Package inject provides a reflect based injector. A large application built with dependency injection in mind will typically involve the boring work of setting up the object graph. This library attempts to take care of this boring work by creating and connecting the various objects. Its use involves you seeding the object graph with some (possibly incomplete) objects, where the underlying types have been tagged for injection. Given this, the library will populate the objects creating new ones as necessary. It uses singletons by default, supports optional private instances as well as named instances. It works using Go's reflection package and is inherently limited in what it can do as opposed to a code-gen system with respect to private fields. The usage pattern for the library involves struct tags. It requires the tag format used by the various standard libraries, like json, xml etc. It involves tags in one of the three forms below: The first no value syntax is for the common case of a singleton dependency of the associated type. The second triggers creation of a private instance for the associated type. Finally the last form is asking for a named dependency called "dev logger".
Package restful, a lean package for creating REST-style WebServices without magic. A WebService has a collection of Route objects that dispatch incoming Http Requests to a function calls. Typically, a WebService has a root path (e.g. /users) and defines common MIME types for its routes. WebServices must be added to a container (see below) in order to handler Http requests from a server. A Route is defined by a HTTP method, an URL path and (optionally) the MIME types it consumes (Content-Type) and produces (Accept). This package has the logic to find the best matching Route and if found, call its Function. The (*Request, *Response) arguments provide functions for reading information from the request and writing information back to the response. See the example https://github.com/emicklei/go-restful/blob/master/examples/restful-user-resource.go with a full implementation. A Route parameter can be specified using the format "uri/{var[:regexp]}" or the special version "uri/{var:*}" for matching the tail of the path. For example, /persons/{name:[A-Z][A-Z]} can be used to restrict values for the parameter "name" to only contain capital alphabetic characters. Regular expressions must use the standard Go syntax as described in the regexp package. (https://code.google.com/p/re2/wiki/Syntax) This feature requires the use of a CurlyRouter. A Container holds a collection of WebServices, Filters and a http.ServeMux for multiplexing http requests. Using the statements "restful.Add(...) and restful.Filter(...)" will register WebServices and Filters to the Default Container. The Default container of go-restful uses the http.DefaultServeMux. You can create your own Container and create a new http.Server for that particular container. A filter dynamically intercepts requests and responses to transform or use the information contained in the requests or responses. You can use filters to perform generic logging, measurement, authentication, redirect, set response headers etc. In the restful package there are three hooks into the request,response flow where filters can be added. Each filter must define a FilterFunction: Use the following statement to pass the request,response pair to the next filter or RouteFunction These are processed before any registered WebService. These are processed before any Route of a WebService. These are processed before calling the function associated with the Route. See the example https://github.com/emicklei/go-restful/blob/master/examples/restful-filters.go with full implementations. Two encodings are supported: gzip and deflate. To enable this for all responses: If a Http request includes the Accept-Encoding header then the response content will be compressed using the specified encoding. Alternatively, you can create a Filter that performs the encoding and install it per WebService or Route. See the example https://github.com/emicklei/go-restful/blob/master/examples/restful-encoding-filter.go By installing a pre-defined container filter, your Webservice(s) can respond to the OPTIONS Http request. By installing the filter of a CrossOriginResourceSharing (CORS), your WebService(s) can handle CORS requests. Unexpected things happen. If a request cannot be processed because of a failure, your service needs to tell via the response what happened and why. For this reason HTTP status codes exist and it is important to use the correct code in every exceptional situation. If path or query parameters are not valid (content or type) then use http.StatusBadRequest. Despite a valid URI, the resource requested may not be available If the application logic could not process the request (or write the response) then use http.StatusInternalServerError. The request has a valid URL but the method (GET,PUT,POST,...) is not allowed. The request does not have or has an unknown Accept Header set for this operation. The request does not have or has an unknown Content-Type Header set for this operation. In addition to setting the correct (error) Http status code, you can choose to write a ServiceError message on the response. This package has several options that affect the performance of your service. It is important to understand them and how you can change it. The default router is the RouterJSR311 which is an implementation of its spec (http://jsr311.java.net/nonav/releases/1.1/spec/spec.html). However, it uses regular expressions for all its routes which, depending on your usecase, may consume a significant amount of time. The CurlyRouter implementation is more lightweight that also allows you to use wildcards and expressions, but only if needed. DoNotRecover controls whether panics will be caught to return HTTP 500. If set to true, Route functions are responsible for handling any error situation. Default value is false; it will recover from panics. This has performance implications. SetCacheReadEntity controls whether the response data ([]byte) is cached such that ReadEntity is repeatable. If you expect to read large amounts of payload data, and you do not use this feature, you should set it to false. If content encoding is enabled then the default strategy for getting new gzip/zlib writers and readers is to use a sync.Pool. Because writers are expensive structures, performance is even more improved when using a preloaded cache. You can also inject your own implementation. This package has the means to produce detail logging of the complete Http request matching process and filter invocation. Enabling this feature requires you to set an implementation of restful.StdLogger (e.g. log.Logger) instance such as: The restful.SetLogger() method allows you to override the logger used by the package. By default restful uses the standard library `log` package and logs to stdout. Different logging packages are supported as long as they conform to `StdLogger` interface defined in the `log` sub-package, writing an adapter for your preferred package is simple. (c) 2012-2015, http://ernestmicklei.com. MIT License
Package godepinject provides a flexible and type-safe dependency injection system for Go applications. It supports both simple dependency registration and dependencies with custom initialization. The library leverages Go's generics to provide type-safe dependency registration and retrieval, allowing for compile-time type checking and improved code safety. Key features: Configuration: Basic usage: For dependencies requiring initialization: For interface-based injection:
Package ioc provides a reflection-based dependency injection toolkit.
Package controllerruntime alias' common functions and types to improve discoverability and reduce the number of imports for simple Controllers. This example creates a simple application Controller that is configured for ReplicaSets and Pods. * Create a new application for ReplicaSets that manages Pods owned by the ReplicaSet and calls into ReplicaSetReconciler. * Start the application. TODO(pwittrock): Update this example when we have better dependency injection support
Package azcore implements an HTTP request/response middleware pipeline used by Azure SDK clients. The middleware consists of three components. A Policy can be implemented in two ways; as a first-class function for a stateless Policy, or as a method on a type for a stateful Policy. Note that HTTP requests made via the same pipeline share the same Policy instances, so if a Policy mutates its state it MUST be properly synchronized to avoid race conditions. A Policy's Do method is called when an HTTP request wants to be sent over the network. The Do method can perform any operation(s) it desires. For example, it can log the outgoing request, mutate the URL, headers, and/or query parameters, inject a failure, etc. Once the Policy has successfully completed its request work, it must call the Next() method on the *policy.Request instance in order to pass the request to the next Policy in the chain. When an HTTP response comes back, the Policy then gets a chance to process the response/error. The Policy instance can log the response, retry the operation if it failed due to a transient error or timeout, unmarshal the response body, etc. Once the Policy has successfully completed its response work, it must return the *http.Response and error instances to its caller. Template for implementing a stateless Policy: Template for implementing a stateful Policy: The Transporter interface is responsible for sending the HTTP request and returning the corresponding HTTP response or error. The Transporter is invoked by the last Policy in the chain. The default Transporter implementation uses a shared http.Client from the standard library. The same stateful/stateless rules for Policy implementations apply to Transporter implementations. To use the Policy and Transporter instances, an application passes them to the runtime.NewPipeline function. The specified Policy instances form a chain and are invoked in the order provided to NewPipeline followed by the Transporter. Once the Pipeline has been created, create a runtime.Request instance and pass it to Pipeline's Do method. The Pipeline.Do method sends the specified Request through the chain of Policy and Transporter instances. The response/error is then sent through the same chain of Policy instances in reverse order. For example, assuming there are Policy types PolicyA, PolicyB, and PolicyC along with TransportA. The flow of Request and Response looks like the following: The Request instance passed to Pipeline's Do method is a wrapper around an *http.Request. It also contains some internal state and provides various convenience methods. You create a Request instance by calling the runtime.NewRequest function: If the Request should contain a body, call the SetBody method. A seekable stream is required so that upon retry, the retry Policy instance can seek the stream back to the beginning before retrying the network request and re-uploading the body. Operations like JSON-MERGE-PATCH send a JSON null to indicate a value should be deleted. This requirement conflicts with the SDK's default marshalling that specifies "omitempty" as a means to resolve the ambiguity between a field to be excluded and its zero-value. In the above example, Name and Count are defined as pointer-to-type to disambiguate between a missing value (nil) and a zero-value (0) which might have semantic differences. In a PATCH operation, any fields left as nil are to have their values preserved. When updating a Widget's count, one simply specifies the new value for Count, leaving Name nil. To fulfill the requirement for sending a JSON null, the NullValue() function can be used. This sends an explict "null" for Count, indicating that any current value for Count should be deleted. When the HTTP response is received, the *http.Response is returned directly. Each Policy instance can inspect/mutate the *http.Response. To enable logging, set environment variable AZURE_SDK_GO_LOGGING to "all" before executing your program. By default the logger writes to stderr. This can be customized by calling log.SetListener, providing a callback that writes to the desired location. Any custom logging implementation MUST provide its own synchronization to handle concurrent invocations. See the docs for the log package for further details. Pageable operations return potentially large data sets spread over multiple GET requests. The result of each GET is a "page" of data consisting of a slice of items. Pageable operations can be identified by their New*Pager naming convention and return type of *runtime.Pager[T]. The call to WidgetClient.NewListWidgetsPager() returns an instance of *runtime.Pager[T] for fetching pages and determining if there are more pages to fetch. No IO calls are made until the NextPage() method is invoked. Long-running operations (LROs) are operations consisting of an initial request to start the operation followed by polling to determine when the operation has reached a terminal state. An LRO's terminal state is one of the following values. LROs can be identified by their Begin* prefix and their return type of *runtime.Poller[T]. When a call to WidgetClient.BeginCreateOrUpdate() returns a nil error, it means that the LRO has started. It does _not_ mean that the widget has been created or updated (or failed to be created/updated). The *runtime.Poller[T] provides APIs for determining the state of the LRO. To wait for the LRO to complete, call the PollUntilDone() method. The call to PollUntilDone() will block the current goroutine until the LRO has reached a terminal state or the context is canceled/timed out. Note that LROs can take anywhere from several seconds to several minutes. The duration is operation-dependent. Due to this variant behavior, pollers do _not_ have a preconfigured time-out. Use a context with the appropriate cancellation mechanism as required. Pollers provide the ability to serialize their state into a "resume token" which can be used by another process to recreate the poller. This is achieved via the runtime.Poller[T].ResumeToken() method. Note that a token can only be obtained for a poller that's in a non-terminal state. Also note that any subsequent calls to poller.Poll() might change the poller's state. In this case, a new token should be created. After the token has been obtained, it can be used to recreate an instance of the originating poller. When resuming a poller, no IO is performed, and zero-value arguments can be used for everything but the Options.ResumeToken. Resume tokens are unique per service client and operation. Attempting to resume a poller for LRO BeginB() with a token from LRO BeginA() will result in an error. The fake package contains types used for constructing in-memory fake servers used in unit tests. This allows writing tests to cover various success/error conditions without the need for connecting to a live service. Please see https://github.com/gracewilcox/azure-sdk-for-go/tree/main/sdk/samples/fakes for details and examples on how to use fakes.
Package disl is the dependency injection simple library. A Locator object registers constructors of singleton values that could be usefull in your program. Such constructors are called "factories". The locator ensures that factories are called at most once, when needed. If a factory has arguments, they are provided by the Locator, recursively calling other factories if needed. As a convenience, Locator registers themselves as singleton, hence a factory may have an argument of type *Locator. Cyclic dependencies are currently not detected by the package, silently resulting in deadlocks. The package uses reflection, hence it is not lightning fast. You should use it when the application starts, to initialise long lasting objects.
Package module provides a way to do dependency injection, with type-safe, without performance penalty. See [examples_test.go](./examples_test.go) for the basic usage.
Package kyoto was made for creating fast, server side frontend avoiding vanilla templating downsides. It tries to address complexities in frontend domain like responsibility separation, components structure, asynchronous load and hassle-free dynamic layout updates. These issues are common for frontends written with Go. The library provides you with primitives for pages and components creation, state and rendering management, dynamic layout updates (with external packages integration), utility functions and asynchronous components out of the box. Still, it bundles with minimal dependencies and tries to utilize built-ins as much as possible. You would probably want to opt out from this library in few cases, like, if you're not ready for drastic API changes between major version, you want to develop SPA/PWA and/or complex client-side logic, or you're just feeling OK with your current setup. Please, don't compare kyoto with a popular JS libraries like React, Vue or Svelte. I know you will have such a desire, but most likely you will be wrong. Use cases and underlying principles are just too different. If you want to get an idea of what a typical static component would look like, here's some sample code. It's very ascetic and simplistic, as we don't want to overload you with implementation details. Markup is also not included here (it's just a well-known `html/template`). For details, please check project's website on https://kyoto.codes. Also, you may check the library index to explore available sub-packages and https://pkg.go.dev for Go'ish documentation style. We don't want you to deal with boilerplate code on your own, so you can proceed with our simple starter project. Feel free to use it as an example for your own setup. Components is a common approach for modern libraries to manage frontend parts. Kyoto's components are trying to be mostly independent (but configurable) part of the project. To create component, it would be enough to implement component.Component. It's a function, a context receiver which returns a component state. State is an implementation of component.State, which is easy to implement with nesting one of the state implementations (options will be described later). Each component becomes a part of the page or top-level component, which executes component function asynchronously and gets a state future object. In that way your components are executing in a non-blocking way. Pages are just top-level components, where you can configure rendering and page related stuff. Stateful components are pretty similar to stateless ones, but they are actually implementing marshal/unmarshal interface instead of mocking it. You have multiple state options to choose from: universal or server. Universal state is a state, that can be marshalled and unmarshalled both on server and client. It's a common state option without functionality limitations. On the other hand, the whole state must be sent and received, which applies some limitations on the state size. Server state can be marshalled and unmarshalled only on server. It's a good option for components, that are not supposed to be updated on client side (f.e. no inputs). Also, it's a good option for components with lots of state data. Sometimes you may want to pass some arguments to the component. It's easy to do with wrapping component with additional function. You have an access to the context inside the component. It includes request and response objects, as well as some other useful stuff like store. This library doesn't provide you with routing out of the box. You can use any router you want, built-in one is not a bad option for basic needs. Rendering might be tricky, but we're trying to make it as simple as possible. By default, we're using `html/template` as a rendering engine. It's a well-known built-in package, so you don't have to learn anything new. Out of the box we're parsing all templates in root directory with `*.html` glob. You can change this behavior with `TEMPLATE_GLOB` global variable. Don't rely on file names while working with template names, use `define` entry for each your component. To provide your components with ability to be rendered, you have to do some basic steps. First, you have to nest one of the rendering implementations into your component state (f.e. `rendering.Template`). You can customize rendering with providing values to the rendering implementation. If you need to modify these values for the entire project, we recommend looking at the global settings or creating a builder function for rendering object. By default, render handler will use a component name as a template name. So, you have to define a template with the same name as your component (not the filename, but "define" entry). That's enough to be rendered by `rendering.Handler`. For rendering a nested component, use built-in `template` function. Provide a resolved future object as a template argument in this way. Nested components are not obligated to have rendering implementation if you're using them in this way. As an alternative, you can nest rendering implementation (e.g. `rendering.Template`) into your nested component. In this way you can use `render` function to simplify your code. Please, don't use this approach heavily now, as it affects rendering performance. HTMX is a frontend library, that allows you to update your page layout dynamically. It perfectly fits into kyoto, which focuses on components and server side rendering. Thanks to the component structure, there is no need to define separate rendering logic specially for HTMX. Please, check https://htmx.org/docs/#installing for installation instructions. In addition to this, you must register HTMX handlers for your dynamic components. This is a basic example of HTMX usage. Please, check https://htmx.org/docs/ for more details. In this example we're defining a form component, that is updating itself on submit. And this is how you can define a component, that will handle this request. Sometimes it might be useful to have a component state, which will persist between requests and will be stored without any actual usage in the client side presentation. This function injects a hidden input field with a serialized state. Let's check how it works on the server side. As a result, we have a component with a persistent state between requests.
Package godi is the wrapper around dependency injection container
Catalyst started out as a microservice base that can be used to create REST APIs. It contains many essential parts that you would need for a microservice such as, - Configurability - A basic dependency injection mechanism - Request response cycle handling - Structure and field validations - Error handling - Logging - Database resource management - Application metrics Written using the Clean Architecture paradigm it offers clean separation between business (domain) logic and facilitation logic. In the context of `Catalyst` we use a concept called `Transport mediums` to define ways in which you can communicate with the microservice. A package inside the `transport` directory consists of all the logic needed to handle communication with the outside world using one type of transport medium. Out of the box, Catalyst contain two such transport mediums. - http (to handle REST web requests) - metrics (to expose application metrics) What makes Catalyst a REST API is this `http` package which handles the complete lifecycle of REST web requests. Likewise the `metrics` transport medium exposes an endpoint to let `Prometheus` scrape application metrics. You can add other transport mediums to leverage a project based on Catalyst. For an example a `stream` package can be added to communicate with a streaming platform like `Kafka`. Or an `mqtt` package can be added to communicate with `IoT` devices.
Package inject provides a dependency injection library that uses constructor functions to define dependency relationships. Source can be found at https://github.com/karlkfi/inject Author: Karl Isenberg
Package controllerruntime alias' common functions and types to improve discoverability and reduce the number of imports for simple Controllers. This example creates a simple application Controller that is configured for ReplicaSets and Pods. * Create a new application for ReplicaSets that manages Pods owned by the ReplicaSet and calls into ReplicaSetReconciler. * Start the application. TODO(pwittrock): Update this example when we have better dependency injection support
Package fault provides standard http middleware for fault injection in go. Use the fault package to inject faults into the http request path of your service. Faults work by modifying and/or delaying your service's http responses. Place the Fault middleware high enough in the chain that it can act quickly, but after any other middlewares that should complete before fault injection (auth, redirects, etc...). The type and severity of injected faults is controlled by options passed to NewFault(Injector, Options). NewFault must be passed an Injector, which is an interface that holds the actual fault injection code in Injector.Handler. The Fault wraps Injector.Handler in another Fault.Handler that applies generic Fault logic (such as what % of requests to run the Injector on) to the Injector. Make sure you use the NewFault() and NewTypeInjector() constructors to create valid Faults and Injectors. There are three main Injectors provided by the fault package: Use fault.RejectInjector to immediately return an empty response. For example, a curl for a rejected response will produce: Use fault.ErrorInjector to immediately return a valid http status code of your choosing along with the standard HTTP response body for that code. For example, you can return a 200, 301, 418, 500, or any other valid status code to test how your clients respond to different statuses. Pass the WithStatusText() option to customize the response text. Use fault.SlowInjector to wait a configured time.Duration before proceeding with the request. For example, you can use the SlowInjector to add a 10ms delay to your requests. Use fault.RandomInjector to randomly choose one of the above faults to inject. Pass a list of Injector to fault.NewRandomInjector and when RandomInjector is evaluated it will randomly run one of the injectors that you passed. It is easy to combine any of the Injectors into a chained action. There are two ways you might want to combine Injectors. First, you can create separate Faults for each Injector that are sequential but independent of each other. For example, you can chain Faults such that 1% of requests will return a 500 error and another 1% of requests will be rejected. Second, you might want to combine Faults such that 1% of requests will be slowed for 10ms and then rejected. You want these Faults to depend on each other. For this use the special ChainInjector, which consolidates any number of Injectors into a single Injector that runs each of the provided Injectors sequentially. When you add the ChainInjector to a Fault the entire chain will always execute together. The NewFault() constructor has WithPathBlocklist() and WithPathAllowlist() options. Any path you include in the PathBlocklist will never have faults run against it. With PathAllowlist, if you provide a non-empty list then faults will not be run against any paths except those specified in PathAllowlist. The PathBlocklist take priority over the PathAllowlist, a path in both lists will never have a fault run against it. The paths that you include must match exactly the path in req.URL.Path, including leading and trailing slashes. Simmilarly, you may also use WithHeaderBlocklist() and WithHeaderAllowlist() to block or allow faults based on a map of header keys to values. These lists behave in the same way as the path allowlists and blocklists except that they operate on headers. Header equality is determined using http.Header.Get(key) which automatically canonicalizes your keys and does not support multi-value headers. Keep these limitations in mind when working with header allowlists and blocklists. Specifying very large lists of paths or headers may cause memory or performance issues. If you're running into these problems you should instead consider using your http router to enable the middleware on only a subset of your routes. The fault package provides an Injector interface and you can satisfy that interface to provide your own Injector. Use custom injectors to add additional logic to the package-provided injectors or to create your own completely new Injector that can still be managed by a Fault. The package provides a Reporter interface that can be added to Faults and Injectors using the WithReporter option. A Reporter will receive events when the state of the Injector changes. For example, Reporter.Report(InjectorName, StateStarted) is run at the beginning of all Injectors. The Reporter is meant to be provided by the consumer of the package and integrate with services like stats and logging. The default Reporter throws away all events. By default all randomness is seeded with defaultRandSeed(1), the same default as math/rand. This helps you reproduce any errors you see when running an Injector. If you prefer, you can also customize the seed passing WithRandSeed() to NewFault and NewRandomInjector. Some Injectors support customizing the functions they use to run their injections. You can take advantage of these options to add your own logic to an existing Injector instead of creating your own. For example, modify the SlowInjector function to slow in a rancom distribution instead of for a fixed duration. Be careful when you use these options that your return values fall within the same range of values expected by the default functions to avoid panics or other undesirable begavior. Customize the function a Fault uses to determine participation (default: rand.Float32) by passing WithRandFloat32Func() to NewFault(). Customize the function a RandomInjector uses to choose which injector to run (default: rand.Intn) by passing WithRandIntFunc() to NewRandomInjector(). Customize the function a SlowInjector uses to wait (default: time.Sleep) by passing WithSlowFunc() to NewSlowInjector(). Configuration for the fault package is done through options passed to NewFault and NewInjector. Once a Fault is created its enabled state and participation percentage can be updated with SetEnabled() and SetParticipation(). There is no other way to manage configuration for the package. It is up to the user of the fault package to manage how the options are generated. Common options are feature flags, environment variables, or code changes in deploys. Example is a package-level documentation example.
injector serves as user friendly dependency injection. Use this library to overwrite a function from an imported package (that isn't available via an interface) with your own stub for testing.
Package web provides a web.go compitable layer for reusing the code written with hoisie's `web.go` framework. Basiclly this package add web.Context to martini's dependency injection system.
Package fx is a framework that makes it easy to build applications out of reusable, composable modules. Fx applications use dependency injection to eliminate globals without the tedium of manually wiring together function calls. Unlike other approaches to dependency injection, Fx works with plain Go functions: you don't need to use struct tags or embed special types, so Fx automatically works well with most Go packages. Basic usage is explained in the package-level example below. If you're new to Fx, start there! Advanced features, including named instances, optional parameters, and value groups, are explained under the In and Out types. To test functions that use the Lifecycle type or to write end-to-end tests of your Fx application, use the helper functions and types provided by the go.uber.org/fx/fxtest package.
Package attache: an arsenal for the web. Attachè (mispronounced for fun as "Attachey", said like "Apache") is a new kind of web framework for go. It allows you to define your applications in terms of methods on a context type that is instantiated for each request. An Attachè Application is bootstrapped from a context type that implements the Context interface. In order to enforce that the context type is a struct type at compile time, embedding the BaseContext type is necessary to satisfy this interface. Functionality is provided by additional methods implemented on the context type. Attachè provides several capabilities (optional interfaces) that a Context type can implement. These interfaces take the form of "Has...". They are documented individually. Aside from these capabilites, a Context can provide several other types of methods: 1. Route methods Routing methods must follow the naming convention of <HTTP METHOD>_<[PathInCamelCase]> PathInCamelCase is optional, and defaults to the empty string. In this case, the method name would still need to include the underscore (i.e. GET_). The path which a routing method serves is determined by converting the PathInCamelCase to snake case, and then replacing underscores with the path separator. Examples: Route methods can take any number/types of arguments. Values are provided by the Application's dependency injection context for this request. If a value isn't available for an argument's type, the zero-value is used. Return values are unchecked, and really shouldn't be provided. That limitation is not enforced in the code, to provide flexibility. If a Context type provides a BEFORE_ method matching the name of the Route method, it will be run immediately before the Route method in the handler stack If a Context type provides an AFTER_ method matching the name of the Route method, it will be run immediately after the Route method in the handler stack. Although there is no hard enforcement, an AFTER_ method should assume the ResponseWriter has been closed. 2. Mount methods Mount methods must follow the naming convention of MOUNT_<[PathInCamelCase]> and have the signature func() (http.Handler, error). They are only called once, on an uninitialized Context during bootstrapping. If an error is returned (or the method panics), bootstrapping will fail. If there is no error, the returned http.Handler is mounted at the path specified by PathInCamelCase, using the same method as Routing methods. The mounted handler is called with the mounted prefix stripped from the request. 3. Guard methods Mount methods must follow the naming convention of GUARD_<[PathInCamelCase]>. The path at which a Guard method is applied is determined from PathInCamelCase, in the same way as a Route method. A Guard method will run for the path at which it is registered, as well as any paths that contain the guarded path. To prevent the handler stack from continuing execution, the Guard method must either panic or call one of the Attachè helper methods (Error, ErrorFatal, ErrorMessage, etc...). If there are multiple Guard methods on a path, they are run in they order they are encountered (i.e. the guards for shorter paths run before the guards for longer paths). 4. Provider methods Provider methods must follow the naming convention of PROVIDE_<UniqueDescriptiveName> and have the signature func(*http.Request) interface{}. Provider methods are called when a route or a guarded mount match the request's path. The returned value is available for injection into any handlers in the handler stack for the current request. Because of the frequency with which these are called, it is best to define as few as possible. Attachè also comes with a CLI. Currently, the supported commands are `attache new` and `attache gen`. Please see README.md for more info.
Package wire is runtime depedency injection/wiring for golang. It's designed to be strict to avoid your go application running without proper dependency injected.
Package xcore is a set of basic objects for programation (XCache for caches, XDataset for data sets, XLanguage for languages and XTemplate for templates). For GO, the actual existing code includes: - XCache: Application Memory Caches for any purpose, with time control and quantity control of object in the cache and also check changes against original source. It is a thread safe cache. - XDataset: Basic nested data structures for any purpose (template injection, configuration files, database records, etc). - XLanguage: language dependent text tables for internationalization of code. The sources can be text or XML file definitions. - XTemplate: template system with meta language to create complex documents (compatible with any text language, HTML, CSS, JS, PDF, XML, etc), heavily used on CMS systems and others. It is already used on sites that serve more than 60 million pages a month (500 pages per second on pike hour) and can be used on multithreading environment safely. XCache is a library to cache all the data you want into current application memory for a very fast access to the data. The access to the data support multithreading and concurrency. For the same reason, this type of cache is not persistent (if you exit the application) and cannot grow too much (as memory is the limit). However, you can control a timeout of each cache piece, and eventually a comparison function against a source (file, database, etc) to invalid the cache. 1. Declare a new XCache with NewXCache() function: 2. Fill in the cache: Once you have declared the cache, you can fill it with anything you want. The main cache object is an interface{} so you can put here anything you need, from simple variables to complex structures. You need to use the Set function: Note the ID is always a string, so convert a database key to string if needed. 3. To use the cache, just ask for your entry with Get function: 4. To maintain the cache: You may need Del function, to delete a specific entry (maybe because you deleted the record in database). You may also need Clean function to deletes a percentage of the cache, or Flush to deletes it all. The Verify function is used to check cache entries against their sources through the Validator function. Be very careful, if the cache is big or the Validator function is complex (maybe ask for a remote server information), the verification may be VERY slow and huge CPU use. The Count function gives some stats about the cache. 5. How to use Verify Function: This function is recommended when the source is local and fast to check (for instance a language file or a template file). When the source is distant (other cluster database, any rpc source on another network, integration of many parts, etc), it is more recommended to create a function that will delete the cache when needed (on demand cache change). The validator function is a func(id, time.Time) bool function. The first parameter is the ID entry in the cache, the second parameter the time of the entry was created. The validator function returns true is the cache is still valid, or false if it needs to be invalidated. The XCache is thread safe. The cache can be limited in quantity of entries and timeout for data. The cache is automanaged (for invalid expired data) and can be cleaned partially or totally manually. The XLanguage table of text entries can be loaded from XML file, XML string or normal text file or string. It is used to keep a table of id=value set of entries in any languages you need, so it is easy to switch between XLanguage instance based on the required language needed. Obviously, any XLanguage you load in any language should have the same id entries translated, for the same use. The XLanguage object is thread safe 1. loading: You can load any file or XML string directly into the object. 1.1 The XML Format is: NAMEOFTABLE is the name of your table entry, for example "loginform", "user_report", etc. LG is the ISO-3369 2 letters language ID, for example "es" for spanish, "en" for english, "fr" for french, etc. ENTRYNAME is the ID of the entry, for example "greating", "yourname", "submitbutton". ENTRYVALUE is the text for your entry, for example "Hello", "You are:", "Save" if your table is in english. STATUSVALUE is the status of the entry- You may put any value to control your translation over time and processes. 1.2 The flat text format is: ENTRYNAME is the ID of the entry, for example "greating", "yourname", "submitbutton". ENTRYVALUE is the text for your entry, for example "Hello", "You are:", "Save" if your table is in english. There is no name of table or language in this format (you "know" what you are loading). The advantage to use XML format is to have more control over your language, and eventyally add attributes into your entries, for instance you may add attributes translated="yes/no", verified="yes/no", and any other data that your system could insert. The XLanguage will ignore those attributes loading the table. 2. creation: To create a new XLanguage empty structure: There are 4 functions to create the language from a file or string, flat text or XML text: Then you can use the set of basic access functions: SetName/SetLanguage functions are used to set the table name and language of the object (generally to build an object from scratch). GetName/GetLanguage functions are used to get the table name and language of the object (generally when you load it from some source). Set/Get/Del functions are used to add or modify a new entry, read an entry, or deletes an entry in the object. SetStatus/GetStatus functions are used to add or get a status for the entry in the object. To create am XML file from the objet, you can use the GetXML() function 1. Overview: The XDataSet is a set of interfaces and basic classes ready-to-use to build a standard set of data optionally nested and hierarchical, that can be used for any purpose: - Keep complex data in memory. - Create JSON structures. - Inject data into templates. - Interchange database data (records set and record). You can store into it generic supported data, as well as any complex interface structures: - Int - Float - String - Time - Bool - []Int - []Float - []Time - []Bool - XDataSetDef (anything extended with this interface) - []String - Anything else ( interface{} ) - XDataSetCollectionDef (anything extended with this interface) The generic supported data comes with a set of functions to get/set those data directly into the XDataset. Example: Note that all references to XDataset and XDatasetCollection are pointers, always (to be able to modify the values of them). 2. XDatasetDef interface: It is the interface to describe a simple set of data mapped as "name": value, where value can be of any type. The interface implements a good amount of basic methods to get the value on various format such as GetString("name"), GetInt("name"), etc (see below). If the value is another type as asked, the method should contert it if possible. For instance "key":123 required through GetString("key") should return "123". The XDataset type is a simple map[string]interface{} with all the implemented methods and should be enough to use for almost all required cases. However, you can build any complex structure that extends the interface and implements all the required functions to stay compatible with the XDatasetDef. 3. XDatasetCollectionDef Interface: This is the interface used to extend any type of data as a Collection, i-e an array of XDatasetDef. This is a slice of any XDatasetDef compatible data. The interface implements some methods to work on array structure such as Push, Pop, Shift, Unshift and some methods to search data into the array. The XDatasetCollection type is a simple []DatasetDef with all the implemented methods and should be enough to use for almost all required cases. 1. Overview: The XDataSetTS is a DatasetDef structure, thread safe. It is build on the XDataset with the same properties, but is thread safe to protect Read/Write accesses from different thread. Example: You may also build a XDatasetTS to encapsulate a XDatasetDef that is not thread safe, to use it safely Note that all references to XDatasetTS are pointers, always (to be able to modify the values of them). The DatasetTS meet the XDatasetDef interface 1. Overview: This is a class to compile and keep a Template that can be injected with an XDataSet structure of data, with a metalanguage to inject the data. The metalanguage is extremely simple and is made to be useful and **really** separate programation from template code (not like other many generic template systems that just mix code and data). A template is a set of HTML/XML (or any other language) string with a meta language to inject variables and build a final string. The XCore XTemplate system is based on the injection of parameters, language translation strings and data fields directly into the HTML (Or any other language you need) template. The HTML itself (or any other language) is a text code not directly used by the template system, but used to dress the data you want to represent in your preferred language. The variables to inject must be into a XDataSet structure or into a structure extended from XDataSetDef interface. The injection of data is based on a XDataSet structure of values that can be nested into another XDataSet and XDataSetConnection and so on. The template compiler recognize nested arrays to automatically make loops on the information. Templates are made to store reusable HTML code, and overall easily changeable by people that do not know how to write programs. A template can be as simple as a single character (no variables to inject) to a very complex nested, conditional and loops sub-templates. Yes. this is a template, but a very simple one without need to inject any data. Let's go more complex: Having an array of data, we want to paint it beautifull: We can create a template to inject this data into it: 2. Create and use XTemplateData: In sight to create and use templates, you have all those possible options to use: Creates the XTemplate from a string or a file or any other source: Clone the XTemplate: 3. Metalanguage Reference: 3.1 Comments: %-- and --% You may use comments into your template. The comments will be discarded immediately at the compilation of the template and do not interfere with the rest of your code. Example: 3.2 Nested Templates: [[...]] and [[]] You can define new nested templates into your main template A nested template is defined by: The templteid is any combination of lowers letters only (a-z), numbers (0-9), and 3 special chars: . (point) - (dash) and _ (underline). The template is closed with [[]]. There is no limits into nesting templates. Any nested template will inheritate all the father elements and can use father elements too. To call a sub-template, you need to use &&templateid&& syntax (described below in this document). Example: You may use more than one id into the same template to avoid repetition of the same code. The different id's are separated with a pipe | Important note: A template will be visible only on the same level of its declaration. For example, if you put a subtemplate "b" into a subtemplate "a", it will not be visible by &&b&& from the top level, but only into the subtemplate "a". 3.3 Simple Elements: ##...## and {{...}} There are 2 types of simple elements. Language elements and Data injector elements (also called field elements). We "logically" define the 2 type of elements. The separation is only for human logic and template filling, however the language information can perfectly fit into the data to inject (and not use ## entries). 3.3.1 Languages elements: ##entry## All the languages elements should have the format: ##entry##. A language entry is generally anything written into your code or page that does not come from a database, and should adapt to the language of the client visiting your site. Using the languages elements may depend on the internationalization of your page. If your page is going to be in a single language forever, you really dont need to use languages entries. The language elements generally carry titles, menu options, tables headers etc. The language entries are set into the "#" entry of the main template XDataset to inject, and is a XLanguage table. Example: With data to inject: 3.3.2 Field elements: {{fieldname}} Fields values should have the format: {{fieldname}}. Your fields source can be a database or any other preferred repository data source. Example: You can access an element with its path into the data set to inject separating each field level with a > (greater than). This will take the name of the second hobby in the dataset defined upper. (collections are 0 indexed). The 1 denotes the second record of the hobbies XDatasetCollection. If the field is not found, it will be replaced with an empty string. Tecnically your field names can be any string in the dataset. However do not use { } or > into the names of your fields or the XTemplate may not use them correctly. We recommend to use lowercase names with numbers and ._- Accents and UTF8 symbols are also welcome. 3.3.3 Scope: When you use an id to point a value, the template will first search into the available ids of the local level. If no id is found, the it will search into the upper levers if any, and so on. Example: At the level of 'data2', using {{appname}} will get back 'DomCore'. At the level of 'key1', using {{appname}} will get back 'Nested App'. At the level of 'key2', using {{appname}} will get back 'DomCore'. At the level of root, 'data1' or 'detail', using {{appname}} will get back an empty string. 3.3.4 Path access: id>id>id>id At any level into the data array, you can access any entry into the subset array. For instance, taking the previous array of data to inject, let's suppose we are into a nested meta elements at the 'data1' level. You may want to access directly the 'Juan' entry. The path will be: The José's status value from the root will be: 3.4 Meta Elements They consist into an injection of a XDataset, called the "data to inject", into the template. The meta language is directly applied on the structure of the data array. The data to inject is a nested set of variables and values with the structure you want (there is no specific construction rules). You can inject nearly anything into a template meta elements. Example of a data array to inject: You can access directly any data into the array with its relative path (relative to the level you are when the metaelements are applied, see below). There are 4 structured meta elements in the XTemplate templates to use the data to inject: Reference, Loops, Condition and Debug. The structure of the meta elements in the template must follow the structure of the data to inject. 3.4.1 References to another template: &&order&& 3.4.1.1 When order is a single id (characters a-z0-9.-_), it will make a call to a sub template with the same set of data and replace the &&...&& with the result. The level in the data set is not changed. Example based on previous array of Fred's data: 3.4.1.2 When order contains 2 parameters separated by a semicolumn :, then second parameter is used to change the level of the data of array, with the subset with this id. The level in the data set is changed to this sub set. Example based on previous array of Fred's data: 3.4.1.3 When order contains 3 parameters separated by a semicolumn :, the second and third parameters are used to search the name of the new template based on the data fields to inject. This is an indirect access to the template. The name of the subtemplate is build with parameter3 as prefix and the content of parameter2 value. The third parameter must be empty. 3.4.2 Loops: @@order@@ 3.4.2.1 Overview This meta element will loop over each itterance of the set of data and concatenate each created template in the same order. You need to declare a sub template for this element. You may aso declare derivated sub templates for the different possible cases of the loop: For instance, If your main subtemplate for your look is called "hobby", you may need a different template for the first element, last element, Nth element, Element with a value "no" in the sport field, etc. The supported postfixes are: When the array to iterate is empty: - .none (for example "There is no hobby") When the array contains elements, it will search in order, the following template and use the first found: - templateid.key.[value] value is the key of the vector line. If the collection has a named key (string) or is a direct array (0, 1, 2...) - templateid.first if it is the first element of the array set (new from v1.01.11) - templateid.last if it is the first element of the array set (new from v1.01.11) - templateid.even if the line number is even - templateid in all other cases (odd is contained here if even is defined) Since v2.1.7, you can also use the pseudo field {{.counter}} into the loop subtemplate, to get the number of the counter of the loop, it is 1-based (first loop is 1, not 0) 3.4.2.2 When order is a single id (characters a-z0-9.-_), it will make a call to the sub template id with the same subset of data with the same id and replace the @@...@@ for each itterance of the data with the result. Example based on previous array of Fred's data: 3.4.2.3 When order contains 2 parameters separated by a semicolumn :, then first parameter is used to change the level of the data of array, with the subset with this id, and the second one for the template to use. Example based on previous array of Fred's data: 3.4.3 Conditional: ??order?? Makes a call to a subtemplate only if the field exists and have a value. This is very userfull to call a sub template for instance when an image or a video is set. When the condition is not met, it will search for the [id].none template. The conditional element does not change the level in the data set. 3.4.3.1 When order is a single id (characters a-z0-9.-_), it will make a call to the sub template id with the same field in the data and replace the ??...?? with the corresponding template Example based on previous array of Fred's data: 3.4.3.2 When order contains 2 parameters separated by a semicolumn :, then second parameter is used to change the level of the data of array, with the subset with this id. Example based on previous array of Fred's data: If the asked field is a catalog, true/false, numbered, you may also use .[value] subtemplates 3.5 Debug Tools: !!order!! There are two keywords to dump the content of the data set. This is very useful when you dont know the code that calls the template, don't remember some values, or for debug facilities. 3.5.1 !!dump!! Will show the totality of the data set, with ids and values. 3.5.1 !!list!! Will show only the tree of parameters, values are not shown.
Package inject provides utilities for mapping and injecting dependencies in various ways.
Package di provides a reflection-based dependency injection toolkit.
/ A dependency injection library for Go. / / This library provides the `Injector` type that is used for providing values and / after being configured with a collection of `Module`-s. / The library also provides iinterfaces for defining modules both from structs with provider methods and / dynamically generated providers.
Package container provides an IoC container for Go projects. It provides simple, fluent and easy-to-use interface to make dependency injection in GoLang easier.
Package inj provides a simple mechanism of dependency injection It combines a type to value map and the capability of invoking a function with parameters supplied based on their types. Example:
Package di is a dependency injection library that is focused on clean API and flexibility. DI has two types of top-level abstractions: Container and Resolver. First one is responsible for accepting constructors and implementations and creating abstraction bindings out of them. Second implements different implementation resolution scenarios against one or more Containers. Initially this library was heavily inspired by GoLobby Container (https://github.com/golobby/container) but since then had a lot of backwards incompatible changes in structure, functionality and API.