Package bluemonday provides a way of describing a whitelist of HTML elements and attributes as a policy, and for that policy to be applied to untrusted strings from users that may contain markup. All elements and attributes not on the whitelist will be stripped. The default bluemonday.UGCPolicy().Sanitize() turns this: Into the more harmless: And it turns this: Into this: Whilst still allowing this: To pass through mostly unaltered (it gained a rel="nofollow"): The primary purpose of bluemonday is to take potentially unsafe user generated content (from things like Markdown, HTML WYSIWYG tools, etc) and make it safe for you to put on your website. It protects sites against XSS (http://en.wikipedia.org/wiki/Cross-site_scripting) and other malicious content that a user interface may deliver. There are many vectors for an XSS attack (https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet) and the safest thing to do is to sanitize user input against a known safe list of HTML elements and attributes. Note: You should always run bluemonday after any other processing. If you use blackfriday (https://github.com/russross/blackfriday) or Pandoc (http://johnmacfarlane.net/pandoc/) then bluemonday should be run after these steps. This ensures that no insecure HTML is introduced later in your process. bluemonday is heavily inspired by both the OWASP Java HTML Sanitizer (https://code.google.com/p/owasp-java-html-sanitizer/) and the HTML Purifier (http://htmlpurifier.org/). We ship two default policies, one is bluemonday.StrictPolicy() and can be thought of as equivalent to stripping all HTML elements and their attributes as it has nothing on its whitelist. The other is bluemonday.UGCPolicy() and allows a broad selection of HTML elements and attributes that are safe for user generated content. Note that this policy does not whitelist iframes, object, embed, styles, script, etc. The essence of building a policy is to determine which HTML elements and attributes are considered safe for your scenario. OWASP provide an XSS prevention cheat sheet ( https://www.google.com/search?q=xss+prevention+cheat+sheet ) to help explain the risks, but essentially:
Package saml contains a partial implementation of the SAML standard in golang. SAML is a standard for identity federation, i.e. either allowing a third party to authenticate your users or allowing third parties to rely on us to authenticate their users. In SAML parlance an Identity Provider (IDP) is a service that knows how to authenticate users. A Service Provider (SP) is a service that delegates authentication to an IDP. If you are building a service where users log in with someone else's credentials, then you are a Service Provider. This package supports implementing both service providers and identity providers. The core package contains the implementation of SAML. The package samlsp provides helper middleware suitable for use in Service Provider applications. The package samlidp provides a rudimentary IDP service that is useful for testing or as a starting point for other integrations. Version 0.4.0 introduces a few breaking changes to the _samlsp_ package in order to make the package more extensible, and to clean up the interfaces a bit. The default behavior remains the same, but you can now provide interface implementations of _RequestTracker_ (which tracks pending requests), _Session_ (which handles maintaining a session) and _OnError_ which handles reporting errors. Public fields of _samlsp.Middleware_ have changed, so some usages may require adjustment. See [issue 231](https://github.com/crewjam/saml/issues/231) for details. The option to provide an IDP metadata URL has been deprecated. Instead, we recommend that you use the `FetchMetadata()` function, or fetch the metadata yourself and use the new `ParseMetadata()` function, and pass the metadata in _samlsp.Options.IDPMetadata_. Similarly, the _HTTPClient_ field is now deprecated because it was only used for fetching metdata, which is no longer directly implemented. The fields that manage how cookies are set are deprecated as well. To customize how cookies are managed, provide custom implementation of _RequestTracker_ and/or _Session_, perhaps by extending the default implementations. The deprecated fields have not been removed from the Options structure, but will be in future. In particular we have deprecated the following fields in _samlsp.Options_: - `Logger` - This was used to emit errors while validating, which is an anti-pattern. - `IDPMetadataURL` - Instead use `FetchMetadata()` - `HTTPClient` - Instead pass httpClient to FetchMetadata - `CookieMaxAge` - Instead assign a custom CookieRequestTracker or CookieSessionProvider - `CookieName` - Instead assign a custom CookieRequestTracker or CookieSessionProvider - `CookieDomain` - Instead assign a custom CookieRequestTracker or CookieSessionProvider - `CookieDomain` - Instead assign a custom CookieRequestTracker or CookieSessionProvider Let us assume we have a simple web application to protect. We'll modify this application so it uses SAML to authenticate users. ```golang package main import ( ) ``` Each service provider must have an self-signed X.509 key pair established. You can generate your