not prevent progress on the others. This is achieved with a credit-based flow control system analogous to the one of HTTP/2. Go channels used for receiving must be buffered. For each net-chan, the receiver communicates to the sender when there is new free space in the buffer, with credit messages. The sender must never transmit more than its credit allows. The receive channel capacity can affect performance: a small buffer could cause the sender to suspend often, waiting for credit; a big buffer could avoid suspensions completely. This example shows a basic netchan session: two peers establish a connection and delegate its management to a netchan.Manager (one for peer); peer 1 opens a net-chan for sending; peer 2 opens the same net-chan (by name) for receiving; the peers communicate using the Go channels associated with the net-chans. Warning: this example does not include error handling.
Package iris provides a beautifully expressive and easy to use foundation for your next website, API, or distributed app. Source code and other details for the project are available at GitHub: 10.6.6 The only requirement is the Go Programming Language, at least version 1.8 but 1.10.2 is highly recommended. Example code: You can start the server(s) listening to any type of `net.Listener` or even `http.Server` instance. The method for initialization of the server should be passed at the end, via `Run` function. Below you'll see some useful examples: UNIX and BSD hosts can take advantage of the reuse port feature. Example code: That's all with listening, you have the full control when you need it. Let's continue by learning how to catch CONTROL+C/COMMAND+C or unix kill command and shutdown the server gracefully. In order to manually manage what to do when app is interrupted, we have to disable the default behavior with the option `WithoutInterruptHandler` and register a new interrupt handler (globally, across all possible hosts). Example code: Access to all hosts that serve your application can be provided by the `Application#Hosts` field, after the `Run` method. But the most common scenario is that you may need access to the host before the `Run` method, there are two ways of gain access to the host supervisor, read below. First way is to use the `app.NewHost` to create a new host and use one of its `Serve` or `Listen` functions to start the application via the `iris#Raw` Runner. Note that this way needs an extra import of the `net/http` package. Example Code: Second, and probably easier way is to use the `host.Configurator`. Note that this method requires an extra import statement of "github.com/kataras/iris/core/host" when using go < 1.9, if you're targeting on go1.9 then you can use the `iris#Supervisor` and omit the extra host import. All common `Runners` we saw earlier (`iris#Addr, iris#Listener, iris#Server, iris#TLS, iris#AutoTLS`) accept a variadic argument of `host.Configurator`, there are just `func(*host.Supervisor)`. Therefore the `Application` gives you the rights to modify the auto-created host supervisor through these. Example Code: Read more about listening and gracefully shutdown by navigating to: All HTTP methods are supported, developers can also register handlers for same paths for different methods. The first parameter is the HTTP Method, second parameter is the request path of the route, third variadic parameter should contains one or more iris.Handler executed by the registered order when a user requests for that specific resouce path from the server. Example code: In order to make things easier for the user, iris provides functions for all HTTP Methods. The first parameter is the request path of the route, second variadic parameter should contains one or more iris.Handler executed by the registered order when a user requests for that specific resouce path from the server. Example code: A set of routes that are being groupped by path prefix can (optionally) share the same middleware handlers and template layout. A group can have a nested group too. `.Party` is being used to group routes, developers can declare an unlimited number of (nested) groups. Example code: iris developers are able to register their own handlers for http statuses like 404 not found, 500 internal server error and so on. Example code: With the help of iris's expressionist router you can build any form of API you desire, with safety. Example code: At the previous example, we've seen static routes, group of routes, subdomains, wildcard subdomains, a small example of parameterized path with a single known parameter and custom http errors, now it's time to see wildcard parameters and macros. iris, like net/http std package registers route's handlers by a Handler, the iris' type of handler is just a func(ctx iris.Context) where context comes from github.com/kataras/iris/context. Iris has the easiest and the most powerful routing process you have ever meet. At the same time, iris has its own interpeter(yes like a programming language) for route's path syntax and their dynamic path parameters parsing and evaluation, We call them "macros" for shortcut. How? It calculates its needs and if not any special regexp needed then it just registers the route with the low-level path syntax, otherwise it pre-compiles the regexp and adds the necessary middleware(s). Standard macro types for parameters: if type is missing then parameter's type is defaulted to string, so {param} == {param:string}. If a function not found on that type then the "string"'s types functions are being used. i.e: Besides the fact that iris provides the basic types and some default "macro funcs" you are able to register your own too!. Register a named path parameter function: at the func(argument ...) you can have any standard type, it will be validated before the server starts so don't care about performance here, the only thing it runs at serve time is the returning func(paramValue string) bool. Example Code: A path parameter name should contain only alphabetical letters, symbols, containing '_' and numbers are NOT allowed. If route failed to be registered, the app will panic without any warnings if you didn't catch the second return value(error) on .Handle/.Get.... Last, do not confuse ctx.Values() with ctx.Params(). Path parameter's values goes to ctx.Params() and context's local storage that can be used to communicate between handlers and middleware(s) goes to ctx.Values(), path parameters and the rest of any custom values are separated for your own good. Run Static Files Example code: More examples can be found here: https://github.com/kataras/iris/tree/master/_examples/beginner/file-server Middleware is just a concept of ordered chain of handlers. Middleware can be registered globally, per-party, per-subdomain and per-route. Example code: iris is able to wrap and convert any external, third-party Handler you used to use to your web application. Let's convert the https://github.com/rs/cors net/http external middleware which returns a `next form` handler. Example code: Iris supports 5 template engines out-of-the-box, developers can still use any external golang template engine, as `context/context#ResponseWriter()` is an `io.Writer`. All of these five template engines have common features with common API, like Layout, Template Funcs, Party-specific layout, partial rendering and more. Example code: View engine supports bundled(https://github.com/shuLhan/go-bindata) template files too. go-bindata gives you two functions, asset and assetNames, these can be setted to each of the template engines using the `.Binary` func. Example code: A real example can be found here: https://github.com/kataras/iris/tree/master/_examples/view/embedding-templates-into-app. Enable auto-reloading of templates on each request. Useful while developers are in dev mode as they no neeed to restart their app on every template edit. Example code: Note: In case you're wondering, the code behind the view engines derives from the "github.com/kataras/iris/view" package, access to the engines' variables can be granded by "github.com/kataras/iris" package too. Each one of these template engines has different options located here: https://github.com/kataras/iris/tree/master/view . This example will show how to store and access data from a session. You don’t need any third-party library, but If you want you can use any session manager compatible or not. In this example we will only allow authenticated users to view our secret message on the /secret page. To get access to it, the will first have to visit /login to get a valid session cookie, which logs him in. Additionally he can visit /logout to revoke his access to our secret message. Example code: Running the example: Sessions persistence can be achieved using one (or more) `sessiondb`. Example Code: More examples: In this example we will create a small chat between web sockets via browser. Example Server Code: Example Client(javascript) Code: Running the example: Iris has first-class support for the MVC pattern, you'll not find these stuff anywhere else in the Go world. Example Code: // GetUserBy serves // Method: GET // Resource: http://localhost:8080/user/{username:string} // By is a reserved "keyword" to tell the framework that you're going to // bind path parameters in the function's input arguments, and it also // helps to have "Get" and "GetBy" in the same controller. // // func (c *ExampleController) GetUserBy(username string) mvc.Result { // return mvc.View{ // Name: "user/username.html", // Data: username, // } // } Can use more than one, the factory will make sure that the correct http methods are being registered for each route for this controller, uncomment these if you want: Iris web framework supports Request data, Models, Persistence Data and Binding with the fastest possible execution. Characteristics: All HTTP Methods are supported, for example if want to serve `GET` then the controller should have a function named `Get()`, you can define more than one method function to serve in the same Controller. Register custom controller's struct's methods as handlers with custom paths(even with regex parametermized path) via the `BeforeActivation` custom event callback, per-controller. Example: Persistence data inside your Controller struct (share data between requests) by defining services to the Dependencies or have a `Singleton` controller scope. Share the dependencies between controllers or register them on a parent MVC Application, and ability to modify dependencies per-controller on the `BeforeActivation` optional event callback inside a Controller, i.e Access to the `Context` as a controller's field(no manual binding is neede) i.e `Ctx iris.Context` or via a method's input argument, i.e Models inside your Controller struct (set-ed at the Method function and rendered by the View). You can return models from a controller's method or set a field in the request lifecycle and return that field to another method, in the same request lifecycle. Flow as you used to, mvc application has its own `Router` which is a type of `iris/router.Party`, the standard iris api. `Controllers` can be registered to any `Party`, including Subdomains, the Party's begin and done handlers work as expected. Optional `BeginRequest(ctx)` function to perform any initialization before the method execution, useful to call middlewares or when many methods use the same collection of data. Optional `EndRequest(ctx)` function to perform any finalization after any method executed. Session dynamic dependency via manager's `Start` to the MVC Application, i.e Inheritance, recursively. Access to the dynamic path parameters via the controller's methods' input arguments, no binding is needed. When you use the Iris' default syntax to parse handlers from a controller, you need to suffix the methods with the `By` word, uppercase is a new sub path. Example: Register one or more relative paths and able to get path parameters, i.e Response via output arguments, optionally, i.e Where `any` means everything, from custom structs to standard language's types-. `Result` is an interface which contains only that function: Dispatch(ctx iris.Context) and Get where HTTP Method function(Post, Put, Delete...). Iris has a very powerful and blazing fast MVC support, you can return any value of any type from a method function and it will be sent to the client as expected. * if `string` then it's the body. * if `string` is the second output argument then it's the content type. * if `int` then it's the status code. * if `bool` is false then it throws 404 not found http error by skipping everything else. * if `error` and not nil then (any type) response will be omitted and error's text with a 400 bad request will be rendered instead. * if `(int, error)` and error is not nil then the response result will be the error's text with the status code as `int`. * if `custom struct` or `interface{}` or `slice` or `map` then it will be rendered as json, unless a `string` content type is following. * if `mvc.Result` then it executes its `Dispatch` function, so good design patters can be used to split the model's logic where needed. Examples with good patterns to follow but not intend to be used in production of course can be found at: https://github.com/kataras/iris/tree/master/_examples/#mvc. By creating components that are independent of one another, developers are able to reuse components quickly and easily in other applications. The same (or similar) view for one application can be refactored for another application with different data because the view is simply handling how the data is being displayed to the user. If you're new to back-end web development read about the MVC architectural pattern first, a good start is that wikipedia article: https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller. But you should have a basic idea of the framework by now, we just scratched the surface. If you enjoy what you just saw and want to learn more, please follow the below links: Examples: Middleware: Home Page: Book (in-progress):
Package restful , a lean package for creating REST-style WebServices without magic. A WebService has a collection of Route objects that dispatch incoming Http Requests to a function calls. Typically, a WebService has a root path (e.g. /users) and defines common MIME types for its routes. WebServices must be added to a container (see below) in order to handler Http requests from a server. A Route is defined by a HTTP method, an URL path and (optionally) the MIME types it consumes (Content-Type) and produces (Accept). This package has the logic to find the best matching Route and if found, call its Function. The (*Request, *Response) arguments provide functions for reading information from the request and writing information back to the response. See the example https://github.com/emicklei/go-restful/blob/master/examples/restful-user-resource.go with a full implementation. A Route parameter can be specified using the format "uri/{var[:regexp]}" or the special version "uri/{var:*}" for matching the tail of the path. For example, /persons/{name:[A-Z][A-Z]} can be used to restrict values for the parameter "name" to only contain capital alphabetic characters. Regular expressions must use the standard Go syntax as described in the regexp package. (https://code.google.com/p/re2/wiki/Syntax) This feature requires the use of a CurlyRouter. A Container holds a collection of WebServices, Filters and a http.ServeMux for multiplexing http requests. Using the statements "restful.Add(...) and restful.Filter(...)" will register WebServices and Filters to the Default Container. The Default container of go-restful uses the http.DefaultServeMux. You can create your own Container and create a new http.Server for that particular container. A filter dynamically intercepts requests and responses to transform or use the information contained in the requests or responses. You can use filters to perform generic logging, measurement, authentication, redirect, set response headers etc. In the restful package there are three hooks into the request,response flow where filters can be added. Each filter must define a FilterFunction: Use the following statement to pass the request,response pair to the next filter or RouteFunction These are processed before any registered WebService. These are processed before any Route of a WebService. These are processed before calling the function associated with the Route. See the example https://github.com/emicklei/go-restful/blob/master/examples/restful-filters.go with full implementations. Two encodings are supported: gzip and deflate. To enable this for all responses: If a Http request includes the Accept-Encoding header then the response content will be compressed using the specified encoding. Alternatively, you can create a Filter that performs the encoding and install it per WebService or Route. See the example https://github.com/emicklei/go-restful/blob/master/examples/restful-encoding-filter.go By installing a pre-defined container filter, your Webservice(s) can respond to the OPTIONS Http request. By installing the filter of a CrossOriginResourceSharing (CORS), your WebService(s) can handle CORS requests. Unexpected things happen. If a request cannot be processed because of a failure, your service needs to tell via the response what happened and why. For this reason HTTP status codes exist and it is important to use the correct code in every exceptional situation. If path or query parameters are not valid (content or type) then use http.StatusBadRequest. Despite a valid URI, the resource requested may not be available If the application logic could not process the request (or write the response) then use http.StatusInternalServerError. The request has a valid URL but the method (GET,PUT,POST,...) is not allowed. The request does not have or has an unknown Accept Header set for this operation. The request does not have or has an unknown Content-Type Header set for this operation. In addition to setting the correct (error) Http status code, you can choose to write a ServiceError message on the response. This package has several options that affect the performance of your service. It is important to understand them and how you can change it. DoNotRecover controls whether panics will be caught to return HTTP 500. If set to false, the container will recover from panics. Default value is true If content encoding is enabled then the default strategy for getting new gzip/zlib writers and readers is to use a sync.Pool. Because writers are expensive structures, performance is even more improved when using a preloaded cache. You can also inject your own implementation. This package has the means to produce detail logging of the complete Http request matching process and filter invocation. Enabling this feature requires you to set an implementation of restful.StdLogger (e.g. log.Logger) instance such as: The restful.SetLogger() method allows you to override the logger used by the package. By default restful uses the standard library `log` package and logs to stdout. Different logging packages are supported as long as they conform to `StdLogger` interface defined in the `log` sub-package, writing an adapter for your preferred package is simple. (c) 2012-2015, http://ernestmicklei.com. MIT License
Package restful , a lean package for creating REST-style WebServices without magic. A WebService has a collection of Route objects that dispatch incoming Http Requests to a function calls. Typically, a WebService has a root path (e.g. /users) and defines common MIME types for its routes. WebServices must be added to a container (see below) in order to handler Http requests from a server. A Route is defined by a HTTP method, an URL path and (optionally) the MIME types it consumes (Content-Type) and produces (Accept). This package has the logic to find the best matching Route and if found, call its Function. The (*Request, *Response) arguments provide functions for reading information from the request and writing information back to the response. See the example https://github.com/emicklei/go-restful/blob/master/examples/restful-user-resource.go with a full implementation. A Route parameter can be specified using the format "uri/{var[:regexp]}" or the special version "uri/{var:*}" for matching the tail of the path. For example, /persons/{name:[A-Z][A-Z]} can be used to restrict values for the parameter "name" to only contain capital alphabetic characters. Regular expressions must use the standard Go syntax as described in the regexp package. (https://code.google.com/p/re2/wiki/Syntax) This feature requires the use of a CurlyRouter. A Container holds a collection of WebServices, Filters and a http.ServeMux for multiplexing http requests. Using the statements "restful.Add(...) and restful.Filter(...)" will register WebServices and Filters to the Default Container. The Default container of go-restful uses the http.DefaultServeMux. You can create your own Container and create a new http.Server for that particular container. A filter dynamically intercepts requests and responses to transform or use the information contained in the requests or responses. You can use filters to perform generic logging, measurement, authentication, redirect, set response headers etc. In the restful package there are three hooks into the request,response flow where filters can be added. Each filter must define a FilterFunction: Use the following statement to pass the request,response pair to the next filter or RouteFunction These are processed before any registered WebService. These are processed before any Route of a WebService. These are processed before calling the function associated with the Route. See the example https://github.com/emicklei/go-restful/blob/master/examples/restful-filters.go with full implementations. Two encodings are supported: gzip and deflate. To enable this for all responses: If a Http request includes the Accept-Encoding header then the response content will be compressed using the specified encoding. Alternatively, you can create a Filter that performs the encoding and install it per WebService or Route. See the example https://github.com/emicklei/go-restful/blob/master/examples/restful-encoding-filter.go By installing a pre-defined container filter, your Webservice(s) can respond to the OPTIONS Http request. By installing the filter of a CrossOriginResourceSharing (CORS), your WebService(s) can handle CORS requests. Unexpected things happen. If a request cannot be processed because of a failure, your service needs to tell via the response what happened and why. For this reason HTTP status codes exist and it is important to use the correct code in every exceptional situation. If path or query parameters are not valid (content or type) then use http.StatusBadRequest. Despite a valid URI, the resource requested may not be available If the application logic could not process the request (or write the response) then use http.StatusInternalServerError. The request has a valid URL but the method (GET,PUT,POST,...) is not allowed. The request does not have or has an unknown Accept Header set for this operation. The request does not have or has an unknown Content-Type Header set for this operation. In addition to setting the correct (error) Http status code, you can choose to write a ServiceError message on the response. This package has several options that affect the performance of your service. It is important to understand them and how you can change it. DoNotRecover controls whether panics will be caught to return HTTP 500. If set to false, the container will recover from panics. Default value is true If content encoding is enabled then the default strategy for getting new gzip/zlib writers and readers is to use a sync.Pool. Because writers are expensive structures, performance is even more improved when using a preloaded cache. You can also inject your own implementation. This package has the means to produce detail logging of the complete Http request matching process and filter invocation. Enabling this feature requires you to set an implementation of restful.StdLogger (e.g. log.Logger) instance such as: The restful.SetLogger() method allows you to override the logger used by the package. By default restful uses the standard library `log` package and logs to stdout. Different logging packages are supported as long as they conform to `StdLogger` interface defined in the `log` sub-package, writing an adapter for your preferred package is simple. (c) 2012-2015, http://ernestmicklei.com. MIT License
Package skipper provides an HTTP routing library with flexible configuration as well as a runtime update of the routing rules. Skipper works as an HTTP reverse proxy that is responsible for mapping incoming requests to multiple HTTP backend services, based on routes that are selected by the request attributes. At the same time, both the requests and the responses can be augmented by a filter chain that is specifically defined for each route. Optionally, it can provide circuit breaker mechanism individually for each backend host. Skipper can load and update the route definitions from multiple data sources without being restarted. It provides a default executable command with a few built-in filters, however, its primary use case is to be extended with custom filters, predicates or data sources. For further information read 'Extending Skipper'. Skipper took the core design and inspiration from Vulcand: https://github.com/mailgun/vulcand. Skipper is 'go get' compatible. If needed, create a 'go workspace' first: Get the Skipper packages: Create a file with a route: Optionally, verify the syntax of the file: Start Skipper and make an HTTP request: The core of Skipper's request processing is implemented by a reverse proxy in the 'proxy' package. The proxy receives the incoming request, forwards it to the routing engine in order to receive the most specific matching route. When a route matches, the request is forwarded to all filters defined by it. The filters can modify the request or execute any kind of program logic. Once the request has been processed by all the filters, it is forwarded to the backend endpoint of the route. The response from the backend goes once again through all the filters in reverse order. Finally, it is mapped as the response of the original incoming request. Besides the default proxying mechanism, it is possible to define routes without a real network backend endpoint. One of these cases is called a 'shunt' backend, in which case one of the filters needs to handle the request providing its own response (e.g. the 'static' filter). Actually, filters themselves can instruct the request flow to shunt by calling the Serve(*http.Response) method of the filter context. Another case of a route without a network backend is the 'loopback'. A loopback route can be used to match a request, modified by filters, against the lookup tree with different conditions and then execute a different route. One example scenario can be to use a single route as an entry point to execute some calculation to get an A/B testing decision and then matching the updated request metadata for the actual destination route. This way the calculation can be executed for only those requests that don't contain information about a previously calculated decision. For further details, see the 'proxy' and 'filters' package documentation. Finding a request's route happens by matching the request attributes to the conditions in the route's definitions. Such definitions may have the following conditions: - method - path (optionally with wildcards) - path regular expressions - host regular expressions - headers - header regular expressions It is also possible to create custom predicates with any other matching criteria. The relation between the conditions in a route definition is 'and', meaning, that a request must fulfill each condition to match a route. For further details, see the 'routing' package documentation. Filters are applied in order of definition to the request and in reverse order to the response. They are used to modify request and response attributes, such as headers, or execute background tasks, like logging. Some filters may handle the requests without proxying them to service backends. Filters, depending on their implementation, may accept/require parameters, that are set specifically to the route. For further details, see the 'filters' package documentation. Each route has one of the following backends: HTTP endpoint, shunt or loopback. Backend endpoints can be any HTTP service. They are specified by their network address, including the protocol scheme, the domain name or the IP address, and optionally the port number: e.g. "https://www.example.org:4242". (The path and query are sent from the original request, or set by filters.) A shunt route means that Skipper handles the request alone and doesn't make requests to a backend service. In this case, it is the responsibility of one of the filters to generate the response. A loopback route executes the routing mechanism on current state of the request from the start, including the route lookup. This way it serves as a form of an internal redirect. Route definitions consist of the following: - request matching conditions (predicates) - filter chain (optional) - backend (either an HTTP endpoint or a shunt) The eskip package implements the in-memory and text representations of route definitions, including a parser. (Note to contributors: in order to stay compatible with 'go get', the generated part of the parser is stored in the repository. When changing the grammar, 'go generate' needs to be executed explicitly to update the parser.) For further details, see the 'eskip' package documentation Skipper has filter implementations of basic auth and OAuth2. It can be integrated with tokeninfo based OAuth2 providers. For details, see: https://godoc.org/github.com/zalando/skipper/filters/auth. Skipper's route definitions of Skipper are loaded from one or more data sources. It can receive incremental updates from those data sources at runtime. It provides three different data clients: - Kubernetes: Skipper can be used as part of a Kubernetes Ingress Controller implementation together with https://github.com/zalando-incubator/kube-ingress-aws-controller . In this scenario, Skipper uses the Kubernetes API's Ingress extensions as a source for routing. For a complete deployment example, see more details in: https://github.com/zalando-incubator/kubernetes-on-aws/ . - Innkeeper: the Innkeeper service implements a storage for large sets of Skipper routes, with an HTTP+JSON API, OAuth2 authentication and role management. See the 'innkeeper' package and https://github.com/zalando/innkeeper. - etcd: Skipper can load routes and receive updates from etcd clusters (https://github.com/coreos/etcd). See the 'etcd' package. - static file: package eskipfile implements a simple data client, which can load route definitions from a static file in eskip format. Currently, it loads the routes on startup. It doesn't support runtime updates. Skipper can use additional data sources, provided by extensions. Sources must implement the DataClient interface in the routing package. Skipper provides circuit breakers, configured either globally, based on backend hosts or based on individual routes. It supports two types of circuit breaker behavior: open on N consecutive failures, or open on N failures out of M requests. For details, see: https://godoc.org/github.com/zalando/skipper/circuit. Skipper can be started with the default executable command 'skipper', or as a library built into an application. The easiest way to start Skipper as a library is to execute the 'Run' function of the current, root package. Each option accepted by the 'Run' function is wired in the default executable as well, as a command line flag. E.g. EtcdUrls becomes -etcd-urls as a comma separated list. For command line help, enter: An additional utility, eskip, can be used to verify, print, update and delete routes from/to files or etcd (Innkeeper on the roadmap). See the cmd/eskip command package, and/or enter in the command line: Skipper doesn't use dynamically loaded plugins, however, it can be used as a library, and it can be extended with custom predicates, filters and/or custom data sources. To create a custom predicate, one needs to implement the PredicateSpec interface in the routing package. Instances of the PredicateSpec are used internally by the routing package to create the actual Predicate objects as referenced in eskip routes, with concrete arguments. Example, randompredicate.go: In the above example, a custom predicate is created, that can be referenced in eskip definitions with the name 'Random': To create a custom filter we need to implement the Spec interface of the filters package. 'Spec' is the specification of a filter, and it is used to create concrete filter instances, while the raw route definitions are processed. Example, hellofilter.go: The above example creates a filter specification, and in the routes where they are included, the filter instances will set the 'X-Hello' header for each and every response. The name of the filter is 'hello', and in a route definition it is referenced as: The easiest way to create a custom Skipper variant is to implement the required filters (as in the example above) by importing the Skipper package, and starting it with the 'Run' command. Example, hello.go: A file containing the routes, routes.eskip: Start the custom router: The 'Run' function in the root Skipper package starts its own listener but it doesn't provide the best composability. The proxy package, however, provides a standard http.Handler, so it is possible to use it in a more complex solution as a building block for routing. Skipper provides detailed logging of failures, and access logs in Apache log format. Skipper also collects detailed performance metrics, and exposes them on a separate listener endpoint for pulling snapshots. For details, see the 'logging' and 'metrics' packages documentation. The router's performance depends on the environment and on the used filters. Under ideal circumstances, and without filters, the biggest time factor is the route lookup. Skipper is able to scale to thousands of routes with logarithmic performance degradation. However, this comes at the cost of increased memory consumption, due to storing the whole lookup tree in a single structure. Benchmarks for the tree lookup can be run by: In case more aggressive scale is needed, it is possible to setup Skipper in a cascade model, with multiple Skipper instances for specific route segments.
Package restful, a lean package for creating REST-style WebServices without magic. A WebService has a collection of Route objects that dispatch incoming Http Requests to a function calls. Typically, a WebService has a root path (e.g. /users) and defines common MIME types for its routes. WebServices must be added to a container (see below) in order to handler Http requests from a server. A Route is defined by a HTTP method, an URL path and (optionally) the MIME types it consumes (Content-Type) and produces (Accept). This package has the logic to find the best matching Route and if found, call its Function. The (*Request, *Response) arguments provide functions for reading information from the request and writing information back to the response. See the example https://github.com/emicklei/go-restful/blob/master/examples/restful-user-resource.go with a full implementation. A Route parameter can be specified using the format "uri/{var[:regexp]}" or the special version "uri/{var:*}" for matching the tail of the path. For example, /persons/{name:[A-Z][A-Z]} can be used to restrict values for the parameter "name" to only contain capital alphabetic characters. Regular expressions must use the standard Go syntax as described in the regexp package. (https://code.google.com/p/re2/wiki/Syntax) This feature requires the use of a CurlyRouter. A Container holds a collection of WebServices, Filters and a http.ServeMux for multiplexing http requests. Using the statements "restful.Add(...) and restful.Filter(...)" will register WebServices and Filters to the Default Container. The Default container of go-restful uses the http.DefaultServeMux. You can create your own Container and create a new http.Server for that particular container. A filter dynamically intercepts requests and responses to transform or use the information contained in the requests or responses. You can use filters to perform generic logging, measurement, authentication, redirect, set response headers etc. In the restful package there are three hooks into the request,response flow where filters can be added. Each filter must define a FilterFunction: Use the following statement to pass the request,response pair to the next filter or RouteFunction These are processed before any registered WebService. These are processed before any Route of a WebService. These are processed before calling the function associated with the Route. See the example https://github.com/emicklei/go-restful/blob/master/examples/restful-filters.go with full implementations. Two encodings are supported: gzip and deflate. To enable this for all responses: If a Http request includes the Accept-Encoding header then the response content will be compressed using the specified encoding. Alternatively, you can create a Filter that performs the encoding and install it per WebService or Route. See the example https://github.com/emicklei/go-restful/blob/master/examples/restful-encoding-filter.go By installing a pre-defined container filter, your Webservice(s) can respond to the OPTIONS Http request. By installing the filter of a CrossOriginResourceSharing (CORS), your WebService(s) can handle CORS requests. Unexpected things happen. If a request cannot be processed because of a failure, your service needs to tell via the response what happened and why. For this reason HTTP status codes exist and it is important to use the correct code in every exceptional situation. If path or query parameters are not valid (content or type) then use http.StatusBadRequest. Despite a valid URI, the resource requested may not be available If the application logic could not process the request (or write the response) then use http.StatusInternalServerError. The request has a valid URL but the method (GET,PUT,POST,...) is not allowed. The request does not have or has an unknown Accept Header set for this operation. The request does not have or has an unknown Content-Type Header set for this operation. In addition to setting the correct (error) Http status code, you can choose to write a ServiceError message on the response. This package has several options that affect the performance of your service. It is important to understand them and how you can change it. The default router is the RouterJSR311 which is an implementation of its spec (http://jsr311.java.net/nonav/releases/1.1/spec/spec.html). However, it uses regular expressions for all its routes which, depending on your usecase, may consume a significant amount of time. The CurlyRouter implementation is more lightweight that also allows you to use wildcards and expressions, but only if needed. DoNotRecover controls whether panics will be caught to return HTTP 500. If set to true, Route functions are responsible for handling any error situation. Default value is false; it will recover from panics. This has performance implications. SetCacheReadEntity controls whether the response data ([]byte) is cached such that ReadEntity is repeatable. If you expect to read large amounts of payload data, and you do not use this feature, you should set it to false. This package has the means to produce detail logging of the complete Http request matching process and filter invocation. Enabling this feature requires you to set a log.Logger instance such as: (c) 2012-2014, http://ernestmicklei.com. MIT License
Goserial is a simple go package to allow you to read and write from the serial port as a stream of bytes. It aims to have the same API on all platforms, including windows. As an added bonus, the windows package does not use cgo, so you can cross compile for windows from another platform. Unfortunately goinstall does not currently let you cross compile so you will have to do it manually: Currently there is very little in the way of configurability. You can set the baud rate. Then you can Read(), Write(), or Close() the connection. Read() will block until at least one byte is returned. Write is the same. There is currently no exposed way to set the timeouts, though patches are welcome. Currently all ports are opened with 8 data bits, 1 stop bit, no parity, no hardware flow control, and no software flow control. This works fine for many real devices and many faux serial devices including usb-to-serial converters and bluetooth serial ports. You may Read() and Write() simulantiously on the same connection (from different goroutines). Example usage:
Goserial is a simple go package to allow you to read and write from the serial port as a stream of bytes. It aims to have the same API on all platforms, including windows. As an added bonus, the windows package does not use cgo, so you can cross compile for windows from another platform. Unfortunately goinstall does not currently let you cross compile so you will have to do it manually: Currently there is very little in the way of configurability. You can set the baud rate. Then you can Read(), Write(), or Close() the connection. Read() will block until at least one byte is returned. Write is the same. There is currently no exposed way to set the timeouts, though patches are welcome. Currently all ports are opened with 8 data bits, 1 stop bit, no parity, no hardware flow control, and no software flow control. This works fine for many real devices and many faux serial devices including usb-to-serial converters and bluetooth serial ports. You may Read() and Write() simulantiously on the same connection (from different goroutines). Example usage:
Package restful, a lean package for creating REST-style WebServices without magic. A WebService has a collection of Route objects that dispatch incoming Http Requests to a function calls. Typically, a WebService has a root path (e.g. /users) and defines common MIME types for its routes. WebServices must be added to a container (see below) in order to handler Http requests from a server. A Route is defined by a HTTP method, an URL path and (optionally) the MIME types it consumes (Content-Type) and produces (Accept). This package has the logic to find the best matching Route and if found, call its Function. The (*Request, *Response) arguments provide functions for reading information from the request and writing information back to the response. See the example https://github.com/emicklei/go-restful/blob/master/examples/restful-user-resource.go with a full implementation. A Route parameter can be specified using the format "uri/{var[:regexp]}" or the special version "uri/{var:*}" for matching the tail of the path. For example, /persons/{name:[A-Z][A-Z]} can be used to restrict values for the parameter "name" to only contain capital alphabetic characters. Regular expressions must use the standard Go syntax as described in the regexp package. (https://code.google.com/p/re2/wiki/Syntax) This feature requires the use of a CurlyRouter. A Container holds a collection of WebServices, Filters and a http.ServeMux for multiplexing http requests. Using the statements "restful.Add(...) and restful.Filter(...)" will register WebServices and Filters to the Default Container. The Default container of go-restful uses the http.DefaultServeMux. You can create your own Container and create a new http.Server for that particular container. A filter dynamically intercepts requests and responses to transform or use the information contained in the requests or responses. You can use filters to perform generic logging, measurement, authentication, redirect, set response headers etc. In the restful package there are three hooks into the request,response flow where filters can be added. Each filter must define a FilterFunction: Use the following statement to pass the request,response pair to the next filter or RouteFunction These are processed before any registered WebService. These are processed before any Route of a WebService. These are processed before calling the function associated with the Route. See the example https://github.com/emicklei/go-restful/blob/master/examples/restful-filters.go with full implementations. Two encodings are supported: gzip and deflate. To enable this for all responses: If a Http request includes the Accept-Encoding header then the response content will be compressed using the specified encoding. Alternatively, you can create a Filter that performs the encoding and install it per WebService or Route. See the example https://github.com/emicklei/go-restful/blob/master/examples/restful-encoding-filter.go By installing a pre-defined container filter, your Webservice(s) can respond to the OPTIONS Http request. By installing the filter of a CrossOriginResourceSharing (CORS), your WebService(s) can handle CORS requests. Unexpected things happen. If a request cannot be processed because of a failure, your service needs to tell via the response what happened and why. For this reason HTTP status codes exist and it is important to use the correct code in every exceptional situation. If path or query parameters are not valid (content or type) then use http.StatusBadRequest. Despite a valid URI, the resource requested may not be available If the application logic could not process the request (or write the response) then use http.StatusInternalServerError. The request has a valid URL but the method (GET,PUT,POST,...) is not allowed. The request does not have or has an unknown Accept Header set for this operation. The request does not have or has an unknown Content-Type Header set for this operation. In addition to setting the correct (error) Http status code, you can choose to write a ServiceError message on the response. This package has several options that affect the performance of your service. It is important to understand them and how you can change it. The default router is the RouterJSR311 which is an implementation of its spec (http://jsr311.java.net/nonav/releases/1.1/spec/spec.html). However, it uses regular expressions for all its routes which, depending on your usecase, may consume a significant amount of time. The CurlyRouter implementation is more lightweight that also allows you to use wildcards and expressions, but only if needed. DoNotRecover controls whether panics will be caught to return HTTP 500. If set to true, Route functions are responsible for handling any error situation. Default value is false; it will recover from panics. This has performance implications. SetCacheReadEntity controls whether the response data ([]byte) is cached such that ReadEntity is repeatable. If you expect to read large amounts of payload data, and you do not use this feature, you should set it to false. This package has the means to produce detail logging of the complete Http request matching process and filter invocation. Enabling this feature requires you to set a log.Logger instance such as: (c) 2012-2014, http://ernestmicklei.com. MIT License
Package iris provides a beautifully expressive and easy to use foundation for your next website, API, or distributed app. Source code and other details for the project are available at GitHub: 11.1.1 The only requirement is the Go Programming Language, at least version 1.8 but 1.11.1 and above is highly recommended. Example code: You can start the server(s) listening to any type of `net.Listener` or even `http.Server` instance. The method for initialization of the server should be passed at the end, via `Run` function. Below you'll see some useful examples: UNIX and BSD hosts can take advantage of the reuse port feature. Example code: That's all with listening, you have the full control when you need it. Let's continue by learning how to catch CONTROL+C/COMMAND+C or unix kill command and shutdown the server gracefully. In order to manually manage what to do when app is interrupted, we have to disable the default behavior with the option `WithoutInterruptHandler` and register a new interrupt handler (globally, across all possible hosts). Example code: Access to all hosts that serve your application can be provided by the `Application#Hosts` field, after the `Run` method. But the most common scenario is that you may need access to the host before the `Run` method, there are two ways of gain access to the host supervisor, read below. First way is to use the `app.NewHost` to create a new host and use one of its `Serve` or `Listen` functions to start the application via the `iris#Raw` Runner. Note that this way needs an extra import of the `net/http` package. Example Code: Second, and probably easier way is to use the `host.Configurator`. Note that this method requires an extra import statement of "github.com/kataras/iris/core/host" when using go < 1.9, if you're targeting on go1.9 then you can use the `iris#Supervisor` and omit the extra host import. All common `Runners` we saw earlier (`iris#Addr, iris#Listener, iris#Server, iris#TLS, iris#AutoTLS`) accept a variadic argument of `host.Configurator`, there are just `func(*host.Supervisor)`. Therefore the `Application` gives you the rights to modify the auto-created host supervisor through these. Example Code: Read more about listening and gracefully shutdown by navigating to: All HTTP methods are supported, developers can also register handlers for same paths for different methods. The first parameter is the HTTP Method, second parameter is the request path of the route, third variadic parameter should contains one or more iris.Handler executed by the registered order when a user requests for that specific resouce path from the server. Example code: In order to make things easier for the user, iris provides functions for all HTTP Methods. The first parameter is the request path of the route, second variadic parameter should contains one or more iris.Handler executed by the registered order when a user requests for that specific resouce path from the server. Example code: A set of routes that are being groupped by path prefix can (optionally) share the same middleware handlers and template layout. A group can have a nested group too. `.Party` is being used to group routes, developers can declare an unlimited number of (nested) groups. Example code: iris developers are able to register their own handlers for http statuses like 404 not found, 500 internal server error and so on. Example code: With the help of iris's expressionist router you can build any form of API you desire, with safety. Example code: At the previous example, we've seen static routes, group of routes, subdomains, wildcard subdomains, a small example of parameterized path with a single known parameter and custom http errors, now it's time to see wildcard parameters and macros. iris, like net/http std package registers route's handlers by a Handler, the iris' type of handler is just a func(ctx iris.Context) where context comes from github.com/kataras/iris/context. Iris has the easiest and the most powerful routing process you have ever meet. At the same time, iris has its own interpeter(yes like a programming language) for route's path syntax and their dynamic path parameters parsing and evaluation, We call them "macros" for shortcut. How? It calculates its needs and if not any special regexp needed then it just registers the route with the low-level path syntax, otherwise it pre-compiles the regexp and adds the necessary middleware(s). Standard macro types for parameters: if type is missing then parameter's type is defaulted to string, so {param} == {param:string}. If a function not found on that type then the "string"'s types functions are being used. i.e: Besides the fact that iris provides the basic types and some default "macro funcs" you are able to register your own too!. Register a named path parameter function: at the func(argument ...) you can have any standard type, it will be validated before the server starts so don't care about performance here, the only thing it runs at serve time is the returning func(paramValue string) bool. Example Code: Last, do not confuse ctx.Values() with ctx.Params(). Path parameter's values goes to ctx.Params() and context's local storage that can be used to communicate between handlers and middleware(s) goes to ctx.Values(), path parameters and the rest of any custom values are separated for your own good. Run Static Files Example code: More examples can be found here: https://github.com/kataras/iris/tree/master/_examples/beginner/file-server Middleware is just a concept of ordered chain of handlers. Middleware can be registered globally, per-party, per-subdomain and per-route. Example code: iris is able to wrap and convert any external, third-party Handler you used to use to your web application. Let's convert the https://github.com/rs/cors net/http external middleware which returns a `next form` handler. Example code: Iris supports 5 template engines out-of-the-box, developers can still use any external golang template engine, as `context/context#ResponseWriter()` is an `io.Writer`. All of these five template engines have common features with common API, like Layout, Template Funcs, Party-specific layout, partial rendering and more. Example code: View engine supports bundled(https://github.com/shuLhan/go-bindata) template files too. go-bindata gives you two functions, asset and assetNames, these can be setted to each of the template engines using the `.Binary` func. Example code: A real example can be found here: https://github.com/kataras/iris/tree/master/_examples/view/embedding-templates-into-app. Enable auto-reloading of templates on each request. Useful while developers are in dev mode as they no neeed to restart their app on every template edit. Example code: Note: In case you're wondering, the code behind the view engines derives from the "github.com/kataras/iris/view" package, access to the engines' variables can be granded by "github.com/kataras/iris" package too. Each one of these template engines has different options located here: https://github.com/kataras/iris/tree/master/view . This example will show how to store and access data from a session. You don’t need any third-party library, but If you want you can use any session manager compatible or not. In this example we will only allow authenticated users to view our secret message on the /secret page. To get access to it, the will first have to visit /login to get a valid session cookie, which logs him in. Additionally he can visit /logout to revoke his access to our secret message. Example code: Running the example: Sessions persistence can be achieved using one (or more) `sessiondb`. Example Code: More examples: In this example we will create a small chat between web sockets via browser. Example Server Code: Example Client(javascript) Code: Running the example: Iris has first-class support for the MVC pattern, you'll not find these stuff anywhere else in the Go world. Example Code: // GetUserBy serves // Method: GET // Resource: http://localhost:8080/user/{username:string} // By is a reserved "keyword" to tell the framework that you're going to // bind path parameters in the function's input arguments, and it also // helps to have "Get" and "GetBy" in the same controller. // // func (c *ExampleController) GetUserBy(username string) mvc.Result { // return mvc.View{ // Name: "user/username.html", // Data: username, // } // } Can use more than one, the factory will make sure that the correct http methods are being registered for each route for this controller, uncomment these if you want: Iris web framework supports Request data, Models, Persistence Data and Binding with the fastest possible execution. Characteristics: All HTTP Methods are supported, for example if want to serve `GET` then the controller should have a function named `Get()`, you can define more than one method function to serve in the same Controller. Register custom controller's struct's methods as handlers with custom paths(even with regex parametermized path) via the `BeforeActivation` custom event callback, per-controller. Example: Persistence data inside your Controller struct (share data between requests) by defining services to the Dependencies or have a `Singleton` controller scope. Share the dependencies between controllers or register them on a parent MVC Application, and ability to modify dependencies per-controller on the `BeforeActivation` optional event callback inside a Controller, i.e Access to the `Context` as a controller's field(no manual binding is neede) i.e `Ctx iris.Context` or via a method's input argument, i.e Models inside your Controller struct (set-ed at the Method function and rendered by the View). You can return models from a controller's method or set a field in the request lifecycle and return that field to another method, in the same request lifecycle. Flow as you used to, mvc application has its own `Router` which is a type of `iris/router.Party`, the standard iris api. `Controllers` can be registered to any `Party`, including Subdomains, the Party's begin and done handlers work as expected. Optional `BeginRequest(ctx)` function to perform any initialization before the method execution, useful to call middlewares or when many methods use the same collection of data. Optional `EndRequest(ctx)` function to perform any finalization after any method executed. Session dynamic dependency via manager's `Start` to the MVC Application, i.e Inheritance, recursively. Access to the dynamic path parameters via the controller's methods' input arguments, no binding is needed. When you use the Iris' default syntax to parse handlers from a controller, you need to suffix the methods with the `By` word, uppercase is a new sub path. Example: Register one or more relative paths and able to get path parameters, i.e Response via output arguments, optionally, i.e Where `any` means everything, from custom structs to standard language's types-. `Result` is an interface which contains only that function: Dispatch(ctx iris.Context) and Get where HTTP Method function(Post, Put, Delete...). Iris has a very powerful and blazing fast MVC support, you can return any value of any type from a method function and it will be sent to the client as expected. * if `string` then it's the body. * if `string` is the second output argument then it's the content type. * if `int` then it's the status code. * if `bool` is false then it throws 404 not found http error by skipping everything else. * if `error` and not nil then (any type) response will be omitted and error's text with a 400 bad request will be rendered instead. * if `(int, error)` and error is not nil then the response result will be the error's text with the status code as `int`. * if `custom struct` or `interface{}` or `slice` or `map` then it will be rendered as json, unless a `string` content type is following. * if `mvc.Result` then it executes its `Dispatch` function, so good design patters can be used to split the model's logic where needed. Examples with good patterns to follow but not intend to be used in production of course can be found at: https://github.com/kataras/iris/tree/master/_examples/#mvc. By creating components that are independent of one another, developers are able to reuse components quickly and easily in other applications. The same (or similar) view for one application can be refactored for another application with different data because the view is simply handling how the data is being displayed to the user. If you're new to back-end web development read about the MVC architectural pattern first, a good start is that wikipedia article: https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller. But you should have a basic idea of the framework by now, we just scratched the surface. If you enjoy what you just saw and want to learn more, please follow the below links: Examples: Middleware: Home Page: Book (in-progress):
Package relay provides a simple mechanism for relaying control flow based upon whether a checked error is nil or not. Override default error handler. Store check method for convenience.
Package iris provides a beautifully expressive and easy to use foundation for your next website, API, or distributed app. Source code and other details for the project are available at GitHub: 10.7.0 The only requirement is the Go Programming Language, at least version 1.8 but 1.10 and above is highly recommended. Example code: You can start the server(s) listening to any type of `net.Listener` or even `http.Server` instance. The method for initialization of the server should be passed at the end, via `Run` function. Below you'll see some useful examples: UNIX and BSD hosts can take advantage of the reuse port feature. Example code: That's all with listening, you have the full control when you need it. Let's continue by learning how to catch CONTROL+C/COMMAND+C or unix kill command and shutdown the server gracefully. In order to manually manage what to do when app is interrupted, we have to disable the default behavior with the option `WithoutInterruptHandler` and register a new interrupt handler (globally, across all possible hosts). Example code: Access to all hosts that serve your application can be provided by the `Application#Hosts` field, after the `Run` method. But the most common scenario is that you may need access to the host before the `Run` method, there are two ways of gain access to the host supervisor, read below. First way is to use the `app.NewHost` to create a new host and use one of its `Serve` or `Listen` functions to start the application via the `iris#Raw` Runner. Note that this way needs an extra import of the `net/http` package. Example Code: Second, and probably easier way is to use the `host.Configurator`. Note that this method requires an extra import statement of "github.com/kataras/iris/core/host" when using go < 1.9, if you're targeting on go1.9 then you can use the `iris#Supervisor` and omit the extra host import. All common `Runners` we saw earlier (`iris#Addr, iris#Listener, iris#Server, iris#TLS, iris#AutoTLS`) accept a variadic argument of `host.Configurator`, there are just `func(*host.Supervisor)`. Therefore the `Application` gives you the rights to modify the auto-created host supervisor through these. Example Code: Read more about listening and gracefully shutdown by navigating to: All HTTP methods are supported, developers can also register handlers for same paths for different methods. The first parameter is the HTTP Method, second parameter is the request path of the route, third variadic parameter should contains one or more iris.Handler executed by the registered order when a user requests for that specific resouce path from the server. Example code: In order to make things easier for the user, iris provides functions for all HTTP Methods. The first parameter is the request path of the route, second variadic parameter should contains one or more iris.Handler executed by the registered order when a user requests for that specific resouce path from the server. Example code: A set of routes that are being groupped by path prefix can (optionally) share the same middleware handlers and template layout. A group can have a nested group too. `.Party` is being used to group routes, developers can declare an unlimited number of (nested) groups. Example code: iris developers are able to register their own handlers for http statuses like 404 not found, 500 internal server error and so on. Example code: With the help of iris's expressionist router you can build any form of API you desire, with safety. Example code: At the previous example, we've seen static routes, group of routes, subdomains, wildcard subdomains, a small example of parameterized path with a single known parameter and custom http errors, now it's time to see wildcard parameters and macros. iris, like net/http std package registers route's handlers by a Handler, the iris' type of handler is just a func(ctx iris.Context) where context comes from github.com/kataras/iris/context. Iris has the easiest and the most powerful routing process you have ever meet. At the same time, iris has its own interpeter(yes like a programming language) for route's path syntax and their dynamic path parameters parsing and evaluation, We call them "macros" for shortcut. How? It calculates its needs and if not any special regexp needed then it just registers the route with the low-level path syntax, otherwise it pre-compiles the regexp and adds the necessary middleware(s). Standard macro types for parameters: if type is missing then parameter's type is defaulted to string, so {param} == {param:string}. If a function not found on that type then the "string"'s types functions are being used. i.e: Besides the fact that iris provides the basic types and some default "macro funcs" you are able to register your own too!. Register a named path parameter function: at the func(argument ...) you can have any standard type, it will be validated before the server starts so don't care about performance here, the only thing it runs at serve time is the returning func(paramValue string) bool. Example Code: A path parameter name should contain only alphabetical letters, symbols, containing '_' and numbers are NOT allowed. If route failed to be registered, the app will panic without any warnings if you didn't catch the second return value(error) on .Handle/.Get.... Last, do not confuse ctx.Values() with ctx.Params(). Path parameter's values goes to ctx.Params() and context's local storage that can be used to communicate between handlers and middleware(s) goes to ctx.Values(), path parameters and the rest of any custom values are separated for your own good. Run Static Files Example code: More examples can be found here: https://github.com/kataras/iris/tree/master/_examples/beginner/file-server Middleware is just a concept of ordered chain of handlers. Middleware can be registered globally, per-party, per-subdomain and per-route. Example code: iris is able to wrap and convert any external, third-party Handler you used to use to your web application. Let's convert the https://github.com/rs/cors net/http external middleware which returns a `next form` handler. Example code: Iris supports 5 template engines out-of-the-box, developers can still use any external golang template engine, as `context/context#ResponseWriter()` is an `io.Writer`. All of these five template engines have common features with common API, like Layout, Template Funcs, Party-specific layout, partial rendering and more. Example code: View engine supports bundled(https://github.com/shuLhan/go-bindata) template files too. go-bindata gives you two functions, asset and assetNames, these can be setted to each of the template engines using the `.Binary` func. Example code: A real example can be found here: https://github.com/kataras/iris/tree/master/_examples/view/embedding-templates-into-app. Enable auto-reloading of templates on each request. Useful while developers are in dev mode as they no neeed to restart their app on every template edit. Example code: Note: In case you're wondering, the code behind the view engines derives from the "github.com/kataras/iris/view" package, access to the engines' variables can be granded by "github.com/kataras/iris" package too. Each one of these template engines has different options located here: https://github.com/kataras/iris/tree/master/view . This example will show how to store and access data from a session. You don’t need any third-party library, but If you want you can use any session manager compatible or not. In this example we will only allow authenticated users to view our secret message on the /secret page. To get access to it, the will first have to visit /login to get a valid session cookie, which logs him in. Additionally he can visit /logout to revoke his access to our secret message. Example code: Running the example: Sessions persistence can be achieved using one (or more) `sessiondb`. Example Code: More examples: In this example we will create a small chat between web sockets via browser. Example Server Code: Example Client(javascript) Code: Running the example: Iris has first-class support for the MVC pattern, you'll not find these stuff anywhere else in the Go world. Example Code: // GetUserBy serves // Method: GET // Resource: http://localhost:8080/user/{username:string} // By is a reserved "keyword" to tell the framework that you're going to // bind path parameters in the function's input arguments, and it also // helps to have "Get" and "GetBy" in the same controller. // // func (c *ExampleController) GetUserBy(username string) mvc.Result { // return mvc.View{ // Name: "user/username.html", // Data: username, // } // } Can use more than one, the factory will make sure that the correct http methods are being registered for each route for this controller, uncomment these if you want: Iris web framework supports Request data, Models, Persistence Data and Binding with the fastest possible execution. Characteristics: All HTTP Methods are supported, for example if want to serve `GET` then the controller should have a function named `Get()`, you can define more than one method function to serve in the same Controller. Register custom controller's struct's methods as handlers with custom paths(even with regex parametermized path) via the `BeforeActivation` custom event callback, per-controller. Example: Persistence data inside your Controller struct (share data between requests) by defining services to the Dependencies or have a `Singleton` controller scope. Share the dependencies between controllers or register them on a parent MVC Application, and ability to modify dependencies per-controller on the `BeforeActivation` optional event callback inside a Controller, i.e Access to the `Context` as a controller's field(no manual binding is neede) i.e `Ctx iris.Context` or via a method's input argument, i.e Models inside your Controller struct (set-ed at the Method function and rendered by the View). You can return models from a controller's method or set a field in the request lifecycle and return that field to another method, in the same request lifecycle. Flow as you used to, mvc application has its own `Router` which is a type of `iris/router.Party`, the standard iris api. `Controllers` can be registered to any `Party`, including Subdomains, the Party's begin and done handlers work as expected. Optional `BeginRequest(ctx)` function to perform any initialization before the method execution, useful to call middlewares or when many methods use the same collection of data. Optional `EndRequest(ctx)` function to perform any finalization after any method executed. Session dynamic dependency via manager's `Start` to the MVC Application, i.e Inheritance, recursively. Access to the dynamic path parameters via the controller's methods' input arguments, no binding is needed. When you use the Iris' default syntax to parse handlers from a controller, you need to suffix the methods with the `By` word, uppercase is a new sub path. Example: Register one or more relative paths and able to get path parameters, i.e Response via output arguments, optionally, i.e Where `any` means everything, from custom structs to standard language's types-. `Result` is an interface which contains only that function: Dispatch(ctx iris.Context) and Get where HTTP Method function(Post, Put, Delete...). Iris has a very powerful and blazing fast MVC support, you can return any value of any type from a method function and it will be sent to the client as expected. * if `string` then it's the body. * if `string` is the second output argument then it's the content type. * if `int` then it's the status code. * if `bool` is false then it throws 404 not found http error by skipping everything else. * if `error` and not nil then (any type) response will be omitted and error's text with a 400 bad request will be rendered instead. * if `(int, error)` and error is not nil then the response result will be the error's text with the status code as `int`. * if `custom struct` or `interface{}` or `slice` or `map` then it will be rendered as json, unless a `string` content type is following. * if `mvc.Result` then it executes its `Dispatch` function, so good design patters can be used to split the model's logic where needed. Examples with good patterns to follow but not intend to be used in production of course can be found at: https://github.com/kataras/iris/tree/master/_examples/#mvc. By creating components that are independent of one another, developers are able to reuse components quickly and easily in other applications. The same (or similar) view for one application can be refactored for another application with different data because the view is simply handling how the data is being displayed to the user. If you're new to back-end web development read about the MVC architectural pattern first, a good start is that wikipedia article: https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller. But you should have a basic idea of the framework by now, we just scratched the surface. If you enjoy what you just saw and want to learn more, please follow the below links: Examples: Middleware: Home Page: Book (in-progress):
Flux is a dataflow-style graphical editor for writing Go programs. On systems other than OS X, substitute the Control key for the Command key herein. Most operations can be canceled by pressing Escape. Press Command-N to open a new window. Press Command-W to close a window. Press Command-Q or close all windows to quit. The browser is the first thing you see when starting Flux. It provides a means of navigating the directories and packages under GOPATH and in the standard library and the objects within those packages, and of creating, deleting, and selecting such items. Packages and directories are displayed in white, types in green, functions and methods in red, variables, struct fields, and constants in blue, and special items in yellow. Use the up and down arrow keys to scroll through the list. Type a prefix to filter the list. When a package, directory, or type name is highlighted, press the right arrow key to view its children. Press the left arrow key to go back to the parent. Press Enter to select the current item. To create a new item, hold Command and press 1 (package or directory), 2 (type), 3 (func or method), 4 (var or struct field), or 5 (const); then, type the new item's name followed by Enter. The new item will be opened for editing. To delete an item (and its children, if it has any), press Command-Delete. Only items created in Flux can be deleted. To change the name of an item (or the import path of a package), press Command-Enter, then edit the name and press Enter. To change the name of a package, press Shift-Enter, then edit the name and press Enter. The package name is displayed only if it different from the final path element, or while editing it. The browser behaves differently depending on the context in which it is opened. In the context of program start, it displays only objects created in Flux and it allows you to create, delete, or open them for editing. When opened in the context of editing a type or function, a relevant subset of objects is displayed from which one can be selected. The function editor displays a function or method as a kind of graph. The nodes of the graph specify operations such as function calls and control flow. Nodes typically have some inputs and outputs (generally, ports) by which they can be connected. A connection has an output as its source and an input as its destination, indicating that a value is passed from the output to the input. An input may have zero or more connections; the value used is the last one to have been passed or the zero value if none. Every node belongs to a block. Outermost is the function block, which is run when the function is called. An if-node has one or more blocks, one of which is conditionally run. A loop node has a loop block that is run zero or more times. A function literal node has a function block that is run when the function value is called. A select node has zero or more cases consisting of a channel operation and a block; one of these channel operations is run followed by its block. The execution order of nodes is determined as follows: Node A runs before node B if there is a connection with A as its source and B as its destination. A connection that exits or enters a block has that block's containing node as a source or destination, respectively. The arrow keys are used to navigate the graph. On their own, they move the focus between nodes, ports, and connections following the topology of the graph. While holding Alt, they move the focus between nodes with no regard for connectivity. Pressing Escape moves the focus from a connection end to its port, from a port to its node, and from a node to its containing node. Pressing Escape when a top-level node is focused saves changes and exits the function editor. To create a named node (function or method, variable, constant, struct field, operator, special node), simply start typing its name; the browser will open, allowing you to select the desired item. Hold Shift in the browser to treat functions and methods as values; otherwise they are treated as calls. A variable node or struct field node can be toggled between read and write using the Equals key. A method value node with an unconnected receiver is treated as a method expression. A variadic function or method call node can have inputs added by pressing the Comma key and deleted by pressing Delete or Backspace, and can be toggled between multiple element input and single slice input modes by pressing Control-Period. To create a basic literal (numeric, string, or character) node, type a digit, double quote, or single quote character, respectively, followed by the value and Enter. Press Enter to edit a basic literal node. To create a composite literal node, type a left curly brace character and select the desired type from the browser. A function block always has at least two nodes, one for parameters and another for results. To add a parameter or result, focus the appropriate node or port and press Comma (hold Shift to insert before a port), type the name and Enter, then select the type from the browser. To delete a parameter or result, focus the port and press Backspace or Delete. To toggle the signature's variadicity, focus the final parameter's port and press Control-Period. To toggle between a pointer receiver and a value receiver on a method, focus the receiver's port and press '*'. To add a block to an if-node or a case to a select node, press Comma; press Backspace or Delete to remove it. To toggle a select case between send and receive, press Equals. To turn a select case into the default case (provided one doesn't already exist), focus its channel port and press Backspace or Delete. To create a new connection, focus a port and press Enter to start editing. Use the arrow keys to move the other end of the connection and press Enter to stop editing. To edit an existing connection, focus one of its ends and press Enter. As an alternative to being drawn as a line, a connection may be named by pressing Underscore and typing a name followed by Enter. Press Underscore to draw it as a line again. All named connections having the same source share a name. To control the execution order of two nodes that are ambiguously ordered, a sequencing connection can be made. Focus a node's sequencing input or output by pressing Alt-Shift-Up or Alt-Shift-Down, respectively; then, create a connection as usual. A sequencing connection is drawn as a dashed line. Press Backspace or Delete to delete a node or connection. To save changes, press Command-S. The type editor displays a type as a tree. Composite types have their children nested inside them; named types are leaves. Press Enter to move the focus from a composite type to one of its children. Use the arrow keys to move the focus between the children of a composite type. Press Escape to move the focus from a child to its parent. To replace the focused item, press Backspace. For a named item (struct field, function parameter or result, or interface method), first type the name and Enter. Otherwise just select the type from the browser. After a composite type is created, each of its children is edited in turn. Press Escape to stop entering new named items. Press Comma to insert a new named item (hold Shift to insert before the focused item); to delete one, press Delete. It is impossible to write invalid (uncompilable) code in Flux. However, it is possible for code to become invalid when its dependencies change. For example, when a variable is renamed or removed or when a function signature changes, any code that referred to those objects will no longer work. In the case of a name change, the referred-to object is simply unknown; while in the case of a type change, some connections or ports may become invalid. Such invalidities are indicated by a red X drawn over the offending name, port, or connection. Replace invalid nodes, adjust invalid connections, and remove invalid ports to make the code valid again.
Package rtcp implements encoding and decoding of RTCP packets according to RFCs 3550 and 5506. RTCP is a sister protocol of the Real-time Transport Protocol (RTP). Its basic functionality and packet structure is defined in RFC 3550. RTCP provides out-of-band statistics and control information for an RTP session. It partners with RTP in the delivery and packaging of multimedia data, but does not transport any media data itself. The primary function of RTCP is to provide feedback on the quality of service (QoS) in media distribution by periodically sending statistics information such as transmitted octet and packet counts, packet loss, packet delay variation, and round-trip delay time to participants in a streaming multimedia session. An application may use this information to control quality of service parameters, perhaps by limiting flow, or using a different codec. Decoding RTCP packets: Encoding RTCP packets:
Package iris provides a beautifully expressive and easy to use foundation for your next website, API, or distributed app. Source code and other details for the project are available at GitHub: 10.6.0 The only requirement is the Go Programming Language, at least version 1.8 but 1.9 is highly recommended. Example code: You can start the server(s) listening to any type of `net.Listener` or even `http.Server` instance. The method for initialization of the server should be passed at the end, via `Run` function. Below you'll see some useful examples: UNIX and BSD hosts can take advantage of the reuse port feature. Example code: That's all with listening, you have the full control when you need it. Let's continue by learning how to catch CONTROL+C/COMMAND+C or unix kill command and shutdown the server gracefully. In order to manually manage what to do when app is interrupted, we have to disable the default behavior with the option `WithoutInterruptHandler` and register a new interrupt handler (globally, across all possible hosts). Example code: Access to all hosts that serve your application can be provided by the `Application#Hosts` field, after the `Run` method. But the most common scenario is that you may need access to the host before the `Run` method, there are two ways of gain access to the host supervisor, read below. First way is to use the `app.NewHost` to create a new host and use one of its `Serve` or `Listen` functions to start the application via the `iris#Raw` Runner. Note that this way needs an extra import of the `net/http` package. Example Code: Second, and probably easier way is to use the `host.Configurator`. Note that this method requires an extra import statement of "github.com/kataras/iris/core/host" when using go < 1.9, if you're targeting on go1.9 then you can use the `iris#Supervisor` and omit the extra host import. All common `Runners` we saw earlier (`iris#Addr, iris#Listener, iris#Server, iris#TLS, iris#AutoTLS`) accept a variadic argument of `host.Configurator`, there are just `func(*host.Supervisor)`. Therefore the `Application` gives you the rights to modify the auto-created host supervisor through these. Example Code: Read more about listening and gracefully shutdown by navigating to: All HTTP methods are supported, developers can also register handlers for same paths for different methods. The first parameter is the HTTP Method, second parameter is the request path of the route, third variadic parameter should contains one or more iris.Handler executed by the registered order when a user requests for that specific resouce path from the server. Example code: In order to make things easier for the user, iris provides functions for all HTTP Methods. The first parameter is the request path of the route, second variadic parameter should contains one or more iris.Handler executed by the registered order when a user requests for that specific resouce path from the server. Example code: A set of routes that are being groupped by path prefix can (optionally) share the same middleware handlers and template layout. A group can have a nested group too. `.Party` is being used to group routes, developers can declare an unlimited number of (nested) groups. Example code: iris developers are able to register their own handlers for http statuses like 404 not found, 500 internal server error and so on. Example code: With the help of iris's expressionist router you can build any form of API you desire, with safety. Example code: At the previous example, we've seen static routes, group of routes, subdomains, wildcard subdomains, a small example of parameterized path with a single known parameter and custom http errors, now it's time to see wildcard parameters and macros. iris, like net/http std package registers route's handlers by a Handler, the iris' type of handler is just a func(ctx iris.Context) where context comes from github.com/kataras/iris/context. Iris has the easiest and the most powerful routing process you have ever meet. At the same time, iris has its own interpeter(yes like a programming language) for route's path syntax and their dynamic path parameters parsing and evaluation, We call them "macros" for shortcut. How? It calculates its needs and if not any special regexp needed then it just registers the route with the low-level path syntax, otherwise it pre-compiles the regexp and adds the necessary middleware(s). Standard macro types for parameters: if type is missing then parameter's type is defaulted to string, so {param} == {param:string}. If a function not found on that type then the "string"'s types functions are being used. i.e: Besides the fact that iris provides the basic types and some default "macro funcs" you are able to register your own too!. Register a named path parameter function: at the func(argument ...) you can have any standard type, it will be validated before the server starts so don't care about performance here, the only thing it runs at serve time is the returning func(paramValue string) bool. Example Code: A path parameter name should contain only alphabetical letters, symbols, containing '_' and numbers are NOT allowed. If route failed to be registered, the app will panic without any warnings if you didn't catch the second return value(error) on .Handle/.Get.... Last, do not confuse ctx.Values() with ctx.Params(). Path parameter's values goes to ctx.Params() and context's local storage that can be used to communicate between handlers and middleware(s) goes to ctx.Values(), path parameters and the rest of any custom values are separated for your own good. Run Static Files Example code: More examples can be found here: https://github.com/kataras/iris/tree/master/_examples/beginner/file-server Middleware is just a concept of ordered chain of handlers. Middleware can be registered globally, per-party, per-subdomain and per-route. Example code: iris is able to wrap and convert any external, third-party Handler you used to use to your web application. Let's convert the https://github.com/rs/cors net/http external middleware which returns a `next form` handler. Example code: Iris supports 5 template engines out-of-the-box, developers can still use any external golang template engine, as `context/context#ResponseWriter()` is an `io.Writer`. All of these five template engines have common features with common API, like Layout, Template Funcs, Party-specific layout, partial rendering and more. Example code: View engine supports bundled(https://github.com/shuLhan/go-bindata) template files too. go-bindata gives you two functions, asset and assetNames, these can be setted to each of the template engines using the `.Binary` func. Example code: A real example can be found here: https://github.com/kataras/iris/tree/master/_examples/view/embedding-templates-into-app. Enable auto-reloading of templates on each request. Useful while developers are in dev mode as they no neeed to restart their app on every template edit. Example code: Note: In case you're wondering, the code behind the view engines derives from the "github.com/kataras/iris/view" package, access to the engines' variables can be granded by "github.com/kataras/iris" package too. Each one of these template engines has different options located here: https://github.com/kataras/iris/tree/master/view . This example will show how to store and access data from a session. You don’t need any third-party library, but If you want you can use any session manager compatible or not. In this example we will only allow authenticated users to view our secret message on the /secret page. To get access to it, the will first have to visit /login to get a valid session cookie, which logs him in. Additionally he can visit /logout to revoke his access to our secret message. Example code: Running the example: Sessions persistence can be achieved using one (or more) `sessiondb`. Example Code: More examples: In this example we will create a small chat between web sockets via browser. Example Server Code: Example Client(javascript) Code: Running the example: Iris has first-class support for the MVC pattern, you'll not find these stuff anywhere else in the Go world. Example Code: // GetUserBy serves // Method: GET // Resource: http://localhost:8080/user/{username:string} // By is a reserved "keyword" to tell the framework that you're going to // bind path parameters in the function's input arguments, and it also // helps to have "Get" and "GetBy" in the same controller. // // func (c *ExampleController) GetUserBy(username string) mvc.Result { // return mvc.View{ // Name: "user/username.html", // Data: username, // } // } Can use more than one, the factory will make sure that the correct http methods are being registered for each route for this controller, uncomment these if you want: Iris web framework supports Request data, Models, Persistence Data and Binding with the fastest possible execution. Characteristics: All HTTP Methods are supported, for example if want to serve `GET` then the controller should have a function named `Get()`, you can define more than one method function to serve in the same Controller. Register custom controller's struct's methods as handlers with custom paths(even with regex parametermized path) via the `BeforeActivation` custom event callback, per-controller. Example: Persistence data inside your Controller struct (share data between requests) by defining services to the Dependencies or have a `Singleton` controller scope. Share the dependencies between controllers or register them on a parent MVC Application, and ability to modify dependencies per-controller on the `BeforeActivation` optional event callback inside a Controller, i.e Access to the `Context` as a controller's field(no manual binding is neede) i.e `Ctx iris.Context` or via a method's input argument, i.e Models inside your Controller struct (set-ed at the Method function and rendered by the View). You can return models from a controller's method or set a field in the request lifecycle and return that field to another method, in the same request lifecycle. Flow as you used to, mvc application has its own `Router` which is a type of `iris/router.Party`, the standard iris api. `Controllers` can be registered to any `Party`, including Subdomains, the Party's begin and done handlers work as expected. Optional `BeginRequest(ctx)` function to perform any initialization before the method execution, useful to call middlewares or when many methods use the same collection of data. Optional `EndRequest(ctx)` function to perform any finalization after any method executed. Session dynamic dependency via manager's `Start` to the MVC Application, i.e Inheritance, recursively. Access to the dynamic path parameters via the controller's methods' input arguments, no binding is needed. When you use the Iris' default syntax to parse handlers from a controller, you need to suffix the methods with the `By` word, uppercase is a new sub path. Example: Register one or more relative paths and able to get path parameters, i.e Response via output arguments, optionally, i.e Where `any` means everything, from custom structs to standard language's types-. `Result` is an interface which contains only that function: Dispatch(ctx iris.Context) and Get where HTTP Method function(Post, Put, Delete...). Iris has a very powerful and blazing fast MVC support, you can return any value of any type from a method function and it will be sent to the client as expected. * if `string` then it's the body. * if `string` is the second output argument then it's the content type. * if `int` then it's the status code. * if `bool` is false then it throws 404 not found http error by skipping everything else. * if `error` and not nil then (any type) response will be omitted and error's text with a 400 bad request will be rendered instead. * if `(int, error)` and error is not nil then the response result will be the error's text with the status code as `int`. * if `custom struct` or `interface{}` or `slice` or `map` then it will be rendered as json, unless a `string` content type is following. * if `mvc.Result` then it executes its `Dispatch` function, so good design patters can be used to split the model's logic where needed. Examples with good patterns to follow but not intend to be used in production of course can be found at: https://github.com/kataras/iris/tree/master/_examples/#mvc. By creating components that are independent of one another, developers are able to reuse components quickly and easily in other applications. The same (or similar) view for one application can be refactored for another application with different data because the view is simply handling how the data is being displayed to the user. If you're new to back-end web development read about the MVC architectural pattern first, a good start is that wikipedia article: https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller. But you should have a basic idea of the framework by now, we just scratched the surface. If you enjoy what you just saw and want to learn more, please follow the below links: Examples: Middleware: Home Page: Book (in-progress):