Package gomail provides a simple interface to compose emails and to mail them efficiently. More info on Github: https://github.com/go-gomail/gomail A daemon that listens to a channel and sends all incoming messages. Efficiently send a customized newsletter to a list of recipients. Send an email using a local SMTP server. Send an email using an API or postfix.
Package color is an ANSI color package to output colorized or SGR defined output to the standard output. The API can be used in several way, pick one that suits you. Use simple and default helper functions with predefined foreground colors: However there are times where custom color mixes are required. Below are some examples to create custom color objects and use the print functions of each separate color object. You can create PrintXxx functions to simplify even more: You can also FprintXxx functions to pass your own io.Writer: Or create SprintXxx functions to mix strings with other non-colorized strings: Windows support is enabled by default. All Print functions work as intended. However only for color.SprintXXX functions, user should use fmt.FprintXXX and set the output to color.Output: Using with existing code is possible. Just use the Set() method to set the standard output to the given parameters. That way a rewrite of an existing code is not required. There might be a case where you want to disable color output (for example to pipe the standard output of your app to somewhere else). `Color` has support to disable colors both globally and for single color definition. For example suppose you have a CLI app and a `--no-color` bool flag. You can easily disable the color output with: It also has support for single color definitions (local). You can disable/enable color output on the fly:
This is the official Go SDK for Oracle Cloud Infrastructure Refer to https://github.com/oracle/oci-go-sdk/blob/master/README.md#installing for installation instructions. Refer to https://github.com/oracle/oci-go-sdk/blob/master/README.md#configuring for configuration instructions. The following example shows how to get started with the SDK. The example belows creates an identityClient struct with the default configuration. It then utilizes the identityClient to list availability domains and prints them out to stdout More examples can be found in the SDK Github repo: https://github.com/oracle/oci-go-sdk/tree/master/example Optional fields are represented with the `mandatory:"false"` tag on input structs. The SDK will omit all optional fields that are nil when making requests. In the case of enum-type fields, the SDK will omit fields whose value is an empty string. The SDK uses pointers for primitive types in many input structs. To aid in the construction of such structs, the SDK provides functions that return a pointer for a given value. For example: The SDK exposes functionality that allows the user to customize any http request before is sent to the service. You can do so by setting the `Interceptor` field in any of the `Client` structs. For example: The Interceptor closure gets called before the signing process, thus any changes done to the request will be properly signed and submitted to the service. The SDK exposes a stand-alone signer that can be used to signing custom requests. Related code can be found here: https://github.com/oracle/oci-go-sdk/blob/master/common/http_signer.go. The example below shows how to create a default signer. The signer also allows more granular control on the headers used for signing. For example: You can combine a custom signer with the exposed clients in the SDK. This allows you to add custom signed headers to the request. Following is an example: Bear in mind that some services have a white list of headers that it expects to be signed. Therefore, adding an arbitrary header can result in authentications errors. To see a runnable example, see https://github.com/oracle/oci-go-sdk/blob/master/example/example_identity_test.go For more information on the signing algorithm refer to: https://docs.cloud.oracle.com/Content/API/Concepts/signingrequests.htm Some operations accept or return polymorphic JSON objects. The SDK models such objects as interfaces. Further the SDK provides structs that implement such interfaces. Thus, for all operations that expect interfaces as input, pass the struct in the SDK that satisfies such interface. For example: In the case of a polymorphic response you can type assert the interface to the expected type. For example: An example of polymorphic JSON request handling can be found here: https://github.com/oracle/oci-go-sdk/blob/master/example/example_core_test.go#L63 When calling a list operation, the operation will retrieve a page of results. To retrieve more data, call the list operation again, passing in the value of the most recent response's OpcNextPage as the value of Page in the next list operation call. When there is no more data the OpcNextPage field will be nil. An example of pagination using this logic can be found here: https://github.com/oracle/oci-go-sdk/blob/master/example/example_core_pagination_test.go The SDK has a built-in logging mechanism used internally. The internal logging logic is used to record the raw http requests, responses and potential errors when (un)marshalling request and responses. Built-in logging in the SDK is controlled via the environment variable "OCI_GO_SDK_DEBUG" and its contents. The below are possible values for the "OCI_GO_SDK_DEBUG" variable 1. "info" or "i" enables all info logging messages 2. "debug" or "d" enables all debug and info logging messages 3. "verbose" or "v" or "1" enables all verbose, debug and info logging messages 4. "null" turns all logging messages off. If the value of the environment variable does not match any of the above then default logging level is "info". If the environment variable is not present then no logging messages are emitted. The default destination for logging is Stderr and if you want to output log to a file you can set via environment variable "OCI_GO_SDK_LOG_OUTPUT_MODE". The below are possible values 1. "file" or "f" enables all logging output saved to file 2. "combine" or "c" enables all logging output to both stderr and file You can also customize the log file location and name via "OCI_GO_SDK_LOG_FILE" environment variable, the value should be the path to a specific file If this environment variable is not present, the default location will be the project root path Sometimes you may need to wait until an attribute of a resource, such as an instance or a VCN, reaches a certain state. An example of this would be launching an instance and then waiting for the instance to become available, or waiting until a subnet in a VCN has been terminated. You might also want to retry the same operation again if there's network issue etc... This can be accomplished by using the RequestMetadata.RetryPolicy(request level configuration), alternatively, global(all services) or client level RetryPolicy configration is also possible. You can find the examples here: https://github.com/oracle/oci-go-sdk/blob/master/example/example_retry_test.go If you are trying to make a PUT/POST API call with binary request body, please make sure the binary request body is resettable, which means the request body should inherit Seeker interface. The Retry behavior Precedence (Highest to lowest) is defined as below:- The OCI Go SDK defines a default retry policy that retries on the errors suitable for retries (see https://docs.oracle.com/en-us/iaas/Content/API/References/apierrors.htm), for a recommended period of time (up to 7 attempts spread out over at most approximately 1.5 minutes). The default retry policy is defined by : Default Retry-able Errors Below is the list of default retry-able errors for which retry attempts should be made. The following errors should be retried (with backoff). HTTP Code Customer-facing Error Code Apart from the above errors, retries should also be attempted in the following Client Side errors : 1. HTTP Connection timeout 2. Request Connection Errors 3. Request Exceptions 4. Other timeouts (like Read Timeout) The above errors can be avoided through retrying and hence, are classified as the default retry-able errors. Additionally, retries should also be made for Circuit Breaker exceptions (Exceptions raised by Circuit Breaker in an open state) Default Termination Strategy The termination strategy defines when SDKs should stop attempting to retry. In other words, it's the deadline for retries. The OCI SDKs should stop retrying the operation after 7 retry attempts. This means the SDKs will have retried for ~98 seconds or ~1.5 minutes have elapsed due to total delays. SDKs will make a total of 8 attempts. (1 initial request + 7 retries) Default Delay Strategy Default Delay Strategy - The delay strategy defines the amount of time to wait between each of the retry attempts. The default delay strategy chosen for the SDK – Exponential backoff with jitter, using: 1. The base time to use in retry calculations will be 1 second 2. An exponent of 2. When calculating the next retry time, the SDK will raise this to the power of the number of attempts 3. A maximum wait time between calls of 30 seconds (Capped) 4. Added jitter value between 0-1000 milliseconds to spread out the requests Configure and use default retry policy You can set this retry policy for a single request: or for all requests made by a client: or for all requests made by all clients: or setting default retry via environment varaible, which is a global switch for all services: Some services enable retry for operations by default, this can be overridden using any alternatives mentioned above. To know which service operations have retries enabled by default, look at the operation's description in the SDK - it will say whether that it has retries enabled by default Some resources may have to be replicated across regions and are only eventually consistent. That means the request to create, update, or delete the resource succeeded, but the resource is not available everywhere immediately. Creating, updating, or deleting any resource in the Identity service is affected by eventual consistency, and doing so may cause other operations in other services to fail until the Identity resource has been replicated. For example, the request to CreateTag in the Identity service in the home region succeeds, but immediately using that created tag in another region in a request to LaunchInstance in the Compute service may fail. If you are creating, updating, or deleting resources in the Identity service, we recommend using an eventually consistent retry policy for any service you access. The default retry policy already deals with eventual consistency. Example: This retry policy will use a different strategy if an eventually consistent change was made in the recent past (called the "eventually consistent window", currently defined to be 4 minutes after the eventually consistent change). This special retry policy for eventual consistency will: 1. make up to 9 attempts (including the initial attempt); if an attempt is successful, no more attempts will be made 2. retry at most until (a) approximately the end of the eventually consistent window or (b) the end of the default retry period of about 1.5 minutes, whichever is farther in the future; if an attempt is successful, no more attempts will be made, and the OCI Go SDK will not wait any longer 3. retry on the error codes 400-RelatedResourceNotAuthorizedOrNotFound, 404-NotAuthorizedOrNotFound, and 409-NotAuthorizedOrResourceAlreadyExists, for which the default retry policy does not retry, in addition to the errors the default retry policy retries on (see https://docs.oracle.com/en-us/iaas/Content/API/References/apierrors.htm) If there were no eventually consistent actions within the recent past, then this special retry strategy is not used. If you want a retry policy that does not handle eventual consistency in a special way, for example because you retry on all error responses, you can use DefaultRetryPolicyWithoutEventualConsistency or NewRetryPolicyWithOptions with the common.ReplaceWithValuesFromRetryPolicy(common.DefaultRetryPolicyWithoutEventualConsistency()) option: The NewRetryPolicy function also creates a retry policy without eventual consistency. Circuit Breaker can prevent an application repeatedly trying to execute an operation that is likely to fail, allowing it to continue without waiting for the fault to be rectified or wasting CPU cycles, of course, it also enables an application to detect whether the fault has been resolved. If the problem appears to have been rectified, the application can attempt to invoke the operation. Go SDK intergrates sony/gobreaker solution, wraps in a circuit breaker object, which monitors for failures. Once the failures reach a certain threshold, the circuit breaker trips, and all further calls to the circuit breaker return with an error, this also saves the service from being overwhelmed with network calls in case of an outage. Circuit Breaker Configuration Definitions 1. Failure Rate Threshold - The state of the CircuitBreaker changes from CLOSED to OPEN when the failure rate is equal or greater than a configurable threshold. For example when more than 50% of the recorded calls have failed. 2. Reset Timeout - The timeout after which an open circuit breaker will attempt a request if a request is made 3. Failure Exceptions - The list of Exceptions that will be regarded as failures for the circuit. 4. Minimum number of calls/ Volume threshold - Configures the minimum number of calls which are required (per sliding window period) before the CircuitBreaker can calculate the error rate. 1. Failure Rate Threshold - 80% - This means when 80% of the requests calculated for a time window of 120 seconds have failed then the circuit will transition from closed to open. 2. Minimum number of calls/ Volume threshold - A value of 10, for the above defined time window of 120 seconds. 3. Reset Timeout - 30 seconds to wait before setting the breaker to halfOpen state, and trying the action again. 4. Failure Exceptions - The failures for the circuit will only be recorded for the retryable/transient exceptions. This means only the following exceptions will be regarded as failure for the circuit. HTTP Code Customer-facing Error Code Apart from the above, the following client side exceptions will also be treated as a failure for the circuit : 1. HTTP Connection timeout 2. Request Connection Errors 3. Request Exceptions 4. Other timeouts (like Read Timeout) Go SDK enable circuit breaker with default configuration for most of the service clients, if you don't want to enable the solution, can disable the functionality before your application running Go SDK also supports customize Circuit Breaker with specified configurations. You can find the examples here: https://github.com/oracle/oci-go-sdk/blob/master/example/example_circuitbreaker_test.go To know which service clients have circuit breakers enabled, look at the service client's description in the SDK - it will say whether that it has circuit breakers enabled by default The GO SDK uses the net/http package to make calls to OCI services. If your environment requires you to use a proxy server for outgoing HTTP requests then you can set this up in the following ways: 1. Configuring environment variable as described here https://golang.org/pkg/net/http/#ProxyFromEnvironment 2. Modifying the underlying Transport struct for a service client In order to modify the underlying Transport struct in HttpClient, you can do something similar to (sample code for audit service client): The Object Storage service supports multipart uploads to make large object uploads easier by splitting the large object into parts. The Go SDK supports raw multipart upload operations for advanced use cases, as well as a higher level upload class that uses the multipart upload APIs. For links to the APIs used for multipart upload operations, see Managing Multipart Uploads (https://docs.cloud.oracle.com/iaas/Content/Object/Tasks/usingmultipartuploads.htm). Higher level multipart uploads are implemented using the UploadManager, which will: split a large object into parts for you, upload the parts in parallel, and then recombine and commit the parts as a single object in storage. This code sample shows how to use the UploadManager to automatically split an object into parts for upload to simplify interaction with the Object Storage service: https://github.com/oracle/oci-go-sdk/blob/master/example/example_objectstorage_test.go Some response fields are enum-typed. In the future, individual services may return values not covered by existing enums for that field. To address this possibility, every enum-type response field is a modeled as a type that supports any string. Thus if a service returns a value that is not recognized by your version of the SDK, then the response field will be set to this value. When individual services return a polymorphic JSON response not available as a concrete struct, the SDK will return an implementation that only satisfies the interface modeling the polymorphic JSON response. If you are using a version of the SDK released prior to the announcement of a new region, you may need to use a workaround to reach it, depending on whether the region is in the oraclecloud.com realm. A region is a localized geographic area. For more information on regions and how to identify them, see Regions and Availability Domains(https://docs.cloud.oracle.com/iaas/Content/General/Concepts/regions.htm). A realm is a set of regions that share entities. You can identify your realm by looking at the domain name at the end of the network address. For example, the realm for xyz.abc.123.oraclecloud.com is oraclecloud.com. oraclecloud.com Realm: For regions in the oraclecloud.com realm, even if common.Region does not contain the new region, the forward compatibility of the SDK can automatically handle it. You can pass new region names just as you would pass ones that are already defined. For more information on passing region names in the configuration, see Configuring (https://github.com/oracle/oci-go-sdk/blob/master/README.md#configuring). For details on common.Region, see (https://github.com/oracle/oci-go-sdk/blob/master/common/common.go). Other Realms: For regions in realms other than oraclecloud.com, you can use the following workarounds to reach new regions with earlier versions of the SDK. NOTE: Be sure to supply the appropriate endpoints for your region. You can overwrite the target host with client.Host: If you are authenticating via instance principals, you can set the authentication endpoint in an environment variable: Got a fix for a bug, or a new feature you'd like to contribute? The SDK is open source and accepting pull requests on GitHub https://github.com/oracle/oci-go-sdk Licensing information available at: https://github.com/oracle/oci-go-sdk/blob/master/LICENSE.txt To be notified when a new version of the Go SDK is released, subscribe to the following feed: https://github.com/oracle/oci-go-sdk/releases.atom Please refer to this link: https://github.com/oracle/oci-go-sdk#help
This is the official Go SDK for Oracle Cloud Infrastructure Refer to https://github.com/oracle/oci-go-sdk/blob/master/README.md#installing for installation instructions. Refer to https://github.com/oracle/oci-go-sdk/blob/master/README.md#configuring for configuration instructions. The following example shows how to get started with the SDK. The example belows creates an identityClient struct with the default configuration. It then utilizes the identityClient to list availability domains and prints them out to stdout More examples can be found in the SDK Github repo: https://github.com/oracle/oci-go-sdk/tree/master/example Optional fields are represented with the `mandatory:"false"` tag on input structs. The SDK will omit all optional fields that are nil when making requests. In the case of enum-type fields, the SDK will omit fields whose value is an empty string. The SDK uses pointers for primitive types in many input structs. To aid in the construction of such structs, the SDK provides functions that return a pointer for a given value. For example: The SDK exposes functionality that allows the user to customize any http request before is sent to the service. You can do so by setting the `Interceptor` field in any of the `Client` structs. For example: The Interceptor closure gets called before the signing process, thus any changes done to the request will be properly signed and submitted to the service. The SDK exposes a stand-alone signer that can be used to signing custom requests. Related code can be found here: https://github.com/oracle/oci-go-sdk/blob/master/common/http_signer.go. The example below shows how to create a default signer. The signer also allows more granular control on the headers used for signing. For example: You can combine a custom signer with the exposed clients in the SDK. This allows you to add custom signed headers to the request. Following is an example: Bear in mind that some services have a white list of headers that it expects to be signed. Therefore, adding an arbitrary header can result in authentications errors. To see a runnable example, see https://github.com/oracle/oci-go-sdk/blob/master/example/example_identity_test.go For more information on the signing algorithm refer to: https://docs.cloud.oracle.com/Content/API/Concepts/signingrequests.htm Some operations accept or return polymorphic JSON objects. The SDK models such objects as interfaces. Further the SDK provides structs that implement such interfaces. Thus, for all operations that expect interfaces as input, pass the struct in the SDK that satisfies such interface. For example: In the case of a polymorphic response you can type assert the interface to the expected type. For example: An example of polymorphic JSON request handling can be found here: https://github.com/oracle/oci-go-sdk/blob/master/example/example_core_test.go#L63 When calling a list operation, the operation will retrieve a page of results. To retrieve more data, call the list operation again, passing in the value of the most recent response's OpcNextPage as the value of Page in the next list operation call. When there is no more data the OpcNextPage field will be nil. An example of pagination using this logic can be found here: https://github.com/oracle/oci-go-sdk/blob/master/example/example_core_pagination_test.go The SDK has a built-in logging mechanism used internally. The internal logging logic is used to record the raw http requests, responses and potential errors when (un)marshalling request and responses. Built-in logging in the SDK is controlled via the environment variable "OCI_GO_SDK_DEBUG" and its contents. The below are possible values for the "OCI_GO_SDK_DEBUG" variable 1. "info" or "i" enables all info logging messages 2. "debug" or "d" enables all debug and info logging messages 3. "verbose" or "v" or "1" enables all verbose, debug and info logging messages 4. "null" turns all logging messages off. If the value of the environment variable does not match any of the above then default logging level is "info". If the environment variable is not present then no logging messages are emitted. The default destination for logging is Stderr and if you want to output log to a file you can set via environment variable "OCI_GO_SDK_LOG_OUTPUT_MODE". The below are possible values 1. "file" or "f" enables all logging output saved to file 2. "combine" or "c" enables all logging output to both stderr and file You can also customize the log file location and name via "OCI_GO_SDK_LOG_FILE" environment variable, the value should be the path to a specific file If this environment variable is not present, the default location will be the project root path Sometimes you may need to wait until an attribute of a resource, such as an instance or a VCN, reaches a certain state. An example of this would be launching an instance and then waiting for the instance to become available, or waiting until a subnet in a VCN has been terminated. You might also want to retry the same operation again if there's network issue etc... This can be accomplished by using the RequestMetadata.RetryPolicy(request level configuration), alternatively, global(all services) or client level RetryPolicy configration is also possible. You can find the examples here: https://github.com/oracle/oci-go-sdk/blob/master/example/example_retry_test.go If you are trying to make a PUT/POST API call with binary request body, please make sure the binary request body is resettable, which means the request body should inherit Seeker interface. The Retry behavior Precedence (Highest to lowest) is defined as below:- The OCI Go SDK defines a default retry policy that retries on the errors suitable for retries (see https://docs.oracle.com/en-us/iaas/Content/API/References/apierrors.htm), for a recommended period of time (up to 7 attempts spread out over at most approximately 1.5 minutes). The default retry policy is defined by : Default Retry-able Errors Below is the list of default retry-able errors for which retry attempts should be made. The following errors should be retried (with backoff). HTTP Code Customer-facing Error Code Apart from the above errors, retries should also be attempted in the following Client Side errors : 1. HTTP Connection timeout 2. Request Connection Errors 3. Request Exceptions 4. Other timeouts (like Read Timeout) The above errors can be avoided through retrying and hence, are classified as the default retry-able errors. Additionally, retries should also be made for Circuit Breaker exceptions (Exceptions raised by Circuit Breaker in an open state) Default Termination Strategy The termination strategy defines when SDKs should stop attempting to retry. In other words, it's the deadline for retries. The OCI SDKs should stop retrying the operation after 7 retry attempts. This means the SDKs will have retried for ~98 seconds or ~1.5 minutes have elapsed due to total delays. SDKs will make a total of 8 attempts. (1 initial request + 7 retries) Default Delay Strategy Default Delay Strategy - The delay strategy defines the amount of time to wait between each of the retry attempts. The default delay strategy chosen for the SDK – Exponential backoff with jitter, using: 1. The base time to use in retry calculations will be 1 second 2. An exponent of 2. When calculating the next retry time, the SDK will raise this to the power of the number of attempts 3. A maximum wait time between calls of 30 seconds (Capped) 4. Added jitter value between 0-1000 milliseconds to spread out the requests Configure and use default retry policy You can set this retry policy for a single request: or for all requests made by a client: or for all requests made by all clients: or setting default retry via environment varaible, which is a global switch for all services: Some services enable retry for operations by default, this can be overridden using any alternatives mentioned above. To know which service operations have retries enabled by default, look at the operation's description in the SDK - it will say whether that it has retries enabled by default Some resources may have to be replicated across regions and are only eventually consistent. That means the request to create, update, or delete the resource succeeded, but the resource is not available everywhere immediately. Creating, updating, or deleting any resource in the Identity service is affected by eventual consistency, and doing so may cause other operations in other services to fail until the Identity resource has been replicated. For example, the request to CreateTag in the Identity service in the home region succeeds, but immediately using that created tag in another region in a request to LaunchInstance in the Compute service may fail. If you are creating, updating, or deleting resources in the Identity service, we recommend using an eventually consistent retry policy for any service you access. The default retry policy already deals with eventual consistency. Example: This retry policy will use a different strategy if an eventually consistent change was made in the recent past (called the "eventually consistent window", currently defined to be 4 minutes after the eventually consistent change). This special retry policy for eventual consistency will: 1. make up to 9 attempts (including the initial attempt); if an attempt is successful, no more attempts will be made 2. retry at most until (a) approximately the end of the eventually consistent window or (b) the end of the default retry period of about 1.5 minutes, whichever is farther in the future; if an attempt is successful, no more attempts will be made, and the OCI Go SDK will not wait any longer 3. retry on the error codes 400-RelatedResourceNotAuthorizedOrNotFound, 404-NotAuthorizedOrNotFound, and 409-NotAuthorizedOrResourceAlreadyExists, for which the default retry policy does not retry, in addition to the errors the default retry policy retries on (see https://docs.oracle.com/en-us/iaas/Content/API/References/apierrors.htm) If there were no eventually consistent actions within the recent past, then this special retry strategy is not used. If you want a retry policy that does not handle eventual consistency in a special way, for example because you retry on all error responses, you can use DefaultRetryPolicyWithoutEventualConsistency or NewRetryPolicyWithOptions with the common.ReplaceWithValuesFromRetryPolicy(common.DefaultRetryPolicyWithoutEventualConsistency()) option: The NewRetryPolicy function also creates a retry policy without eventual consistency. Circuit Breaker can prevent an application repeatedly trying to execute an operation that is likely to fail, allowing it to continue without waiting for the fault to be rectified or wasting CPU cycles, of course, it also enables an application to detect whether the fault has been resolved. If the problem appears to have been rectified, the application can attempt to invoke the operation. Go SDK intergrates sony/gobreaker solution, wraps in a circuit breaker object, which monitors for failures. Once the failures reach a certain threshold, the circuit breaker trips, and all further calls to the circuit breaker return with an error, this also saves the service from being overwhelmed with network calls in case of an outage. Circuit Breaker Configuration Definitions 1. Failure Rate Threshold - The state of the CircuitBreaker changes from CLOSED to OPEN when the failure rate is equal or greater than a configurable threshold. For example when more than 50% of the recorded calls have failed. 2. Reset Timeout - The timeout after which an open circuit breaker will attempt a request if a request is made 3. Failure Exceptions - The list of Exceptions that will be regarded as failures for the circuit. 4. Minimum number of calls/ Volume threshold - Configures the minimum number of calls which are required (per sliding window period) before the CircuitBreaker can calculate the error rate. 1. Failure Rate Threshold - 80% - This means when 80% of the requests calculated for a time window of 120 seconds have failed then the circuit will transition from closed to open. 2. Minimum number of calls/ Volume threshold - A value of 10, for the above defined time window of 120 seconds. 3. Reset Timeout - 30 seconds to wait before setting the breaker to halfOpen state, and trying the action again. 4. Failure Exceptions - The failures for the circuit will only be recorded for the retryable/transient exceptions. This means only the following exceptions will be regarded as failure for the circuit. HTTP Code Customer-facing Error Code Apart from the above, the following client side exceptions will also be treated as a failure for the circuit : 1. HTTP Connection timeout 2. Request Connection Errors 3. Request Exceptions 4. Other timeouts (like Read Timeout) Go SDK enable circuit breaker with default configuration for most of the service clients, if you don't want to enable the solution, can disable the functionality before your application running Go SDK also supports customize Circuit Breaker with specified configurations. You can find the examples here: https://github.com/oracle/oci-go-sdk/blob/master/example/example_circuitbreaker_test.go To know which service clients have circuit breakers enabled, look at the service client's description in the SDK - it will say whether that it has circuit breakers enabled by default The GO SDK uses the net/http package to make calls to OCI services. If your environment requires you to use a proxy server for outgoing HTTP requests then you can set this up in the following ways: 1. Configuring environment variable as described here https://golang.org/pkg/net/http/#ProxyFromEnvironment 2. Modifying the underlying Transport struct for a service client In order to modify the underlying Transport struct in HttpClient, you can do something similar to (sample code for audit service client): The Object Storage service supports multipart uploads to make large object uploads easier by splitting the large object into parts. The Go SDK supports raw multipart upload operations for advanced use cases, as well as a higher level upload class that uses the multipart upload APIs. For links to the APIs used for multipart upload operations, see Managing Multipart Uploads (https://docs.cloud.oracle.com/iaas/Content/Object/Tasks/usingmultipartuploads.htm). Higher level multipart uploads are implemented using the UploadManager, which will: split a large object into parts for you, upload the parts in parallel, and then recombine and commit the parts as a single object in storage. This code sample shows how to use the UploadManager to automatically split an object into parts for upload to simplify interaction with the Object Storage service: https://github.com/oracle/oci-go-sdk/blob/master/example/example_objectstorage_test.go Some response fields are enum-typed. In the future, individual services may return values not covered by existing enums for that field. To address this possibility, every enum-type response field is a modeled as a type that supports any string. Thus if a service returns a value that is not recognized by your version of the SDK, then the response field will be set to this value. When individual services return a polymorphic JSON response not available as a concrete struct, the SDK will return an implementation that only satisfies the interface modeling the polymorphic JSON response. If you are using a version of the SDK released prior to the announcement of a new region, you may need to use a workaround to reach it, depending on whether the region is in the oraclecloud.com realm. A region is a localized geographic area. For more information on regions and how to identify them, see Regions and Availability Domains(https://docs.cloud.oracle.com/iaas/Content/General/Concepts/regions.htm). A realm is a set of regions that share entities. You can identify your realm by looking at the domain name at the end of the network address. For example, the realm for xyz.abc.123.oraclecloud.com is oraclecloud.com. oraclecloud.com Realm: For regions in the oraclecloud.com realm, even if common.Region does not contain the new region, the forward compatibility of the SDK can automatically handle it. You can pass new region names just as you would pass ones that are already defined. For more information on passing region names in the configuration, see Configuring (https://github.com/oracle/oci-go-sdk/blob/master/README.md#configuring). For details on common.Region, see (https://github.com/oracle/oci-go-sdk/blob/master/common/common.go). Other Realms: For regions in realms other than oraclecloud.com, you can use the following workarounds to reach new regions with earlier versions of the SDK. NOTE: Be sure to supply the appropriate endpoints for your region. You can overwrite the target host with client.Host: If you are authenticating via instance principals, you can set the authentication endpoint in an environment variable: Got a fix for a bug, or a new feature you'd like to contribute? The SDK is open source and accepting pull requests on GitHub https://github.com/oracle/oci-go-sdk Licensing information available at: https://github.com/oracle/oci-go-sdk/blob/master/LICENSE.txt To be notified when a new version of the Go SDK is released, subscribe to the following feed: https://github.com/oracle/oci-go-sdk/releases.atom Please refer to this link: https://github.com/oracle/oci-go-sdk#help
Package ora implements an Oracle database driver. An Oracle database may be accessed through the database/sql package or through the ora package directly. database/sql offers connection pooling, thread safety, a consistent API to multiple database technologies and a common set of Go types. The ora package offers additional features including pointers, slices, nullable types, numerics of various sizes, Oracle-specific types, Go return type configuration, and Oracle abstractions such as environment, server and session. The ora package is written with the Oracle Call Interface (OCI) C-language libraries provided by Oracle. The OCI libraries are a standard for client application communication and driver communication with Oracle databases. The ora package has been verified to work with: Minimum requirements are Go 1.3 with CGO enabled, a GCC C compiler, and Oracle 11g (11.2.0.4.0) or Oracle Instant Client (11.2.0.4.0). Install Oracle or Oracle Instant Client. Copy the [oci8.pc](contrib/oci8.pc) from the `contrib` folder (or the one for your system, maybe tailored to your specific locations) to a folder in `$PKG_CONFIG_PATH` or a system folder, such as The ora package has no external Go dependencies and is available on GitHub and gopkg.in: The ora package supports all built-in Oracle data types. The supported Oracle built-in data types are NUMBER, BINARY_DOUBLE, BINARY_FLOAT, FLOAT, DATE, TIMESTAMP, TIMESTAMP WITH TIME ZONE, TIMESTAMP WITH LOCAL TIME ZONE, INTERVAL YEAR TO MONTH, INTERVAL DAY TO SECOND, CHAR, NCHAR, VARCHAR, VARCHAR2, NVARCHAR2, LONG, CLOB, NCLOB, BLOB, LONG RAW, RAW, ROWID and BFILE. SYS_REFCURSOR is also supported. Oracle does not provide a built-in boolean type. Oracle provides a single-byte character type. A common practice is to define two single-byte characters which represent true and false. The ora package adopts this approach. The oracle package associates a Go bool value to a Go rune and sends and receives the rune to a CHAR(1 BYTE) column or CHAR(1 CHAR) column. The default false rune is zero '0'. The default true rune is one '1'. The bool rune association may be configured or disabled when directly using the ora package but not with the database/sql package. Within a SQL string a placeholder may be specified to indicate where a Go variable is placed. The SQL placeholder is an Oracle identifier, from 1 to 30 characters, prefixed with a colon (:). For example: Placeholders within a SQL statement are bound by position. The actual name is not used by the ora package driver e.g., placeholder names :c1, :1, or :xyz are treated equally. You may access an Oracle database through the database/sql package. The database/sql package offers a consistent API across different databases, connection pooling, thread safety and a set of common Go types. database/sql makes working with Oracle straight-forward. The ora package implements interfaces in the database/sql/driver package enabling database/sql to communicate with an Oracle database. Using database/sql ensures you never have to call the ora package directly. When using database/sql, the mapping between Go types and Oracle types may be changed slightly. The database/sql package has strict expectations on Go return types. The Go-to-Oracle type mapping for database/sql is: The "ora" driver is automatically registered for use with sql.Open, but you can call ora.SetDrvCfg to set the used configuration options including statement configuration and Rset configuration. When configuring the driver for use with database/sql, keep in mind that database/sql has strict Go type-to-Oracle type mapping expectations. The ora package allows programming with pointers, slices, nullable types, numerics of various sizes, Oracle-specific types, Go return type configuration, and Oracle abstractions such as environment, server and session. When working with the ora package directly, the API is slightly different than database/sql. When using the ora package directly, the mapping between Go types and Oracle types may be changed. The Go-to-Oracle type mapping for the ora package is: An example of using the ora package directly: Pointers may be used to capture out-bound values from a SQL statement such as an insert or stored procedure call. For example, a numeric pointer captures an identity value: A string pointer captures an out parameter from a stored procedure: Slices may be used to insert multiple records with a single insert statement: The ora package provides nullable Go types to support DML operations such as insert and select. The nullable Go types provided by the ora package are Int64, Int32, Int16, Int8, Uint64, Uint32, Uint16, Uint8, Float64, Float32, Time, IntervalYM, IntervalDS, String, Bool, Binary and Bfile. For example, you may insert nullable Strings and select nullable Strings: The Stmt.Prep method is variadic accepting zero or more GoColumnType which define a Go return type for a select-list column. For example, a Prep call can be configured to return an int64 and a nullable Int64 from the same column: Go numerics of various sizes are supported in DML operations. The ora package supports int64, int32, int16, int8, uint64, uint32, uint16, uint8, float64 and float32. For example, you may insert a uint16 and select numerics of various sizes: If a non-nullable type is defined for a nullable column returning null, the Go type's zero value is returned. GoColumnTypes defined by the ora package are: When Stmt.Prep doesn't receive a GoColumnType, or receives an incorrect GoColumnType, the default value defined in RsetCfg is used. EnvCfg, SrvCfg, SesCfg, StmtCfg and RsetCfg are the main configuration structs. EnvCfg configures aspects of an Env. SrvCfg configures aspects of a Srv. SesCfg configures aspects of a Ses. StmtCfg configures aspects of a Stmt. RsetCfg configures aspects of Rset. StmtCfg and RsetCfg have the most options to configure. RsetCfg defines the default mapping between an Oracle select-list column and a Go type. StmtCfg may be set in an EnvCfg, SrvCfg, SesCfg and StmtCfg. RsetCfg may be set in a Stmt. EnvCfg.StmtCfg, SrvCfg.StmtCfg, SesCfg.StmtCfg may optionally be specified to configure a statement. If StmtCfg isn't specified default values are applied. EnvCfg.StmtCfg, SrvCfg.StmtCfg, SesCfg.StmtCfg cascade to new descendent structs. When ora.OpenEnv() is called a specified EnvCfg is used or a default EnvCfg is created. Creating a Srv with env.OpenSrv() will use SrvCfg.StmtCfg if it is specified; otherwise, EnvCfg.StmtCfg is copied by value to SrvCfg.StmtCfg. Creating a Ses with srv.OpenSes() will use SesCfg.StmtCfg if it is specified; otherwise, SrvCfg.StmtCfg is copied by value to SesCfg.StmtCfg. Creating a Stmt with ses.Prep() will use SesCfg.StmtCfg if it is specified; otherwise, a new StmtCfg with default values is set on the Stmt. Call Stmt.Cfg() to change a Stmt's configuration. An Env may contain multiple Srv. A Srv may contain multiple Ses. A Ses may contain multiple Stmt. A Stmt may contain multiple Rset. Setting a RsetCfg on a StmtCfg does not cascade through descendent structs. Configuration of Stmt.Cfg takes effect prior to calls to Stmt.Exe and Stmt.Qry; consequently, any updates to Stmt.Cfg after a call to Stmt.Exe or Stmt.Qry are not observed. One configuration scenario may be to set a server's select statements to return nullable Go types by default: Another scenario may be to configure the runes mapped to bool values: Oracle-specific types offered by the ora package are ora.Rset, ora.IntervalYM, ora.IntervalDS, ora.Raw, ora.Lob and ora.Bfile. ora.Rset represents an Oracle SYS_REFCURSOR. ora.IntervalYM represents an Oracle INTERVAL YEAR TO MONTH. ora.IntervalDS represents an Oracle INTERVAL DAY TO SECOND. ora.Raw represents an Oracle RAW or LONG RAW. ora.Lob may represent an Oracle BLOB or Oracle CLOB. And ora.Bfile represents an Oracle BFILE. ROWID columns are returned as strings and don't have a unique Go type. Rset is used to obtain Go values from a SQL select statement. Methods Rset.Next, Rset.NextRow, and Rset.Len are available. Fields Rset.Row, Rset.Err, Rset.Index, and Rset.ColumnNames are also available. The Next method attempts to load data from an Oracle buffer into Row, returning true when successful. When no data is available, or if an error occurs, Next returns false setting Row to nil. Any error in Next is assigned to Err. Calling Next increments Index and method Len returns the total number of rows processed. The NextRow method is convenient for returning a single row. NextRow calls Next and returns Row. ColumnNames returns the names of columns defined by the SQL select statement. Rset has two usages. Rset may be returned from Stmt.Qry when prepared with a SQL select statement: Or, *Rset may be passed to Stmt.Exe when prepared with a stored procedure accepting an OUT SYS_REFCURSOR parameter: Stored procedures with multiple OUT SYS_REFCURSOR parameters enable a single Exe call to obtain multiple Rsets: The types of values assigned to Row may be configured in StmtCfg.Rset. For configuration to take effect, assign StmtCfg.Rset prior to calling Stmt.Qry or Stmt.Exe. Rset prefetching may be controlled by StmtCfg.PrefetchRowCount and StmtCfg.PrefetchMemorySize. PrefetchRowCount works in coordination with PrefetchMemorySize. When PrefetchRowCount is set to zero only PrefetchMemorySize is used; otherwise, the minimum of PrefetchRowCount and PrefetchMemorySize is used. The default uses a PrefetchMemorySize of 134MB. Opening and closing Rsets is managed internally. Rset does not have an Open method or Close method. IntervalYM may be be inserted and selected: IntervalDS may be be inserted and selected: Transactions on an Oracle server are supported. DML statements auto-commit unless a transaction has started: Ses.PrepAndExe, Ses.PrepAndQry, Ses.Ins, Ses.Upd, and Ses.Sel are convenient one-line methods. Ses.PrepAndExe offers a convenient one-line call to Ses.Prep and Stmt.Exe. Ses.PrepAndQry offers a convenient one-line call to Ses.Prep and Stmt.Qry. Ses.Ins composes, prepares and executes a sql INSERT statement. Ses.Ins is useful when you have to create and maintain a simple INSERT statement with a long list of columns. As table columns are added and dropped over the lifetime of a table Ses.Ins is easy to read and revise. Ses.Upd composes, prepares and executes a sql UPDATE statement. Ses.Upd is useful when you have to create and maintain a simple UPDATE statement with a long list of columns. As table columns are added and dropped over the lifetime of a table Ses.Upd is easy to read and revise. Ses.Sel composes, prepares and queries a sql SELECT statement. Ses.Sel is useful when you have to create and maintain a simple SELECT statement with a long list of columns that have non-default GoColumnTypes. As table columns are added and dropped over the lifetime of a table Ses.Sel is easy to read and revise. The Ses.Ping method checks whether the client's connection to an Oracle server is valid. A call to Ping requires an open Ses. Ping will return a nil error when the connection is fine: The Srv.Version method is available to obtain the Oracle server version. A call to Version requires an open Ses: Further code examples are available in the example file, test files and samples folder. The ora package provides a simple ora.Logger interface for logging. Logging is disabled by default. Specify one of three optional built-in logging packages to enable logging; or, use your own logging package. ora.Cfg().Log offers various options to enable or disable logging of specific ora driver methods. For example: To use the standard Go log package: which produces a sample log of: Messages are prefixed with 'ORA I' for information or 'ORA E' for an error. The log package is configured to write to os.Stderr by default. Use the ora/lg.Std type to configure an alternative io.Writer. To use the glog package: which produces a sample log of: To use the log15 package: which produces a sample log of: See https://github.com/rana/ora/tree/master/samples/lg15/main.go for sample code which uses the log15 package. Tests are available and require some setup. Setup varies depending on whether the Oracle server is configured as a container database or non-container database. It's simpler to setup a non-container database. An example for each setup is explained. Non-container test database setup steps: Container test database setup steps: Some helpful SQL maintenance statements: Run the tests. database/sql method Stmt.QueryRow is not supported. Copyright 2015 Rana Ian. All rights reserved. Use of this source code is governed by The MIT License found in the accompanying LICENSE file.
Package lctime provides a way to format dates and times using strftime directives. More importantly, it does so in a locale-aware fashion. This allows developers to format time based on a user's locale. An initial locale is loaded at import time. It's determined by the first, non-empty locale identifier from these environment variables. If all of the previous variables are empty, then POSIX will be the initial locale used. All locales use UTF-8 character encoding. The formats used are loosely based on glibc locale files. These are the supported strftime directives. They're loosely based on The Open Group Base Specifications Issue 7, http://pubs.opengroup.org/onlinepubs/9699919799/functions/strftime.html.
This is the official Go SDK for Oracle Cloud Infrastructure Refer to https://github.com/oracle/oci-go-sdk/blob/master/README.md#installing for installation instructions. Refer to https://github.com/oracle/oci-go-sdk/blob/master/README.md#configuring for configuration instructions. The following example shows how to get started with the SDK. The example belows creates an identityClient struct with the default configuration. It then utilizes the identityClient to list availability domains and prints them out to stdout More examples can be found in the SDK Github repo: https://github.com/oracle/oci-go-sdk/tree/master/example Optional fields are represented with the `mandatory:"false"` tag on input structs. The SDK will omit all optional fields that are nil when making requests. In the case of enum-type fields, the SDK will omit fields whose value is an empty string. The SDK uses pointers for primitive types in many input structs. To aid in the construction of such structs, the SDK provides functions that return a pointer for a given value. For example: The SDK exposes functionality that allows the user to customize any http request before is sent to the service. You can do so by setting the `Interceptor` field in any of the `Client` structs. For example: The Interceptor closure gets called before the signing process, thus any changes done to the request will be properly signed and submitted to the service. The SDK exposes a stand-alone signer that can be used to signing custom requests. Related code can be found here: https://github.com/oracle/oci-go-sdk/blob/master/common/http_signer.go. The example below shows how to create a default signer. The signer also allows more granular control on the headers used for signing. For example: You can combine a custom signer with the exposed clients in the SDK. This allows you to add custom signed headers to the request. Following is an example: Bear in mind that some services have a white list of headers that it expects to be signed. Therefore, adding an arbitrary header can result in authentications errors. To see a runnable example, see https://github.com/oracle/oci-go-sdk/blob/master/example/example_identity_test.go For more information on the signing algorithm refer to: https://docs.cloud.oracle.com/Content/API/Concepts/signingrequests.htm Some operations accept or return polymorphic JSON objects. The SDK models such objects as interfaces. Further the SDK provides structs that implement such interfaces. Thus, for all operations that expect interfaces as input, pass the struct in the SDK that satisfies such interface. For example: In the case of a polymorphic response you can type assert the interface to the expected type. For example: An example of polymorphic JSON request handling can be found here: https://github.com/oracle/oci-go-sdk/blob/master/example/example_core_test.go#L63 When calling a list operation, the operation will retrieve a page of results. To retrieve more data, call the list operation again, passing in the value of the most recent response's OpcNextPage as the value of Page in the next list operation call. When there is no more data the OpcNextPage field will be nil. An example of pagination using this logic can be found here: https://github.com/oracle/oci-go-sdk/blob/master/example/example_core_pagination_test.go The SDK has a built-in logging mechanism used internally. The internal logging logic is used to record the raw http requests, responses and potential errors when (un)marshalling request and responses. Built-in logging in the SDK is controlled via the environment variable "OCI_GO_SDK_DEBUG" and its contents. The below are possible values for the "OCI_GO_SDK_DEBUG" variable 1. "info" or "i" enables all info logging messages 2. "debug" or "d" enables all debug and info logging messages 3. "verbose" or "v" or "1" enables all verbose, debug and info logging messages 4. "null" turns all logging messages off. If the value of the environment variable does not match any of the above then default logging level is "info". If the environment variable is not present then no logging messages are emitted. The default destination for logging is Stderr and if you want to output log to a file you can set via environment variable "OCI_GO_SDK_LOG_OUTPUT_MODE". The below are possible values 1. "file" or "f" enables all logging output saved to file 2. "combine" or "c" enables all logging output to both stderr and file You can also customize the log file location and name via "OCI_GO_SDK_LOG_FILE" environment variable, the value should be the path to a specific file If this environment variable is not present, the default location will be the project root path Sometimes you may need to wait until an attribute of a resource, such as an instance or a VCN, reaches a certain state. An example of this would be launching an instance and then waiting for the instance to become available, or waiting until a subnet in a VCN has been terminated. You might also want to retry the same operation again if there's network issue etc... This can be accomplished by using the RequestMetadata.RetryPolicy. You can find the examples here: https://github.com/oracle/oci-go-sdk/blob/master/example/example_retry_test.go The GO SDK uses the net/http package to make calls to OCI services. If your environment requires you to use a proxy server for outgoing HTTP requests then you can set this up in the following ways: 1. Configuring environment variable as described here https://golang.org/pkg/net/http/#ProxyFromEnvironment 2. Modifying the underlying Transport struct for a service client In order to modify the underlying Transport struct in HttpClient, you can do something similar to (sample code for audit service client): The Object Storage service supports multipart uploads to make large object uploads easier by splitting the large object into parts. The Go SDK supports raw multipart upload operations for advanced use cases, as well as a higher level upload class that uses the multipart upload APIs. For links to the APIs used for multipart upload operations, see Managing Multipart Uploads (https://docs.cloud.oracle.com/iaas/Content/Object/Tasks/usingmultipartuploads.htm). Higher level multipart uploads are implemented using the UploadManager, which will: split a large object into parts for you, upload the parts in parallel, and then recombine and commit the parts as a single object in storage. This code sample shows how to use the UploadManager to automatically split an object into parts for upload to simplify interaction with the Object Storage service: https://github.com/oracle/oci-go-sdk/blob/master/example/example_objectstorage_test.go Some response fields are enum-typed. In the future, individual services may return values not covered by existing enums for that field. To address this possibility, every enum-type response field is a modeled as a type that supports any string. Thus if a service returns a value that is not recognized by your version of the SDK, then the response field will be set to this value. When individual services return a polymorphic JSON response not available as a concrete struct, the SDK will return an implementation that only satisfies the interface modeling the polymorphic JSON response. If you are using a version of the SDK released prior to the announcement of a new region, you may need to use a workaround to reach it, depending on whether the region is in the oraclecloud.com realm. A region is a localized geographic area. For more information on regions and how to identify them, see Regions and Availability Domains(https://docs.cloud.oracle.com/iaas/Content/General/Concepts/regions.htm). A realm is a set of regions that share entities. You can identify your realm by looking at the domain name at the end of the network address. For example, the realm for xyz.abc.123.oraclecloud.com is oraclecloud.com. oraclecloud.com Realm: For regions in the oraclecloud.com realm, even if common.Region does not contain the new region, the forward compatibility of the SDK can automatically handle it. You can pass new region names just as you would pass ones that are already defined. For more information on passing region names in the configuration, see Configuring (https://github.com/oracle/oci-go-sdk/blob/master/README.md#configuring). For details on common.Region, see (https://github.com/oracle/oci-go-sdk/blob/master/common/common.go). Other Realms: For regions in realms other than oraclecloud.com, you can use the following workarounds to reach new regions with earlier versions of the SDK. NOTE: Be sure to supply the appropriate endpoints for your region. You can overwrite the target host with client.Host: If you are authenticating via instance principals, you can set the authentication endpoint in an environment variable: Got a fix for a bug, or a new feature you'd like to contribute? The SDK is open source and accepting pull requests on GitHub https://github.com/oracle/oci-go-sdk Licensing information available at: https://github.com/oracle/oci-go-sdk/blob/master/LICENSE.txt To be notified when a new version of the Go SDK is released, subscribe to the following feed: https://github.com/oracle/oci-go-sdk/releases.atom Please refer to this link: https://github.com/oracle/oci-go-sdk#help
Package cron implements a cron spec parser and job runner. Callers may register Funcs to be invoked on a given schedule. Cron will run them in their own goroutines. A cron expression represents a set of times, using 6 space-separated fields. Note: Month and Day-of-week field values are case insensitive. "SUN", "Sun", and "sun" are equally accepted. Asterisk ( * ) The asterisk indicates that the cron expression will match for all values of the field; e.g., using an asterisk in the 5th field (month) would indicate every month. Slash ( / ) Slashes are used to describe increments of ranges. For example 3-59/15 in the 1st field (minutes) would indicate the 3rd minute of the hour and every 15 minutes thereafter. The form "*\/..." is equivalent to the form "first-last/...", that is, an increment over the largest possible range of the field. The form "N/..." is accepted as meaning "N-MAX/...", that is, starting at N, use the increment until the end of that specific range. It does not wrap around. Comma ( , ) Commas are used to separate items of a list. For example, using "MON,WED,FRI" in the 5th field (day of week) would mean Mondays, Wednesdays and Fridays. Hyphen ( - ) Hyphens are used to define ranges. For example, 9-17 would indicate every hour between 9am and 5pm inclusive. Question mark ( ? ) Question mark may be used instead of '*' for leaving either day-of-month or day-of-week blank. You may use one of several pre-defined schedules in place of a cron expression. You may also schedule a job to execute at fixed intervals, starting at the time it's added or cron is run. This is supported by formatting the cron spec like this: where "duration" is a string accepted by time.ParseDuration (http://golang.org/pkg/time/#ParseDuration). For example, "@every 1h30m10s" would indicate a schedule that activates after 1 hour, 30 minutes, 10 seconds, and then every interval after that. Note: The interval does not take the job runtime into account. For example, if a job takes 3 minutes to run, and it is scheduled to run every 5 minutes, it will have only 2 minutes of idle time between each run. All interpretation and scheduling is done in the machine's local time zone (as provided by the Go time package (http://www.golang.org/pkg/time). Be aware that jobs scheduled during daylight-savings leap-ahead transitions will not be run! Since the Cron service runs concurrently with the calling code, some amount of care must be taken to ensure proper synchronization. All cron methods are designed to be correctly synchronized as long as the caller ensures that invocations have a clear happens-before ordering between them. Cron entries are stored in an array, sorted by their next activation time. Cron sleeps until the next job is due to be run. Upon waking:
Package sdk is the official AWS SDK for the Go programming language. The AWS SDK for Go provides APIs and utilities that developers can use to build Go applications that use AWS services, such as Amazon Elastic Compute Cloud (Amazon EC2) and Amazon Simple Storage Service (Amazon S3). The SDK removes the complexity of coding directly against a web service interface. It hides a lot of the lower-level plumbing, such as authentication, request retries, and error handling. The SDK also includes helpful utilities on top of the AWS APIs that add additional capabilities and functionality. For example, the Amazon S3 Download and Upload Manager will automatically split up large objects into multiple parts and transfer them concurrently. See the s3manager package documentation for more information. https://docs.aws.amazon.com/sdk-for-go/api/service/s3/s3manager/ Checkout the Getting Started Guide and API Reference Docs detailed the SDK's components and details on each AWS client the SDK supports. The Getting Started Guide provides examples and detailed description of how to get setup with the SDK. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/welcome.html The API Reference Docs include a detailed breakdown of the SDK's components such as utilities and AWS clients. Use this as a reference of the Go types included with the SDK, such as AWS clients, API operations, and API parameters. https://docs.aws.amazon.com/sdk-for-go/api/ The SDK is composed of two main components, SDK core, and service clients. The SDK core packages are all available under the aws package at the root of the SDK. Each client for a supported AWS service is available within its own package under the service folder at the root of the SDK. aws - SDK core, provides common shared types such as Config, Logger, and utilities to make working with API parameters easier. awserr - Provides the error interface that the SDK will use for all errors that occur in the SDK's processing. This includes service API response errors as well. The Error type is made up of a code and message. Cast the SDK's returned error type to awserr.Error and call the Code method to compare returned error to specific error codes. See the package's documentation for additional values that can be extracted such as RequestId. credentials - Provides the types and built in credentials providers the SDK will use to retrieve AWS credentials to make API requests with. Nested under this folder are also additional credentials providers such as stscreds for assuming IAM roles, and ec2rolecreds for EC2 Instance roles. endpoints - Provides the AWS Regions and Endpoints metadata for the SDK. Use this to lookup AWS service endpoint information such as which services are in a region, and what regions a service is in. Constants are also provided for all region identifiers, e.g UsWest2RegionID for "us-west-2". session - Provides initial default configuration, and load configuration from external sources such as environment and shared credentials file. request - Provides the API request sending, and retry logic for the SDK. This package also includes utilities for defining your own request retryer, and configuring how the SDK processes the request. service - Clients for AWS services. All services supported by the SDK are available under this folder. The SDK includes the Go types and utilities you can use to make requests to AWS service APIs. Within the service folder at the root of the SDK you'll find a package for each AWS service the SDK supports. All service clients follows a common pattern of creation and usage. When creating a client for an AWS service you'll first need to have a Session value constructed. The Session provides shared configuration that can be shared between your service clients. When service clients are created you can pass in additional configuration via the aws.Config type to override configuration provided by in the Session to create service client instances with custom configuration. Once the service's client is created you can use it to make API requests the AWS service. These clients are safe to use concurrently. In the AWS SDK for Go, you can configure settings for service clients, such as the log level and maximum number of retries. Most settings are optional; however, for each service client, you must specify a region and your credentials. The SDK uses these values to send requests to the correct AWS region and sign requests with the correct credentials. You can specify these values as part of a session or as environment variables. See the SDK's configuration guide for more information. https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html See the session package documentation for more information on how to use Session with the SDK. https://docs.aws.amazon.com/sdk-for-go/api/aws/session/ See the Config type in the aws package for more information on configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config When using the SDK you'll generally need your AWS credentials to authenticate with AWS services. The SDK supports multiple methods of supporting these credentials. By default the SDK will source credentials automatically from its default credential chain. See the session package for more information on this chain, and how to configure it. The common items in the credential chain are the following: Environment Credentials - Set of environment variables that are useful when sub processes are created for specific roles. Shared Credentials file (~/.aws/credentials) - This file stores your credentials based on a profile name and is useful for local development. EC2 Instance Role Credentials - Use EC2 Instance Role to assign credentials to application running on an EC2 instance. This removes the need to manage credential files in production. Credentials can be configured in code as well by setting the Config's Credentials value to a custom provider or using one of the providers included with the SDK to bypass the default credential chain and use a custom one. This is helpful when you want to instruct the SDK to only use a specific set of credentials or providers. This example creates a credential provider for assuming an IAM role, "myRoleARN" and configures the S3 service client to use that role for API requests. See the credentials package documentation for more information on credential providers included with the SDK, and how to customize the SDK's usage of credentials. https://docs.aws.amazon.com/sdk-for-go/api/aws/credentials The SDK has support for the shared configuration file (~/.aws/config). This support can be enabled by setting the environment variable, "AWS_SDK_LOAD_CONFIG=1", or enabling the feature in code when creating a Session via the Option's SharedConfigState parameter. In addition to the credentials you'll need to specify the region the SDK will use to make AWS API requests to. In the SDK you can specify the region either with an environment variable, or directly in code when a Session or service client is created. The last value specified in code wins if the region is specified multiple ways. To set the region via the environment variable set the "AWS_REGION" to the region you want to the SDK to use. Using this method to set the region will allow you to run your application in multiple regions without needing additional code in the application to select the region. The endpoints package includes constants for all regions the SDK knows. The values are all suffixed with RegionID. These values are helpful, because they reduce the need to type the region string manually. To set the region on a Session use the aws package's Config struct parameter Region to the AWS region you want the service clients created from the session to use. This is helpful when you want to create multiple service clients, and all of the clients make API requests to the same region. See the endpoints package for the AWS Regions and Endpoints metadata. https://docs.aws.amazon.com/sdk-for-go/api/aws/endpoints/ In addition to setting the region when creating a Session you can also set the region on a per service client bases. This overrides the region of a Session. This is helpful when you want to create service clients in specific regions different from the Session's region. See the Config type in the aws package for more information and additional options such as setting the Endpoint, and other service client configuration options. https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config Once the client is created you can make an API request to the service. Each API method takes a input parameter, and returns the service response and an error. The SDK provides methods for making the API call in multiple ways. In this list we'll use the S3 ListObjects API as an example for the different ways of making API requests. ListObjects - Base API operation that will make the API request to the service. ListObjectsRequest - API methods suffixed with Request will construct the API request, but not send it. This is also helpful when you want to get a presigned URL for a request, and share the presigned URL instead of your application making the request directly. ListObjectsPages - Same as the base API operation, but uses a callback to automatically handle pagination of the API's response. ListObjectsWithContext - Same as base API operation, but adds support for the Context pattern. This is helpful for controlling the canceling of in flight requests. See the Go standard library context package for more information. This method also takes request package's Option functional options as the variadic argument for modifying how the request will be made, or extracting information from the raw HTTP response. ListObjectsPagesWithContext - same as ListObjectsPages, but adds support for the Context pattern. Similar to ListObjectsWithContext this method also takes the request package's Option function option types as the variadic argument. In addition to the API operations the SDK also includes several higher level methods that abstract checking for and waiting for an AWS resource to be in a desired state. In this list we'll use WaitUntilBucketExists to demonstrate the different forms of waiters. WaitUntilBucketExists. - Method to make API request to query an AWS service for a resource's state. Will return successfully when that state is accomplished. WaitUntilBucketExistsWithContext - Same as WaitUntilBucketExists, but adds support for the Context pattern. In addition these methods take request package's WaiterOptions to configure the waiter, and how underlying request will be made by the SDK. The API method will document which error codes the service might return for the operation. These errors will also be available as const strings prefixed with "ErrCode" in the service client's package. If there are no errors listed in the API's SDK documentation you'll need to consult the AWS service's API documentation for the errors that could be returned. Pagination helper methods are suffixed with "Pages", and provide the functionality needed to round trip API page requests. Pagination methods take a callback function that will be called for each page of the API's response. Waiter helper methods provide the functionality to wait for an AWS resource state. These methods abstract the logic needed to to check the state of an AWS resource, and wait until that resource is in a desired state. The waiter will block until the resource is in the state that is desired, an error occurs, or the waiter times out. If a resource times out the error code returned will be request.WaiterResourceNotReadyErrorCode. This example shows a complete working Go file which will upload a file to S3 and use the Context pattern to implement timeout logic that will cancel the request if it takes too long. This example highlights how to use sessions, create a service client, make a request, handle the error, and process the response.
Pact Go enables consumer driven contract testing, providing a mock service and DSL for the consumer project, and interaction playback and verification for the service provider project. Consumer side Pact testing is an isolated test that ensures a given component is able to collaborate with another (remote) component. Pact will automatically start a Mock server in the background that will act as the collaborators' test double. This implies that any interactions expected on the Mock server will be validated, meaning a test will fail if all interactions were not completed, or if unexpected interactions were found: A typical consumer-side test would look something like this: If this test completed successfully, a Pact file should have been written to ./pacts/my_consumer-my_provider.json containing all of the interactions expected to occur between the Consumer and Provider. In addition to verbatim value matching, you have 3 useful matching functions in the `dsl` package that can increase expressiveness and reduce brittle test cases. Here is a complex example that shows how all 3 terms can be used together: This example will result in a response body from the mock server that looks like: See the examples in the dsl package and the matcher tests (https://github.com/pact-foundation/pact-go/blob/master/dsl/matcher_test.go) for more matching examples. NOTE: You will need to use valid Ruby regular expressions (http://ruby-doc.org/core-2.1.5/Regexp.html) and double escape backslashes. Read more about flexible matching (https://github.com/pact-foundation/pact-ruby/wiki/Regular-expressions-and-type-matching-with-Pact. Provider side Pact testing, involves verifying that the contract - the Pact file - can be satisfied by the Provider. A typical Provider side test would like something like: The `VerifyProvider` will handle all verifications, treating them as subtests and giving you granular test reporting. If you don't like this behaviour, you may call `VerifyProviderRaw` directly and handle the errors manually. Note that `PactURLs` may be a list of local pact files or remote based urls (possibly from a Pact Broker - http://docs.pact.io/documentation/sharings_pacts.html). Pact reads the specified pact files (from remote or local sources) and replays the interactions against a running Provider. If all of the interactions are met we can say that both sides of the contract are satisfied and the test passes. When validating a Provider, you have 3 options to provide the Pact files: 1. Use "PactURLs" to specify the exact set of pacts to be replayed: Options 2 and 3 are particularly useful when you want to validate that your Provider is able to meet the contracts of what's in Production and also the latest in development. See this [article](http://rea.tech/enter-the-pact-matrix-or-how-to-decouple-the-release-cycles-of-your-microservices/) for more on this strategy. Each interaction in a pact should be verified in isolation, with no context maintained from the previous interactions. So how do you test a request that requires data to exist on the provider? Provider states are how you achieve this using Pact. Provider states also allow the consumer to make the same request with different expected responses (e.g. different response codes, or the same resource with a different subset of data). States are configured on the consumer side when you issue a dsl.Given() clause with a corresponding request/response pair. Configuring the provider is a little more involved, and (currently) requires running an API endpoint to configure any [provider states](http://docs.pact.io/documentation/provider_states.html) during the verification process. The option you must provide to the dsl.VerifyRequest is: An example route using the standard Go http package might look like this: See the examples or read more at http://docs.pact.io/documentation/provider_states.html. See the Pact Broker (http://docs.pact.io/documentation/sharings_pacts.html) documentation for more details on the Broker and this article (http://rea.tech/enter-the-pact-matrix-or-how-to-decouple-the-release-cycles-of-your-microservices/) on how to make it work for you. Publishing using Go code: Publishing from the CLI: Use a cURL request like the following to PUT the pact to the right location, specifying your consumer name, provider name and consumer version. The following flags are required to use basic authentication when publishing or retrieving Pact files to/from a Pact Broker: Pact Go uses a simple log utility (logutils - https://github.com/hashicorp/logutils) to filter log messages. The CLI already contains flags to manage this, should you want to control log level in your tests, you can set it like so:
Package emailaddress provides a tiny library for finding, parsing and validation of email addresses. This library is tested for Go v1.9 and above. Parse and validate the email locally using RFC 5322 regex, note that when err == nil it doesn't necessarily mean the email address actually exists. Host validation will first attempt to resolve the domain and then verify if we can start a mail transaction with the host. This is relatively slow as it will contact the host several times. Note that when err == nil it doesn't necessarily mean the email address actually exists. This will look for emails in a byte array (ie text or an html response). As RFC 5322 is really broad this method will likely match images and urls that contain the '@' character (ie. !--logo@2x.png). For more reliable results, you can use the following method.
Package binwrapper provides executable wrapper that makes command line tools seamlessly available as local golang dependencies. Inspired by and partially ported from npm package bin-wrapper: https://github.com/kevva/bin-wrapper
Package desync implements data structures, protocols and features of https://github.com/systemd/casync in order to allow support for additional platforms and improve performace by way of concurrency and caching. Supports the following casync data structures: catar archives, caibx/caidx index files, castr stores (local or remote). See desync/cmd for reference implementations of the available features.
Package stress implements stress tester using "Pod" objects. Do not parallelize locally, instead parallelize by distributing workers across nodes. It uses "Update" for stressing writes, and "List" for stressing reads. Both Kubernetes "Create" and "Update" are same for etcd, as they are etcd mutable transactions. See "k8s.io/apiserver/pkg/storage/etcd3/store.go" for "Create" and "GuaranteedUpdate". To only test creates, see "k8s-tester/configmaps" and "k8s-tester/secrets". To test large-size writes, also see "k8s-tester/jobs-echo". Replace https://github.com/aws/aws-k8s-tester/tree/v1.5.9/eks/stresser. Replace https://github.com/aws/aws-k8s-tester/tree/v1.5.9/eks/stresser2.
Package gocql implements a fast and robust Cassandra driver for the Go programming language. Pass a list of initial node IP addresses to NewCluster to create a new cluster configuration: Port can be specified as part of the address, the above is equivalent to: It is recommended to use the value set in the Cassandra config for broadcast_address or listen_address, an IP address not a domain name. This is because events from Cassandra will use the configured IP address, which is used to index connected hosts. If the domain name specified resolves to more than 1 IP address then the driver may connect multiple times to the same host, and will not mark the node being down or up from events. Then you can customize more options (see ClusterConfig): The driver tries to automatically detect the protocol version to use if not set, but you might want to set the protocol version explicitly, as it's not defined which version will be used in certain situations (for example during upgrade of the cluster when some of the nodes support different set of protocol versions than other nodes). The driver advertises the module name and version in the STARTUP message, so servers are able to detect the version. If you use replace directive in go.mod, the driver will send information about the replacement module instead. When ready, create a session from the configuration. Don't forget to Close the session once you are done with it: CQL protocol uses a SASL-based authentication mechanism and so consists of an exchange of server challenges and client response pairs. The details of the exchanged messages depend on the authenticator used. To use authentication, set ClusterConfig.Authenticator or ClusterConfig.AuthProvider. PasswordAuthenticator is provided to use for username/password authentication: It is possible to secure traffic between the client and server with TLS. To use TLS, set the ClusterConfig.SslOpts field. SslOptions embeds *tls.Config so you can set that directly. There are also helpers to load keys/certificates from files. Warning: Due to historical reasons, the SslOptions is insecure by default, so you need to set EnableHostVerification to true if no Config is set. Most users should set SslOptions.Config to a *tls.Config. SslOptions and Config.InsecureSkipVerify interact as follows: For example: To route queries to local DC first, use DCAwareRoundRobinPolicy. For example, if the datacenter you want to primarily connect is called dc1 (as configured in the database): The driver can route queries to nodes that hold data replicas based on partition key (preferring local DC). Note that TokenAwareHostPolicy can take options such as gocql.ShuffleReplicas and gocql.NonLocalReplicasFallback. We recommend running with a token aware host policy in production for maximum performance. The driver can only use token-aware routing for queries where all partition key columns are query parameters. For example, instead of use The DCAwareRoundRobinPolicy can be replaced with RackAwareRoundRobinPolicy, which takes two parameters, datacenter and rack. Instead of dividing hosts with two tiers (local datacenter and remote datacenters) it divides hosts into three (the local rack, the rest of the local datacenter, and everything else). RackAwareRoundRobinPolicy can be combined with TokenAwareHostPolicy in the same way as DCAwareRoundRobinPolicy. Create queries with Session.Query. Query values must not be reused between different executions and must not be modified after starting execution of the query. To execute a query without reading results, use Query.Exec: Single row can be read by calling Query.Scan: Multiple rows can be read using Iter.Scanner: See Example for complete example. The driver automatically prepares DML queries (SELECT/INSERT/UPDATE/DELETE/BATCH statements) and maintains a cache of prepared statements. CQL protocol does not support preparing other query types. When using CQL protocol >= 4, it is possible to use gocql.UnsetValue as the bound value of a column. This will cause the database to ignore writing the column. The main advantage is the ability to keep the same prepared statement even when you don't want to update some fields, where before you needed to make another prepared statement. Session is safe to use from multiple goroutines, so to execute multiple concurrent queries, just execute them from several worker goroutines. Gocql provides synchronously-looking API (as recommended for Go APIs) and the queries are executed asynchronously at the protocol level. Null values are are unmarshalled as zero value of the type. If you need to distinguish for example between text column being null and empty string, you can unmarshal into *string variable instead of string. See Example_nulls for full example. The driver reuses backing memory of slices when unmarshalling. This is an optimization so that a buffer does not need to be allocated for every processed row. However, you need to be careful when storing the slices to other memory structures. When you want to save the data for later use, pass a new slice every time. A common pattern is to declare the slice variable within the scanner loop: The driver supports paging of results with automatic prefetch, see ClusterConfig.PageSize, Session.SetPrefetch, Query.PageSize, and Query.Prefetch. It is also possible to control the paging manually with Query.PageState (this disables automatic prefetch). Manual paging is useful if you want to store the page state externally, for example in a URL to allow users browse pages in a result. You might want to sign/encrypt the paging state when exposing it externally since it contains data from primary keys. Paging state is specific to the CQL protocol version and the exact query used. It is meant as opaque state that should not be modified. If you send paging state from different query or protocol version, then the behaviour is not defined (you might get unexpected results or an error from the server). For example, do not send paging state returned by node using protocol version 3 to a node using protocol version 4. Also, when using protocol version 4, paging state between Cassandra 2.2 and 3.0 is incompatible (https://issues.apache.org/jira/browse/CASSANDRA-10880). The driver does not check whether the paging state is from the same protocol version/statement. You might want to validate yourself as this could be a problem if you store paging state externally. For example, if you store paging state in a URL, the URLs might become broken when you upgrade your cluster. Call Query.PageState(nil) to fetch just the first page of the query results. Pass the page state returned by Iter.PageState to Query.PageState of a subsequent query to get the next page. If the length of slice returned by Iter.PageState is zero, there are no more pages available (or an error occurred). Using too low values of PageSize will negatively affect performance, a value below 100 is probably too low. While Cassandra returns exactly PageSize items (except for last page) in a page currently, the protocol authors explicitly reserved the right to return smaller or larger amount of items in a page for performance reasons, so don't rely on the page having the exact count of items. See Example_paging for an example of manual paging. There are certain situations when you don't know the list of columns in advance, mainly when the query is supplied by the user. Iter.Columns, Iter.RowData, Iter.MapScan and Iter.SliceMap can be used to handle this case. See Example_dynamicColumns. The CQL protocol supports sending batches of DML statements (INSERT/UPDATE/DELETE) and so does gocql. Use Session.NewBatch to create a new batch and then fill-in details of individual queries. Then execute the batch with Session.ExecuteBatch. Logged batches ensure atomicity, either all or none of the operations in the batch will succeed, but they have overhead to ensure this property. Unlogged batches don't have the overhead of logged batches, but don't guarantee atomicity. Updates of counters are handled specially by Cassandra so batches of counter updates have to use CounterBatch type. A counter batch can only contain statements to update counters. For unlogged batches it is recommended to send only single-partition batches (i.e. all statements in the batch should involve only a single partition). Multi-partition batch needs to be split by the coordinator node and re-sent to correct nodes. With single-partition batches you can send the batch directly to the node for the partition without incurring the additional network hop. It is also possible to pass entire BEGIN BATCH .. APPLY BATCH statement to Query.Exec. There are differences how those are executed. BEGIN BATCH statement passed to Query.Exec is prepared as a whole in a single statement. Session.ExecuteBatch prepares individual statements in the batch. If you have variable-length batches using the same statement, using Session.ExecuteBatch is more efficient. See Example_batch for an example. Query.ScanCAS or Query.MapScanCAS can be used to execute a single-statement lightweight transaction (an INSERT/UPDATE .. IF statement) and reading its result. See example for Query.MapScanCAS. Multiple-statement lightweight transactions can be executed as a logged batch that contains at least one conditional statement. All the conditions must return true for the batch to be applied. You can use Session.ExecuteBatchCAS and Session.MapExecuteBatchCAS when executing the batch to learn about the result of the LWT. See example for Session.MapExecuteBatchCAS. Queries can be marked as idempotent. Marking the query as idempotent tells the driver that the query can be executed multiple times without affecting its result. Non-idempotent queries are not eligible for retrying nor speculative execution. Idempotent queries are retried in case of errors based on the configured RetryPolicy. If the query is LWT and the configured RetryPolicy additionally implements LWTRetryPolicy interface, then the policy will be cast to LWTRetryPolicy and used this way. Queries can be retried even before they fail by setting a SpeculativeExecutionPolicy. The policy can cause the driver to retry on a different node if the query is taking longer than a specified delay even before the driver receives an error or timeout from the server. When a query is speculatively executed, the original execution is still executing. The two parallel executions of the query race to return a result, the first received result will be returned. UDTs can be mapped (un)marshaled from/to map[string]interface{} a Go struct (or a type implementing UDTUnmarshaler, UDTMarshaler, Unmarshaler or Marshaler interfaces). For structs, cql tag can be used to specify the CQL field name to be mapped to a struct field: See Example_userDefinedTypesMap, Example_userDefinedTypesStruct, ExampleUDTMarshaler, ExampleUDTUnmarshaler. It is possible to provide observer implementations that could be used to gather metrics: CQL protocol also supports tracing of queries. When enabled, the database will write information about internal events that happened during execution of the query. You can use Query.Trace to request tracing and receive the session ID that the database used to store the trace information in system_traces.sessions and system_traces.events tables. NewTraceWriter returns an implementation of Tracer that writes the events to a writer. Gathering trace information might be essential for debugging and optimizing queries, but writing traces has overhead, so this feature should not be used on production systems with very high load unless you know what you are doing. Example_batch demonstrates how to execute a batch of statements. Example_dynamicColumns demonstrates how to handle dynamic column list. Example_marshalerUnmarshaler demonstrates how to implement a Marshaler and Unmarshaler. Example_nulls demonstrates how to distinguish between null and zero value when needed. Null values are unmarshalled as zero value of the type. If you need to distinguish for example between text column being null and empty string, you can unmarshal into *string field. Example_paging demonstrates how to manually fetch pages and use page state. See also package documentation about paging. Example_set demonstrates how to use sets. Example_userDefinedTypesMap demonstrates how to work with user-defined types as maps. See also Example_userDefinedTypesStruct and examples for UDTMarshaler and UDTUnmarshaler if you want to map to structs. Example_userDefinedTypesStruct demonstrates how to work with user-defined types as structs. See also examples for UDTMarshaler and UDTUnmarshaler if you need more control/better performance.