own with something like this: We will use `samlsp.Middleware` to wrap the endpoint we want to protect. Middleware provides both an `http.Handler` to serve the SAML specific URLs and a set of wrappers to require the user to be logged in. We also provide the URL where the service provider can fetch the metadata from the IDP at startup. In our case, we'll use [samltest.id](https://samltest.id/), an identity provider designed for testing. ```golang package main import ( ) ``` Next we'll have to register our service provider with the identity provider to establish trust from the service provider to the IDP. For [samltest.id](https://samltest.id/), you can do something like: Navigate to https://samltest.id/upload.php and upload the file you fetched. Now you should be able to authenticate. The flow should look like this: 1. You browse to `localhost:8000/hello` 1. The middleware redirects you to `https://samltest.id/idp/profile/SAML2/Redirect/SSO` 1. samltest.id prompts you for a username and password. 1. samltest.id returns you an HTML document which contains an HTML form setup to POST to `localhost:8000/saml/acs`. The form is automatically submitted if you have javascript enabled. 1. The local service validates the response, issues a session cookie, and redirects you to the original URL, `localhost:8000/hello`. 1. This time when `localhost:8000/hello` is requested there is a valid session and so the main content is served. Please see `example/idp/` for a substantially complete example of how to use the library and helpers to be an identity provider. The SAML standard is huge and complex with many dark corners and strange, unused features. This package implements the most commonly used subset of these features required to provide a single sign on experience. The package supports at least the subset of SAML known as [interoperable SAML](http://saml2int.org). This package supports the Web SSO profile. Message flows from the service provider to the IDP are supported using the HTTP Redirect binding and the HTTP POST binding. Message flows from the IDP to the service provider are supported via the HTTP POST binding. The package can produce signed SAML assertions, and can validate both signed and encrypted SAML assertions. It does not support signed or encrypted requests. The _RelayState_ parameter allows you to pass user state information across the authentication flow. The most common use for this is to allow a user to request a deep link into your site, be redirected through the SAML login flow, and upon successful completion, be directed to the originally requested link, rather than the root. Unfortunately, _RelayState_ is less useful than it could be. Firstly, it is not authenticated, so anything you supply must be signed to avoid XSS or CSRF. Secondly, it is limited to 80 bytes in length, which precludes signing. (See section 3.6.3.1 of SAMLProfiles.) The SAML specification is a collection of PDFs (sadly): - [SAMLCore](http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf) defines data types. - [SAMLBindings](http://docs.oasis-open.org/security/saml/v2.0/saml-bindings-2.0-os.pdf) defines the details of the HTTP requests in play. - [SAMLProfiles](http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf) describes data flows. - [SAMLConformance](http://docs.oasis-open.org/security/saml/v2.0/saml-conformance-2.0-os.pdf) includes a support matrix for various parts of the protocol. [SAMLtest](https://samltest.id/) is a testing ground for SAML service and identity providers. Please do not report security issues in the issue tracker. Rather, please contact me directly at ross@kndr.org ([PGP Key `78B6038B3B9DFB88`](https://keybase.io/crewjam)).
Package saml contains a partial implementation of the SAML standard in golang. SAML is a standard for identity federation, i.e. either allowing a third party to authenticate your users or allowing third parties to rely on us to authenticate their users. In SAML parlance an Identity Provider (IDP) is a service that knows how to authenticate users. A Service Provider (SP) is a service that delegates authentication to an IDP. If you are building a service where users log in with someone else's credentials, then you are a Service Provider. This package supports implementing both service providers and identity providers. The core package contains the implementation of SAML. The package samlsp provides helper middleware suitable for use in Service Provider applications. The package samlidp provides a rudimentary IDP service that is useful for testing or as a starting point for other integrations. Version 0.4.0 introduces a few breaking changes to the _samlsp_ package in order to make the package more extensible, and to clean up the interfaces a bit. The default behavior remains the same, but you can now provide interface implementations of _RequestTracker_ (which tracks pending requests), _Session_ (which handles maintaining a session) and _OnError_ which handles reporting errors. Public fields of _samlsp.Middleware_ have changed, so some usages may require adjustment. See [issue 231](https://github.com/crewjam/saml/issues/231) for details. The option to provide an IDP metadata URL has been deprecated. Instead, we recommend that you use the `FetchMetadata()` function, or fetch the metadata yourself and use the new `ParseMetadata()` function, and pass the metadata in _samlsp.Options.IDPMetadata_. Similarly, the _HTTPClient_ field is now deprecated because it was only used for fetching metdata, which is no longer directly implemented. The fields that manage how cookies are set are deprecated as well. To customize how cookies are managed, provide custom implementation of _RequestTracker_ and/or _Session_, perhaps by extending the default implementations. The deprecated fields have not been removed from the Options structure, but will be in future. In particular we have deprecated the following fields in _samlsp.Options_: - `Logger` - This was used to emit errors while validating, which is an anti-pattern. - `IDPMetadataURL` - Instead use `FetchMetadata()` - `HTTPClient` - Instead pass httpClient to FetchMetadata - `CookieMaxAge` - Instead assign a custom CookieRequestTracker or CookieSessionProvider - `CookieName` - Instead assign a custom CookieRequestTracker or CookieSessionProvider - `CookieDomain` - Instead assign a custom CookieRequestTracker or CookieSessionProvider - `CookieDomain` - Instead assign a custom CookieRequestTracker or CookieSessionProvider Let us assume we have a simple web application to protect. We'll modify this application so it uses SAML to authenticate users. ```golang package main import ( ) ``` Each service provider must have an self-signed X.509 key pair established. You can generate your own with something like this: We will use `samlsp.Middleware` to wrap the endpoint we want to protect. Middleware provides both an `http.Handler` to serve the SAML specific URLs and a set of wrappers to require the user to be logged in. We also provide the URL where the service provider can fetch the metadata from the IDP at startup. In our case, we'll use [samltest.id](https://samltest.id/), an identity provider designed for testing. ```golang package main import ( ) ``` Next we'll have to register our service provider with the identity provider to establish trust from the service provider to the IDP. For [samltest.id](https://samltest.id/), you can do something like: Navigate to https://samltest.id/upload.php and upload the file you fetched. Now you should be able to authenticate. The flow should look like this: 1. You browse to `localhost:8000/hello` 1. The middleware redirects you to `https://samltest.id/idp/profile/SAML2/Redirect/SSO` 1. samltest.id prompts you for a username and password. 1. samltest.id returns you an HTML document which contains an HTML form setup to POST to `localhost:8000/saml/acs`. The form is automatically submitted if you have javascript enabled. 1. The local service validates the response, issues a session cookie, and redirects you to the original URL, `localhost:8000/hello`. 1. This time when `localhost:8000/hello` is requested there is a valid session and so the main content is served. Please see `example/idp/` for a substantially complete example of how to use the library and helpers to be an identity provider. The SAML standard is huge and complex with many dark corners and strange, unused features. This package implements the most commonly used subset of these features required to provide a single sign on experience. The package supports at least the subset of SAML known as [interoperable SAML](http://saml2int.org). This package supports the Web SSO profile. Message flows from the service provider to the IDP are supported using the HTTP Redirect binding and the HTTP POST binding. Message flows from the IDP to the service provider are supported via the HTTP POST binding. The package can produce signed SAML assertions, and can validate both signed and encrypted SAML assertions. It does not support signed or encrypted requests. The _RelayState_ parameter allows you to pass user state information across the authentication flow. The most common use for this is to allow a user to request a deep link into your site, be redirected through the SAML login flow, and upon successful completion, be directed to the originally requested link, rather than the root. Unfortunately, _RelayState_ is less useful than it could be. Firstly, it is not authenticated, so anything you supply must be signed to avoid XSS or CSRF. Secondly, it is limited to 80 bytes in length, which precludes signing. (See section 3.6.3.1 of SAMLProfiles.) The SAML specification is a collection of PDFs (sadly): - [SAMLCore](http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf) defines data types. - [SAMLBindings](http://docs.oasis-open.org/security/saml/v2.0/saml-bindings-2.0-os.pdf) defines the details of the HTTP requests in play. - [SAMLProfiles](http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf) describes data flows. - [SAMLConformance](http://docs.oasis-open.org/security/saml/v2.0/saml-conformance-2.0-os.pdf) includes a support matrix for various parts of the protocol. [SAMLtest](https://samltest.id/) is a testing ground for SAML service and identity providers. Please do not report security issues in the issue tracker. Rather, please contact me directly at ross@kndr.org ([PGP Key `78B6038B3B9DFB88`](https://keybase.io/crewjam)).
Package rivescript implements the RiveScript chatbot scripting language. RiveScript is a scripting language for authoring chatbots. It has a very simple syntax and is designed to be easy to read and fast to write. A simple example of what RiveScript looks like: This matches a user's message of "hello bot" and would reply "Hello human." Or for a slightly more complicated example: The official website for RiveScript is https://www.rivescript.com/ To test drive RiveScript in your web browser, try the [RiveScript Playground](https://play.rivescript.com/). A common feature in many RiveScript implementations is the object macro, which enables you to write dynamic program code (in your favorite programming language) to add extra capabilities to your bot. For example, your bot could answer a question of `what is the weather like in _____` by running some code to look up their answer via a web API. The Go version of RiveScript has support for object macros written in Go (at compile time of your application). It also has optional support for JavaScript object macros using the Otto library. UTF-8 support in RiveScript is considered an experimental feature. It is disabled by default. Enable it by setting `RiveScript.SetUTF8(true)`. By default (without UTF-8 mode on), triggers may only contain basic ASCII characters (no foreign characters), and the user's message is stripped of all characters except letters, numbers and spaces. This means that, for example, you can't capture a user's e-mail address in a RiveScript reply, because of the @ and . characters. When UTF-8 mode is enabled, these restrictions are lifted. Triggers are only limited to not contain certain metacharacters like the backslash, and the user's message is only stripped of backslashes and HTML angled brackets (to protect from obvious XSS if you use RiveScript in a web application). Additionally, common punctuation characters are stripped out, with the default set being `/[.,!?;:]/g`. This can be overridden by providing a new regexp string literal to the `RiveScript.SetUnicodePunctuation` function. Example: The `<star>` tags in RiveScript will capture the user's "raw" input, so you can write replies to get the user's e-mail address or store foreign characters in their name. The official homepage of RiveScript, http://www.rivescript.com/
XssMw provides an "auto remove XSS" from all user submitted input. It's applied on POST, PUT, and GET Requests only. We currently support three Request types: * JSON requests - Content-Type application/json * Form Encoded - Content-Type application/x-www-form-urlencoded * Multipart Form Data - Content-Type multipart/form-data XSS filtering is performed by HTML sanitizer https://github.com/microcosm-cc/bluemonday The default is to the strictest policy - StrictPolicy()
XssMw provides an "auto remove XSS" from all user submitted input. It's applied on POST, PUT, and GET Requests only. We currently support three Request types: * JSON requests - Content-Type application/json * Form Encoded - Content-Type application/x-www-form-urlencoded * Multipart Form Data - Content-Type multipart/form-data XSS filtering is performed by HTML sanitizer https://github.com/microcosm-cc/bluemonday The default is to the strictest policy - StrictPolicy()
Package bluemonday provides a way of describing a whitelist of HTML elements and attributes as a policy, and for that policy to be applied to untrusted strings from users that may contain markup. All elements and attributes not on the whitelist will be stripped. The default bluemonday.UGCPolicy().Sanitize() turns this: Into the more harmless: And it turns this: Into this: Whilst still allowing this: To pass through mostly unaltered (it gained a rel="nofollow"): The primary purpose of bluemonday is to take potentially unsafe user generated content (from things like Markdown, HTML WYSIWYG tools, etc) and make it safe for you to put on your website. It protects sites against XSS (http://en.wikipedia.org/wiki/Cross-site_scripting) and other malicious content that a user interface may deliver. There are many vectors for an XSS attack (https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet) and the safest thing to do is to sanitize user input against a known safe list of HTML elements and attributes. Note: You should always run bluemonday after any other processing. If you use blackfriday (https://github.com/russross/blackfriday) or Pandoc (http://johnmacfarlane.net/pandoc/) then bluemonday should be run after these steps. This ensures that no insecure HTML is introduced later in your process. bluemonday is heavily inspired by both the OWASP Java HTML Sanitizer (https://code.google.com/p/owasp-java-html-sanitizer/) and the HTML Purifier (http://htmlpurifier.org/). We ship two default policies, one is bluemonday.StrictPolicy() and can be thought of as equivalent to stripping all HTML elements and their attributes as it has nothing on it's whitelist. The other is bluemonday.UGCPolicy() and allows a broad selection of HTML elements and attributes that are safe for user generated content. Note that this policy does not whitelist iframes, object, embed, styles, script, etc. The essence of building a policy is to determine which HTML elements and attributes are considered safe for your scenario. OWASP provide an XSS prevention cheat sheet ( https://www.google.com/search?q=xss+prevention+cheat+sheet ) to help explain the risks, but essentially: