Package abide is a testing utility for http response snapshots inspired by Facebook's Jest. It is designed to be used alongside Go's existing testing package and enable broader coverage of http APIs. When included in version control it can provide a historical log of API and application changes over time. A snapshot is essentially a lockfile representing an http response. In addition to testing `http.Response`, abide provides methods for testing `io.Reader` and any object that implements `Assertable`. Snapshots are saved in a directory named __snapshots__ at the root of the package. These files are intended to be saved and included in version control. Snapshots are automatically generated during the initial test run. For example this will create a snapshot identified by "example" for this http.Response. In subsequent test runs the existing snapshot is compared to the new results. In the event they do not match, the test will fail, and the diff will be printed. If the change was intentional, the snapshot can be updated.
Package testify is a set of packages that provide many tools for testifying that your code will behave as you intend. testify contains the following packages: The assert package provides a comprehensive set of assertion functions that tie in to the Go testing system. The http package contains tools to make it easier to test http activity using the Go testing system. The mock package provides a system by which it is possible to mock your objects and verify calls are happening as expected. The suite package provides a basic structure for using structs as testing suites, and methods on those structs as tests. It includes setup/teardown functionality in the way of interfaces.
This is the official Go SDK for Oracle Cloud Infrastructure Refer to https://github.com/erikcai/oci-go-sdk/blob/master/README.md#installing for installation instructions. Refer to https://github.com/erikcai/oci-go-sdk/blob/master/README.md#configuring for configuration instructions. The following example shows how to get started with the SDK. The example belows creates an identityClient struct with the default configuration. It then utilizes the identityClient to list availability domains and prints them out to stdout More examples can be found in the SDK Github repo: https://github.com/erikcai/oci-go-sdk/tree/master/example Optional fields are represented with the `mandatory:"false"` tag on input structs. The SDK will omit all optional fields that are nil when making requests. In the case of enum-type fields, the SDK will omit fields whose value is an empty string. The SDK uses pointers for primitive types in many input structs. To aid in the construction of such structs, the SDK provides functions that return a pointer for a given value. For example: The SDK exposes functionality that allows the user to customize any http request before is sent to the service. You can do so by setting the `Interceptor` field in any of the `Client` structs. For example: The Interceptor closure gets called before the signing process, thus any changes done to the request will be properly signed and submitted to the service. The SDK exposes a stand-alone signer that can be used to signing custom requests. Related code can be found here: https://github.com/erikcai/oci-go-sdk/blob/master/common/http_signer.go. The example below shows how to create a default signer. The signer also allows more granular control on the headers used for signing. For example: You can combine a custom signer with the exposed clients in the SDK. This allows you to add custom signed headers to the request. Following is an example: Bear in mind that some services have a white list of headers that it expects to be signed. Therefore, adding an arbitrary header can result in authentications errors. To see a runnable example, see https://github.com/erikcai/oci-go-sdk/blob/master/example/example_identity_test.go For more information on the signing algorithm refer to: https://docs.cloud.oracle.com/Content/API/Concepts/signingrequests.htm Some operations accept or return polymorphic json objects. The SDK models such objects as interfaces. Further the SDK provides structs that implement such interfaces. Thus, for all operations that expect interfaces as input, pass the struct in the SDK that satisfies such interface. For example: In the case of a polymorphic response you can type assert the interface to the expected type. For example: An example of polymorphic json request handling can be found here: https://github.com/erikcai/oci-go-sdk/blob/master/example/example_core_test.go#L63 When calling a list operation, the operation will retrieve a page of results. To retrieve more data, call the list operation again, passing in the value of the most recent response's OpcNextPage as the value of Page in the next list operation call. When there is no more data the OpcNextPage field will be nil. An example of pagination using this logic can be found here: https://github.com/erikcai/oci-go-sdk/blob/master/example/example_core_pagination_test.go The SDK has a built-in logging mechanism used internally. The internal logging logic is used to record the raw http requests, responses and potential errors when (un)marshalling request and responses. Built-in logging in the SDK is controlled via the environment variable "OCI_GO_SDK_DEBUG" and its contents. The below are possible values for the "OCI_GO_SDK_DEBUG" variable 1. "info" or "i" enables all info logging messages 2. "debug" or "d" enables all debug and info logging messages 3. "verbose" or "v" or "1" enables all verbose, debug and info logging messages 4. "null" turns all logging messages off. If the value of the environment variable does not match any of the above then default logging level is "info". If the environment variable is not present then no logging messages are emitted. The default destination for logging is Stderr and if you want to output log to a file you can set via environment variable "OCI_GO_SDK_LOG_OUTPUT_MODE". The below are possible values 1. "file" or "f" enables all logging output saved to file 2. "combine" or "c" enables all logging output to both stderr and file You can also customize the log file location and name via "OCI_GO_SDK_LOG_FILE" environment variable, the value should be the path to a specific file If this environment variable is not present, the default location will be the project root path Sometimes you may need to wait until an attribute of a resource, such as an instance or a VCN, reaches a certain state. An example of this would be launching an instance and then waiting for the instance to become available, or waiting until a subnet in a VCN has been terminated. You might also want to retry the same operation again if there's network issue etc... This can be accomplished by using the RequestMetadata.RetryPolicy. You can find the examples here: https://github.com/erikcai/oci-go-sdk/blob/master/example/example_retry_test.go The GO SDK uses the net/http package to make calls to OCI services. If your environment requires you to use a proxy server for outgoing HTTP requests then you can set this up in the following ways: 1. Configuring environment variable as described here https://golang.org/pkg/net/http/#ProxyFromEnvironment 2. Modifying the underlying Transport struct for a service client In order to modify the underlying Transport struct in HttpClient, you can do something similar to (sample code for audit service client): Some response fields are enum-typed. In the future, individual services may return values not covered by existing enums for that field. To address this possibility, every enum-type response field is a modeled as a type that supports any string. Thus if a service returns a value that is not recognized by your version of the SDK, then the response field will be set to this value. When individual services return a polymorphic json response not available as a concrete struct, the SDK will return an implementation that only satisfies the interface modeling the polymorphic json response. Got a fix for a bug, or a new feature you'd like to contribute? The SDK is open source and accepting pull requests on GitHub https://github.com/erikcai/oci-go-sdk Licensing information available at: https://github.com/erikcai/oci-go-sdk/blob/master/LICENSE.txt To be notified when a new version of the Go SDK is released, subscribe to the following feed: https://github.com/erikcai/oci-go-sdk/releases.atom Please refer to this link: https://github.com/erikcai/oci-go-sdk#help
Package testify is a set of packages that provide many tools for testifying that your code will behave as you intend. testify contains the following packages: The assert package provides a comprehensive set of assertion functions that tie in to the Go testing system. The http package contains tools to make it easier to test http activity using the Go testing system. The mock package provides a system by which it is possible to mock your objects and verify calls are happening as expected. The suite package provides a basic structure for using structs as testing suites, and methods on those structs as tests. It includes setup/teardown functionality in the way of interfaces.
Package saml contains a partial implementation of the SAML standard in golang. SAML is a standard for identity federation, i.e. either allowing a third party to authenticate your users or allowing third parties to rely on us to authenticate their users. In SAML parlance an Identity Provider (IDP) is a service that knows how to authenticate users. A Service Provider (SP) is a service that delegates authentication to an IDP. If you are building a service where users log in with someone else's credentials, then you are a Service Provider. This package supports implementing both service providers and identity providers. The core package contains the implementation of SAML. The package samlsp provides helper middleware suitable for use in Service Provider applications. The package samlidp provides a rudimentary IDP service that is useful for testing or as a starting point for other integrations. Version 0.4.0 introduces a few breaking changes to the _samlsp_ package in order to make the package more extensible, and to clean up the interfaces a bit. The default behavior remains the same, but you can now provide interface implementations of _RequestTracker_ (which tracks pending requests), _Session_ (which handles maintaining a session) and _OnError_ which handles reporting errors. Public fields of _samlsp.Middleware_ have changed, so some usages may require adjustment. See [issue 231](https://github.com/crewjam/saml/issues/231) for details. The option to provide an IDP metadata URL has been deprecated. Instead, we recommend that you use the `FetchMetadata()` function, or fetch the metadata yourself and use the new `ParseMetadata()` function, and pass the metadata in _samlsp.Options.IDPMetadata_. Similarly, the _HTTPClient_ field is now deprecated because it was only used for fetching metdata, which is no longer directly implemented. The fields that manage how cookies are set are deprecated as well. To customize how cookies are managed, provide custom implementation of _RequestTracker_ and/or _Session_, perhaps by extending the default implementations. The deprecated fields have not been removed from the Options structure, but will be in future. In particular we have deprecated the following fields in _samlsp.Options_: - `Logger` - This was used to emit errors while validating, which is an anti-pattern. - `IDPMetadataURL` - Instead use `FetchMetadata()` - `HTTPClient` - Instead pass httpClient to FetchMetadata - `CookieMaxAge` - Instead assign a custom CookieRequestTracker or CookieSessionProvider - `CookieName` - Instead assign a custom CookieRequestTracker or CookieSessionProvider - `CookieDomain` - Instead assign a custom CookieRequestTracker or CookieSessionProvider - `CookieDomain` - Instead assign a custom CookieRequestTracker or CookieSessionProvider Let us assume we have a simple web application to protect. We'll modify this application so it uses SAML to authenticate users. ```golang package main import ( ) ``` Each service provider must have an self-signed X.509 key pair established. You can generate your own with something like this: We will use `samlsp.Middleware` to wrap the endpoint we want to protect. Middleware provides both an `http.Handler` to serve the SAML specific URLs and a set of wrappers to require the user to be logged in. We also provide the URL where the service provider can fetch the metadata from the IDP at startup. In our case, we'll use [samltest.id](https://samltest.id/), an identity provider designed for testing. ```golang package main import ( ) ``` Next we'll have to register our service provider with the identity provider to establish trust from the service provider to the IDP. For [samltest.id](https://samltest.id/), you can do something like: Navigate to https://samltest.id/upload.php and upload the file you fetched. Now you should be able to authenticate. The flow should look like this: 1. You browse to `localhost:8000/hello` 1. The middleware redirects you to `https://samltest.id/idp/profile/SAML2/Redirect/SSO` 1. samltest.id prompts you for a username and password. 1. samltest.id returns you an HTML document which contains an HTML form setup to POST to `localhost:8000/saml/acs`. The form is automatically submitted if you have javascript enabled. 1. The local service validates the response, issues a session cookie, and redirects you to the original URL, `localhost:8000/hello`. 1. This time when `localhost:8000/hello` is requested there is a valid session and so the main content is served. Please see `example/idp/` for a substantially complete example of how to use the library and helpers to be an identity provider. The SAML standard is huge and complex with many dark corners and strange, unused features. This package implements the most commonly used subset of these features required to provide a single sign on experience. The package supports at least the subset of SAML known as [interoperable SAML](http://saml2int.org). This package supports the Web SSO profile. Message flows from the service provider to the IDP are supported using the HTTP Redirect binding and the HTTP POST binding. Message flows from the IDP to the service provider are supported via the HTTP POST binding. The package can produce signed SAML assertions, and can validate both signed and encrypted SAML assertions. It does not support signed or encrypted requests. The _RelayState_ parameter allows you to pass user state information across the authentication flow. The most common use for this is to allow a user to request a deep link into your site, be redirected through the SAML login flow, and upon successful completion, be directed to the originally requested link, rather than the root. Unfortunately, _RelayState_ is less useful than it could be. Firstly, it is not authenticated, so anything you supply must be signed to avoid XSS or CSRF. Secondly, it is limited to 80 bytes in length, which precludes signing. (See section 3.6.3.1 of SAMLProfiles.) The SAML specification is a collection of PDFs (sadly): - [SAMLCore](http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf) defines data types. - [SAMLBindings](http://docs.oasis-open.org/security/saml/v2.0/saml-bindings-2.0-os.pdf) defines the details of the HTTP requests in play. - [SAMLProfiles](http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf) describes data flows. - [SAMLConformance](http://docs.oasis-open.org/security/saml/v2.0/saml-conformance-2.0-os.pdf) includes a support matrix for various parts of the protocol. [SAMLtest](https://samltest.id/) is a testing ground for SAML service and identity providers. Please do not report security issues in the issue tracker. Rather, please contact me directly at ross@kndr.org ([PGP Key `78B6038B3B9DFB88`](https://keybase.io/crewjam)).
Package anaconda provides structs and functions for accessing version 1.1 of the Twitter API. Successful API queries return native Go structs that can be used immediately, with no need for type assertions. If you already have the access token (and secret) for your user (Twitter provides this for your own account on the developer portal), creating the client is simple: Executing queries on an authenticated TwitterApi struct is simple. Certain endpoints allow separate optional parameter; if desired, these can be passed as the final parameter. Anaconda implements most of the endpoints defined in the Twitter API documentation: https://dev.twitter.com/docs/api/1.1. For clarity, in most cases, the function name is simply the name of the HTTP method and the endpoint (e.g., the endpoint `GET /friendships/incoming` is provided by the function `GetFriendshipsIncoming`). In a few cases, a shortened form has been chosen to make life easier (for example, retweeting is simply the function `Retweet`) More detailed information about the behavior of each particular endpoint can be found at the official Twitter API documentation.
Package anaconda provides structs and functions for accessing version 1.1 of the Twitter API. Successful API queries return native Go structs that can be used immediately, with no need for type assertions. If you already have the access token (and secret) for your user (Twitter provides this for your own account on the developer portal), creating the client is simple: Executing queries on an authenticated TwitterApi struct is simple. Certain endpoints allow separate optional parameter; if desired, these can be passed as the final parameter. Anaconda implements most of the endpoints defined in the Twitter API documentation: https://dev.twitter.com/docs/api/1.1. For clarity, in most cases, the function name is simply the name of the HTTP method and the endpoint (e.g., the endpoint `GET /friendships/incoming` is provided by the function `GetFriendshipsIncoming`). In a few cases, a shortened form has been chosen to make life easier (for example, retweeting is simply the function `Retweet`) More detailed information about the behavior of each particular endpoint can be found at the official Twitter API documentation.
Package saml contains a partial implementation of the SAML standard in golang. SAML is a standard for identity federation, i.e. either allowing a third party to authenticate your users or allowing third parties to rely on us to authenticate their users. In SAML parlance an Identity Provider (IDP) is a service that knows how to authenticate users. A Service Provider (SP) is a service that delegates authentication to an IDP. If you are building a service where users log in with someone else's credentials, then you are a Service Provider. This package supports implementing both service providers and identity providers. The core package contains the implementation of SAML. The package samlsp provides helper middleware suitable for use in Service Provider applications. The package samlidp provides a rudimentary IDP service that is useful for testing or as a starting point for other integrations. Version 0.4.0 introduces a few breaking changes to the _samlsp_ package in order to make the package more extensible, and to clean up the interfaces a bit. The default behavior remains the same, but you can now provide interface implementations of _RequestTracker_ (which tracks pending requests), _Session_ (which handles maintaining a session) and _OnError_ which handles reporting errors. Public fields of _samlsp.Middleware_ have changed, so some usages may require adjustment. See [issue 231](https://github.com/aporcupine/saml/issues/231) for details. The option to provide an IDP metadata URL has been deprecated. Instead, we recommend that you use the `FetchMetadata()` function, or fetch the metadata yourself and use the new `ParseMetadata()` function, and pass the metadata in _samlsp.Options.IDPMetadata_. Similarly, the _HTTPClient_ field is now deprecated because it was only used for fetching metdata, which is no longer directly implemented. The fields that manage how cookies are set are deprecated as well. To customize how cookies are managed, provide custom implementation of _RequestTracker_ and/or _Session_, perhaps by extending the default implementations. The deprecated fields have not been removed from the Options structure, but will be in future. In particular we have deprecated the following fields in _samlsp.Options_: - `Logger` - This was used to emit errors while validating, which is an anti-pattern. - `IDPMetadataURL` - Instead use `FetchMetadata()` - `HTTPClient` - Instead pass httpClient to FetchMetadata - `CookieMaxAge` - Instead assign a custom CookieRequestTracker or CookieSessionProvider - `CookieName` - Instead assign a custom CookieRequestTracker or CookieSessionProvider - `CookieDomain` - Instead assign a custom CookieRequestTracker or CookieSessionProvider - `CookieDomain` - Instead assign a custom CookieRequestTracker or CookieSessionProvider Let us assume we have a simple web application to protect. We'll modify this application so it uses SAML to authenticate users. ```golang package main import ( ) ``` Each service provider must have an self-signed X.509 key pair established. You can generate your own with something like this: We will use `samlsp.Middleware` to wrap the endpoint we want to protect. Middleware provides both an `http.Handler` to serve the SAML specific URLs and a set of wrappers to require the user to be logged in. We also provide the URL where the service provider can fetch the metadata from the IDP at startup. In our case, we'll use [samltest.id](https://samltest.id/), an identity provider designed for testing. ```golang package main import ( ) ``` Next we'll have to register our service provider with the identity provider to establish trust from the service provider to the IDP. For [samltest.id](https://samltest.id/), you can do something like: Navigate to https://samltest.id/upload.php and upload the file you fetched. Now you should be able to authenticate. The flow should look like this: 1. You browse to `localhost:8000/hello` 1. The middleware redirects you to `https://samltest.id/idp/profile/SAML2/Redirect/SSO` 1. samltest.id prompts you for a username and password. 1. samltest.id returns you an HTML document which contains an HTML form setup to POST to `localhost:8000/saml/acs`. The form is automatically submitted if you have javascript enabled. 1. The local service validates the response, issues a session cookie, and redirects you to the original URL, `localhost:8000/hello`. 1. This time when `localhost:8000/hello` is requested there is a valid session and so the main content is served. Please see `example/idp/` for a substantially complete example of how to use the library and helpers to be an identity provider. The SAML standard is huge and complex with many dark corners and strange, unused features. This package implements the most commonly used subset of these features required to provide a single sign on experience. The package supports at least the subset of SAML known as [interoperable SAML](http://saml2int.org). This package supports the Web SSO profile. Message flows from the service provider to the IDP are supported using the HTTP Redirect binding and the HTTP POST binding. Message flows from the IDP to the service provider are supported via the HTTP POST binding. The package can produce signed SAML assertions, and can validate both signed and encrypted SAML assertions. It does not support signed or encrypted requests. The _RelayState_ parameter allows you to pass user state information across the authentication flow. The most common use for this is to allow a user to request a deep link into your site, be redirected through the SAML login flow, and upon successful completion, be directed to the originally requested link, rather than the root. Unfortunately, _RelayState_ is less useful than it could be. Firstly, it is not authenticated, so anything you supply must be signed to avoid XSS or CSRF. Secondly, it is limited to 80 bytes in length, which precludes signing. (See section 3.6.3.1 of SAMLProfiles.) The SAML specification is a collection of PDFs (sadly): - [SAMLCore](http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf) defines data types. - [SAMLBindings](http://docs.oasis-open.org/security/saml/v2.0/saml-bindings-2.0-os.pdf) defines the details of the HTTP requests in play. - [SAMLProfiles](http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf) describes data flows. - [SAMLConformance](http://docs.oasis-open.org/security/saml/v2.0/saml-conformance-2.0-os.pdf) includes a support matrix for various parts of the protocol. [SAMLtest](https://samltest.id/) is a testing ground for SAML service and identity providers. Please do not report security issues in the issue tracker. Rather, please contact me directly at ross@kndr.org ([PGP Key `78B6038B3B9DFB88`](https://keybase.io/crewjam)).
Package testify is a set of packages that provide many tools for testifying that your code will behave as you intend. testify contains the following packages: The assert package provides a comprehensive set of assertion functions that tie in to the Go testing system. The http package contains tools to make it easier to test http activity using the Go testing system. The mock package provides a system by which it is possible to mock your objects and verify calls are happening as expected. The suite package provides a basic structure for using structs as testing suites, and methods on those structs as tests. It includes setup/teardown functionality in the way of interfaces.
Package testify is a set of packages that provide many tools for testifying that your code will behave as you intend. testify contains the following packages: The assert package provides a comprehensive set of assertion functions that tie in to the Go testing system. The http package contains tools to make it easier to test http activity using the Go testing system. The mock package provides a system by which it is possible to mock your objects and verify calls are happening as expected. The suite package provides a basic structure for using structs as testing suites, and methods on those structs as tests. It includes setup/teardown functionality in the way of interfaces.
A set of packages that provide many tools for testifying that your code will behave as you intend. testify contains the following packages: The assert package provides a comprehensive set of assertion functions that tie in to the Go testing system. The http package contains tools to make it easier to test http activity using the Go testing system. The mock package provides a system by which it is possible to mock your objects and verify calls are happening as expected. The suite package provides a basic structure for using structs as testing suites, and methods on those structs as tests. It includes setup/teardown functionality in the way of interfaces.
Package testify is a set of packages that provide many tools for testifying that your code will behave as you intend. testify contains the following packages: The assert package provides a comprehensive set of assertion functions that tie in to the Go testing system. The http package contains tools to make it easier to test http activity using the Go testing system. The mock package provides a system by which it is possible to mock your objects and verify calls are happening as expected. The suite package provides a basic structure for using structs as testing suites, and methods on those structs as tests. It includes setup/teardown functionality in the way of interfaces.
Package testify is a set of packages that provide many tools for testifying that your code will behave as you intend. testify contains the following packages: The assert package provides a comprehensive set of assertion functions that tie in to the Go testing system. The http package contains tools to make it easier to test http activity using the Go testing system. The mock package provides a system by which it is possible to mock your objects and verify calls are happening as expected. The suite package provides a basic structure for using structs as testing suites, and methods on those structs as tests. It includes setup/teardown functionality in the way of interfaces.
** We are working on testify v2 and would love to hear what you'd like to see in it, have your say here: https://cutt.ly/testify ** Package testify is a set of packages that provide many tools for testifying that your code will behave as you intend. testify contains the following packages: The assert package provides a comprehensive set of assertion functions that tie in to the Go testing system. The http package contains tools to make it easier to test http activity using the Go testing system. The mock package provides a system by which it is possible to mock your objects and verify calls are happening as expected. The suite package provides a basic structure for using structs as testing suites, and methods on those structs as tests. It includes setup/teardown functionality in the way of interfaces.
Package saml contains a partial implementation of the SAML standard in golang. SAML is a standard for identity federation, i.e. either allowing a third party to authenticate your users or allowing third parties to rely on us to authenticate their users. In SAML parlance an Identity Provider (IDP) is a service that knows how to authenticate users. A Service Provider (SP) is a service that delegates authentication to an IDP. If you are building a service where users log in with someone else's credentials, then you are a Service Provider. This package supports implementing both service providers and identity providers. The core package contains the implementation of SAML. The package samlsp provides helper middleware suitable for use in Service Provider applications. The package samlidp provides a rudimentary IDP service that is useful for testing or as a starting point for other integrations. Note: between version 0.2.0 and the current master include changes to the API that will break your existing code a little. This change turned some fields from pointers to a single optional struct into the more correct slice of struct, and to pluralize the field name. For example, `IDPSSODescriptor *IDPSSODescriptor` has become `IDPSSODescriptors []IDPSSODescriptor`. This more accurately reflects the standard. The struct `Metadata` has been renamed to `EntityDescriptor`. In 0.2.0 and before, every struct derived from the standard has the same name as in the standard, *except* for `Metadata` which should always have been called `EntityDescriptor`. In various places `url.URL` is now used where `string` was used <= version 0.1.0. In various places where keys and certificates were modeled as `string` <= version 0.1.0 (what was I thinking?!) they are now modeled as `*rsa.PrivateKey`, `*x509.Certificate`, or `crypto.PrivateKey` as appropriate. Let us assume we have a simple web appliation to protect. We'll modify this application so it uses SAML to authenticate users. ```golang package main import "net/http" ``` Each service provider must have an self-signed X.509 key pair established. You can generate your own with something like this: We will use `samlsp.Middleware` to wrap the endpoint we want to protect. Middleware provides both an `http.Handler` to serve the SAML specific URLs and a set of wrappers to require the user to be logged in. We also provide the URL where the service provider can fetch the metadata from the IDP at startup. In our case, we'll use [testshib.org](https://www.testshib.org/), an identity provider designed for testing. ```golang package main import ( ) ``` Next we'll have to register our service provider with the identiy provider to establish trust from the service provider to the IDP. For [testshib.org](https://www.testshib.org/), you can do something like: Naviate to https://www.testshib.org/register.html and upload the file you fetched. Now you should be able to authenticate. The flow should look like this: 1. You browse to `localhost:8000/hello` 1. The middleware redirects you to `https://idp.testshib.org/idp/profile/SAML2/Redirect/SSO` 1. testshib.org prompts you for a username and password. 1. testshib.org returns you an HTML document which contains an HTML form setup to POST to `localhost:8000/saml/acs`. The form is automatically submitted if you have javascript enabled. 1. The local service validates the response, issues a session cookie, and redirects you to the original URL, `localhost:8000/hello`. 1. This time when `localhost:8000/hello` is requested there is a valid session and so the main content is served. Please see `examples/idp/` for a substantially complete example of how to use the library and helpers to be an identity provider. The SAML standard is huge and complex with many dark corners and strange, unused features. This package implements the most commonly used subset of these features required to provide a single sign on experience. The package supports at least the subset of SAML known as [interoperable SAML](http://saml2int.org). This package supports the Web SSO profile. Message flows from the service provider to the IDP are supported using the HTTP Redirect binding and the HTTP POST binding. Message flows from the IDP to the service provider are supported via the HTTP POST binding. The package supports signed and encrypted SAML assertions. It does not support signed or encrypted requests. The *RelayState* parameter allows you to pass user state information across the authentication flow. The most common use for this is to allow a user to request a deep link into your site, be redirected through the SAML login flow, and upon successful completion, be directed to the originaly requested link, rather than the root. Unfortunately, *RelayState* is less useful than it could be. Firstly, it is not authenticated, so anything you supply must be signed to avoid XSS or CSRF. Secondly, it is limited to 80 bytes in length, which precludes signing. (See section 3.6.3.1 of SAMLProfiles.) The SAML specification is a collection of PDFs (sadly): - [SAMLCore](http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf) defines data types. - [SAMLBindings](http://docs.oasis-open.org/security/saml/v2.0/saml-bindings-2.0-os.pdf) defines the details of the HTTP requests in play. - [SAMLProfiles](http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf) describes data flows. - [SAMLConformance](http://docs.oasis-open.org/security/saml/v2.0/saml-conformance-2.0-os.pdf) includes a support matrix for various parts of the protocol. [TestShib](https://www.testshib.org/) is a testing ground for SAML service and identity providers. Please do not report security issues in the issue tracker. Rather, please contact me directly at ross@kndr.org ([PGP Key `8EA205C01C425FF195A5E9A43FA0768F26FD2554`](https://keybase.io/crewjam)).
Package testify is a set of packages that provide many tools for testifying that your code will behave as you intend. testify contains the following packages: The assert package provides a comprehensive set of assertion functions that tie in to the Go testing system. The http package contains tools to make it easier to test http activity using the Go testing system. The mock package provides a system by which it is possible to mock your objects and verify calls are happening as expected. The suite package provides a basic structure for using structs as testing suites, and methods on those structs as tests. It includes setup/teardown functionality in the way of interfaces.
Package saml contains a partial implementation of the SAML standard in golang. SAML is a standard for identity federation, i.e. either allowing a third party to authenticate your users or allowing third parties to rely on us to authenticate their users. In SAML parlance an Identity Provider (IDP) is a service that knows how to authenticate users. A Service Provider (SP) is a service that delegates authentication to an IDP. If you are building a service where users log in with someone else's credentials, then you are a Service Provider. This package supports implementing both service providers and identity providers. The core package contains the implementation of SAML. The package samlsp provides helper middleware suitable for use in Service Provider applications. The package samlidp provides a rudimentary IDP service that is useful for testing or as a starting point for other integrations. Note: between version 0.2.0 and the current master include changes to the API that will break your existing code a little. This change turned some fields from pointers to a single optional struct into the more correct slice of struct, and to pluralize the field name. For example, `IDPSSODescriptor *IDPSSODescriptor` has become `IDPSSODescriptors []IDPSSODescriptor`. This more accurately reflects the standard. The struct `Metadata` has been renamed to `EntityDescriptor`. In 0.2.0 and before, every struct derived from the standard has the same name as in the standard, *except* for `Metadata` which should always have been called `EntityDescriptor`. In various places `url.URL` is now used where `string` was used <= version 0.1.0. In various places where keys and certificates were modeled as `string` <= version 0.1.0 (what was I thinking?!) they are now modeled as `*rsa.PrivateKey`, `*x509.Certificate`, or `crypto.PrivateKey` as appropriate. Let us assume we have a simple web appliation to protect. We'll modify this application so it uses SAML to authenticate users. ```golang package main import "net/http" ``` Each service provider must have an self-signed X.509 key pair established. You can generate your own with something like this: We will use `samlsp.Middleware` to wrap the endpoint we want to protect. Middleware provides both an `http.Handler` to serve the SAML specific URLs and a set of wrappers to require the user to be logged in. We also provide the URL where the service provider can fetch the metadata from the IDP at startup. In our case, we'll use [testshib.org](https://www.testshib.org/), an identity provider designed for testing. ```golang package main import ( ) ``` Next we'll have to register our service provider with the identiy provider to establish trust from the service provider to the IDP. For [testshib.org](https://www.testshib.org/), you can do something like: Naviate to https://www.testshib.org/register.html and upload the file you fetched. Now you should be able to authenticate. The flow should look like this: 1. You browse to `localhost:8000/hello` 1. The middleware redirects you to `https://idp.testshib.org/idp/profile/SAML2/Redirect/SSO` 1. testshib.org prompts you for a username and password. 1. testshib.org returns you an HTML document which contains an HTML form setup to POST to `localhost:8000/saml/acs`. The form is automatically submitted if you have javascript enabled. 1. The local service validates the response, issues a session cookie, and redirects you to the original URL, `localhost:8000/hello`. 1. This time when `localhost:8000/hello` is requested there is a valid session and so the main content is served. Please see `examples/idp/` for a substantially complete example of how to use the library and helpers to be an identity provider. The SAML standard is huge and complex with many dark corners and strange, unused features. This package implements the most commonly used subset of these features required to provide a single sign on experience. The package supports at least the subset of SAML known as [interoperable SAML](http://saml2int.org). This package supports the Web SSO profile. Message flows from the service provider to the IDP are supported using the HTTP Redirect binding and the HTTP POST binding. Message flows from the IDP to the service provider are supported via the HTTP POST binding. The package supports signed and encrypted SAML assertions. It does not support signed or encrypted requests. The *RelayState* parameter allows you to pass user state information across the authentication flow. The most common use for this is to allow a user to request a deep link into your site, be redirected through the SAML login flow, and upon successful completion, be directed to the originaly requested link, rather than the root. Unfortunately, *RelayState* is less useful than it could be. Firstly, it is not authenticated, so anything you supply must be signed to avoid XSS or CSRF. Secondly, it is limited to 80 bytes in length, which precludes signing. (See section 3.6.3.1 of SAMLProfiles.) The SAML specification is a collection of PDFs (sadly): - [SAMLCore](http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf) defines data types. - [SAMLBindings](http://docs.oasis-open.org/security/saml/v2.0/saml-bindings-2.0-os.pdf) defines the details of the HTTP requests in play. - [SAMLProfiles](http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf) describes data flows. - [SAMLConformance](http://docs.oasis-open.org/security/saml/v2.0/saml-conformance-2.0-os.pdf) includes a support matrix for various parts of the protocol. [TestShib](https://www.testshib.org/) is a testing ground for SAML service and identity providers. Please do not report security issues in the issue tracker. Rather, please contact me directly at ross@kndr.org ([PGP Key `8EA205C01C425FF195A5E9A43FA0768F26FD2554`](https://keybase.io/crewjam)).
Package saml contains a partial implementation of the SAML standard in golang. SAML is a standard for identity federation, i.e. either allowing a third party to authenticate your users or allowing third parties to rely on us to authenticate their users. In SAML parlance an Identity Provider (IDP) is a service that knows how to authenticate users. A Service Provider (SP) is a service that delegates authentication to an IDP. If you are building a service where users log in with someone else's credentials, then you are a Service Provider. This package supports implementing both service providers and identity providers. The core package contains the implementation of SAML. The package samlsp provides helper middleware suitable for use in Service Provider applications. The package samlidp provides a rudimentary IDP service that is useful for testing or as a starting point for other integrations. Version 0.4.0 introduces a few breaking changes to the _samlsp_ package in order to make the package more extensible, and to clean up the interfaces a bit. The default behavior remains the same, but you can now provide interface implementations of _RequestTracker_ (which tracks pending requests), _Session_ (which handles maintaining a session) and _OnError_ which handles reporting errors. Public fields of _samlsp.Middleware_ have changed, so some usages may require adjustment. See [issue 231](https://github.com/bneil/saml/issues/231) for details. The option to provide an IDP metadata URL has been deprecated. Instead, we recommend that you use the `FetchMetadata()` function, or fetch the metadata yourself and use the new `ParseMetadata()` function, and pass the metadata in _samlsp.Options.IDPMetadata_. Similarly, the _HTTPClient_ field is now deprecated because it was only used for fetching metdata, which is no longer directly implemented. The fields that manage how cookies are set are deprecated as well. To customize how cookies are managed, provide custom implementation of _RequestTracker_ and/or _Session_, perhaps by extending the default implementations. The deprecated fields have not been removed from the Options structure, but will be in future. In particular we have deprecated the following fields in _samlsp.Options_: - `Logger` - This was used to emit errors while validating, which is an anti-pattern. - `IDPMetadataURL` - Instead use `FetchMetadata()` - `HTTPClient` - Instead pass httpClient to FetchMetadata - `CookieMaxAge` - Instead assign a custom CookieRequestTracker or CookieSessionProvider - `CookieName` - Instead assign a custom CookieRequestTracker or CookieSessionProvider - `CookieDomain` - Instead assign a custom CookieRequestTracker or CookieSessionProvider - `CookieDomain` - Instead assign a custom CookieRequestTracker or CookieSessionProvider Let us assume we have a simple web application to protect. We'll modify this application so it uses SAML to authenticate users. ```golang package main import ( ) ``` Each service provider must have an self-signed X.509 key pair established. You can generate your own with something like this: We will use `samlsp.Middleware` to wrap the endpoint we want to protect. Middleware provides both an `http.Handler` to serve the SAML specific URLs and a set of wrappers to require the user to be logged in. We also provide the URL where the service provider can fetch the metadata from the IDP at startup. In our case, we'll use [samltest.id](https://samltest.id/), an identity provider designed for testing. ```golang package main import ( ) ``` Next we'll have to register our service provider with the identity provider to establish trust from the service provider to the IDP. For [samltest.id](https://samltest.id/), you can do something like: Navigate to https://samltest.id/upload.php and upload the file you fetched. Now you should be able to authenticate. The flow should look like this: 1. You browse to `localhost:8000/hello` 1. The middleware redirects you to `https://samltest.id/idp/profile/SAML2/Redirect/SSO` 1. samltest.id prompts you for a username and password. 1. samltest.id returns you an HTML document which contains an HTML form setup to POST to `localhost:8000/saml/acs`. The form is automatically submitted if you have javascript enabled. 1. The local service validates the response, issues a session cookie, and redirects you to the original URL, `localhost:8000/hello`. 1. This time when `localhost:8000/hello` is requested there is a valid session and so the main content is served. Please see `example/idp/` for a substantially complete example of how to use the library and helpers to be an identity provider. The SAML standard is huge and complex with many dark corners and strange, unused features. This package implements the most commonly used subset of these features required to provide a single sign on experience. The package supports at least the subset of SAML known as [interoperable SAML](http://saml2int.org). This package supports the Web SSO profile. Message flows from the service provider to the IDP are supported using the HTTP Redirect binding and the HTTP POST binding. Message flows from the IDP to the service provider are supported via the HTTP POST binding. The package can produce signed SAML assertions, and can validate both signed and encrypted SAML assertions. It does not support signed or encrypted requests. The _RelayState_ parameter allows you to pass user state information across the authentication flow. The most common use for this is to allow a user to request a deep link into your site, be redirected through the SAML login flow, and upon successful completion, be directed to the originally requested link, rather than the root. Unfortunately, _RelayState_ is less useful than it could be. Firstly, it is not authenticated, so anything you supply must be signed to avoid XSS or CSRF. Secondly, it is limited to 80 bytes in length, which precludes signing. (See section 3.6.3.1 of SAMLProfiles.) The SAML specification is a collection of PDFs (sadly): - [SAMLCore](http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf) defines data types. - [SAMLBindings](http://docs.oasis-open.org/security/saml/v2.0/saml-bindings-2.0-os.pdf) defines the details of the HTTP requests in play. - [SAMLProfiles](http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf) describes data flows. - [SAMLConformance](http://docs.oasis-open.org/security/saml/v2.0/saml-conformance-2.0-os.pdf) includes a support matrix for various parts of the protocol. [SAMLtest](https://samltest.id/) is a testing ground for SAML service and identity providers. Please do not report security issues in the issue tracker. Rather, please contact me directly at ross@kndr.org ([PGP Key `78B6038B3B9DFB88`](https://keybase.io/crewjam)).
Package testify is a set of packages that provide many tools for testifying that your code will behave as you intend. testify contains the following packages: The assert package provides a comprehensive set of assertion functions that tie in to the Go testing system. The http package contains tools to make it easier to test http activity using the Go testing system. The mock package provides a system by which it is possible to mock your objects and verify calls are happening as expected. The suite package provides a basic structure for using structs as testing suites, and methods on those structs as tests. It includes setup/teardown functionality in the way of interfaces.
Package btcrpcclient implements a websocket-enabled Bitcoin JSON-RPC client. This client provides a robust and easy to use client for interfacing with a Bitcoin RPC server that uses a btcd/bitcoin core compatible Bitcoin JSON-RPC API. This client has been tested with btcd (https://github.com/roasbeef/btcd), btcwallet (https://github.com/btcsuite/btcwallet), and bitcoin core (https://github.com/bitcoin). In addition to the compatible standard HTTP POST JSON-RPC API, btcd and btcwallet provide a websocket interface that is more efficient than the standard HTTP POST method of accessing RPC. The section below discusses the differences between HTTP POST and websockets. By default, this client assumes the RPC server supports websockets and has TLS enabled. In practice, this currently means it assumes you are talking to btcd or btcwallet by default. However, configuration options are provided to fall back to HTTP POST and disable TLS to support talking with inferior bitcoin core style RPC servers. In HTTP POST-based JSON-RPC, every request creates a new HTTP connection, issues the call, waits for the response, and closes the connection. This adds quite a bit of overhead to every call and lacks flexibility for features such as notifications. In contrast, the websocket-based JSON-RPC interface provided by btcd and btcwallet only uses a single connection that remains open and allows asynchronous bi-directional communication. The websocket interface supports all of the same commands as HTTP POST, but they can be invoked without having to go through a connect/disconnect cycle for every call. In addition, the websocket interface provides other nice features such as the ability to register for asynchronous notifications of various events. The client provides both a synchronous (blocking) and asynchronous API. The synchronous (blocking) API is typically sufficient for most use cases. It works by issuing the RPC and blocking until the response is received. This allows straightforward code where you have the response as soon as the function returns. The asynchronous API works on the concept of futures. When you invoke the async version of a command, it will quickly return an instance of a type that promises to provide the result of the RPC at some future time. In the background, the RPC call is issued and the result is stored in the returned instance. Invoking the Receive method on the returned instance will either return the result immediately if it has already arrived, or block until it has. This is useful since it provides the caller with greater control over concurrency. The first important part of notifications is to realize that they will only work when connected via websockets. This should intuitively make sense because HTTP POST mode does not keep a connection open! All notifications provided by btcd require registration to opt-in. For example, if you want to be notified when funds are received by a set of addresses, you register the addresses via the NotifyReceived (or NotifyReceivedAsync) function. Notifications are exposed by the client through the use of callback handlers which are setup via a NotificationHandlers instance that is specified by the caller when creating the client. It is important that these notification handlers complete quickly since they are intentionally in the main read loop and will block further reads until they complete. This provides the caller with the flexibility to decide what to do when notifications are coming in faster than they are being handled. In particular this means issuing a blocking RPC call from a callback handler will cause a deadlock as more server responses won't be read until the callback returns, but the callback would be waiting for a response. Thus, any additional RPCs must be issued an a completely decoupled manner. By default, when running in websockets mode, this client will automatically keep trying to reconnect to the RPC server should the connection be lost. There is a back-off in between each connection attempt until it reaches one try per minute. Once a connection is re-established, all previously registered notifications are automatically re-registered and any in-flight commands are re-issued. This means from the caller's perspective, the request simply takes longer to complete. The caller may invoke the Shutdown method on the client to force the client to cease reconnect attempts and return ErrClientShutdown for all outstanding commands. The automatic reconnection can be disabled by setting the DisableAutoReconnect flag to true in the connection config when creating the client. Minor RPC Server Differences and Chain/Wallet Separation Some of the commands are extensions specific to a particular RPC server. For example, the DebugLevel call is an extension only provided by btcd (and btcwallet passthrough). Therefore if you call one of these commands against an RPC server that doesn't provide them, you will get an unimplemented error from the server. An effort has been made to call out which commmands are extensions in their documentation. Also, it is important to realize that btcd intentionally separates the wallet functionality into a separate process named btcwallet. This means if you are connected to the btcd RPC server directly, only the RPCs which are related to chain services will be available. Depending on your application, you might only need chain-related RPCs. In contrast, btcwallet provides pass through treatment for chain-related RPCs, so it supports them in addition to wallet-related RPCs. There are 3 categories of errors that will be returned throughout this package: The first category of errors are typically one of ErrInvalidAuth, ErrInvalidEndpoint, ErrClientDisconnect, or ErrClientShutdown. NOTE: The ErrClientDisconnect will not be returned unless the DisableAutoReconnect flag is set since the client automatically handles reconnect by default as previously described. The second category of errors typically indicates a programmer error and as such the type can vary, but usually will be best handled by simply showing/logging it. The third category of errors, that is errors returned by the server, can be detected by type asserting the error in a *btcjson.RPCError. For example, to detect if a command is unimplemented by the remote RPC server: The following full-blown client examples are in the examples directory:
Package zcashrpcclient implements a websocket-enabled Bitcoin JSON-RPC client. This client provides a robust and easy to use client for interfacing with a Bitcoin RPC server that uses a btcd/bitcoin core compatible Bitcoin JSON-RPC API. This client has been tested with btcd (https://github.com/btcsuite/btcd), btcwallet (https://github.com/btcsuite/btcwallet), and bitcoin core (https://github.com/bitcoin). In addition to the compatible standard HTTP POST JSON-RPC API, btcd and btcwallet provide a websocket interface that is more efficient than the standard HTTP POST method of accessing RPC. The section below discusses the differences between HTTP POST and websockets. By default, this client assumes the RPC server supports websockets and has TLS enabled. In practice, this currently means it assumes you are talking to btcd or btcwallet by default. However, configuration options are provided to fall back to HTTP POST and disable TLS to support talking with inferior bitcoin core style RPC servers. In HTTP POST-based JSON-RPC, every request creates a new HTTP connection, issues the call, waits for the response, and closes the connection. This adds quite a bit of overhead to every call and lacks flexibility for features such as notifications. In contrast, the websocket-based JSON-RPC interface provided by btcd and btcwallet only uses a single connection that remains open and allows asynchronous bi-directional communication. The websocket interface supports all of the same commands as HTTP POST, but they can be invoked without having to go through a connect/disconnect cycle for every call. In addition, the websocket interface provides other nice features such as the ability to register for asynchronous notifications of various events. The client provides both a synchronous (blocking) and asynchronous API. The synchronous (blocking) API is typically sufficient for most use cases. It works by issuing the RPC and blocking until the response is received. This allows straightforward code where you have the response as soon as the function returns. The asynchronous API works on the concept of futures. When you invoke the async version of a command, it will quickly return an instance of a type that promises to provide the result of the RPC at some future time. In the background, the RPC call is issued and the result is stored in the returned instance. Invoking the Receive method on the returned instance will either return the result immediately if it has already arrived, or block until it has. This is useful since it provides the caller with greater control over concurrency. The first important part of notifications is to realize that they will only work when connected via websockets. This should intuitively make sense because HTTP POST mode does not keep a connection open! All notifications provided by btcd require registration to opt-in. For example, if you want to be notified when funds are received by a set of addresses, you register the addresses via the NotifyReceived (or NotifyReceivedAsync) function. Notifications are exposed by the client through the use of callback handlers which are setup via a NotificationHandlers instance that is specified by the caller when creating the client. It is important that these notification handlers complete quickly since they are intentionally in the main read loop and will block further reads until they complete. This provides the caller with the flexibility to decide what to do when notifications are coming in faster than they are being handled. In particular this means issuing a blocking RPC call from a callback handler will cause a deadlock as more server responses won't be read until the callback returns, but the callback would be waiting for a response. Thus, any additional RPCs must be issued an a completely decoupled manner. By default, when running in websockets mode, this client will automatically keep trying to reconnect to the RPC server should the connection be lost. There is a back-off in between each connection attempt until it reaches one try per minute. Once a connection is re-established, all previously registered notifications are automatically re-registered and any in-flight commands are re-issued. This means from the caller's perspective, the request simply takes longer to complete. The caller may invoke the Shutdown method on the client to force the client to cease reconnect attempts and return ErrClientShutdown for all outstanding commands. The automatic reconnection can be disabled by setting the DisableAutoReconnect flag to true in the connection config when creating the client. Minor RPC Server Differences and Chain/Wallet Separation Some of the commands are extensions specific to a particular RPC server. For example, the DebugLevel call is an extension only provided by btcd (and btcwallet passthrough). Therefore if you call one of these commands against an RPC server that doesn't provide them, you will get an unimplemented error from the server. An effort has been made to call out which commmands are extensions in their documentation. Also, it is important to realize that btcd intentionally separates the wallet functionality into a separate process named btcwallet. This means if you are connected to the btcd RPC server directly, only the RPCs which are related to chain services will be available. Depending on your application, you might only need chain-related RPCs. In contrast, btcwallet provides pass through treatment for chain-related RPCs, so it supports them in addition to wallet-related RPCs. There are 3 categories of errors that will be returned throughout this package: The first category of errors are typically one of ErrInvalidAuth, ErrInvalidEndpoint, ErrClientDisconnect, or ErrClientShutdown. NOTE: The ErrClientDisconnect will not be returned unless the DisableAutoReconnect flag is set since the client automatically handles reconnect by default as previously described. The second category of errors typically indicates a programmer error and as such the type can vary, but usually will be best handled by simply showing/logging it. The third category of errors, that is errors returned by the server, can be detected by type asserting the error in a *btcjson.RPCError. For example, to detect if a command is unimplemented by the remote RPC server: The following full-blown client examples are in the examples directory:
Package zcashrpcclient implements a websocket-enabled Bitcoin JSON-RPC client. This client provides a robust and easy to use client for interfacing with a Bitcoin RPC server that uses a btcd/bitcoin core compatible Bitcoin JSON-RPC API. This client has been tested with btcd (https://github.com/btcsuite/btcd), btcwallet (https://github.com/btcsuite/btcwallet), and bitcoin core (https://github.com/bitcoin). In addition to the compatible standard HTTP POST JSON-RPC API, btcd and btcwallet provide a websocket interface that is more efficient than the standard HTTP POST method of accessing RPC. The section below discusses the differences between HTTP POST and websockets. By default, this client assumes the RPC server supports websockets and has TLS enabled. In practice, this currently means it assumes you are talking to btcd or btcwallet by default. However, configuration options are provided to fall back to HTTP POST and disable TLS to support talking with inferior bitcoin core style RPC servers. In HTTP POST-based JSON-RPC, every request creates a new HTTP connection, issues the call, waits for the response, and closes the connection. This adds quite a bit of overhead to every call and lacks flexibility for features such as notifications. In contrast, the websocket-based JSON-RPC interface provided by btcd and btcwallet only uses a single connection that remains open and allows asynchronous bi-directional communication. The websocket interface supports all of the same commands as HTTP POST, but they can be invoked without having to go through a connect/disconnect cycle for every call. In addition, the websocket interface provides other nice features such as the ability to register for asynchronous notifications of various events. The client provides both a synchronous (blocking) and asynchronous API. The synchronous (blocking) API is typically sufficient for most use cases. It works by issuing the RPC and blocking until the response is received. This allows straightforward code where you have the response as soon as the function returns. The asynchronous API works on the concept of futures. When you invoke the async version of a command, it will quickly return an instance of a type that promises to provide the result of the RPC at some future time. In the background, the RPC call is issued and the result is stored in the returned instance. Invoking the Receive method on the returned instance will either return the result immediately if it has already arrived, or block until it has. This is useful since it provides the caller with greater control over concurrency. The first important part of notifications is to realize that they will only work when connected via websockets. This should intuitively make sense because HTTP POST mode does not keep a connection open! All notifications provided by btcd require registration to opt-in. For example, if you want to be notified when funds are received by a set of addresses, you register the addresses via the NotifyReceived (or NotifyReceivedAsync) function. Notifications are exposed by the client through the use of callback handlers which are setup via a NotificationHandlers instance that is specified by the caller when creating the client. It is important that these notification handlers complete quickly since they are intentionally in the main read loop and will block further reads until they complete. This provides the caller with the flexibility to decide what to do when notifications are coming in faster than they are being handled. In particular this means issuing a blocking RPC call from a callback handler will cause a deadlock as more server responses won't be read until the callback returns, but the callback would be waiting for a response. Thus, any additional RPCs must be issued an a completely decoupled manner. By default, when running in websockets mode, this client will automatically keep trying to reconnect to the RPC server should the connection be lost. There is a back-off in between each connection attempt until it reaches one try per minute. Once a connection is re-established, all previously registered notifications are automatically re-registered and any in-flight commands are re-issued. This means from the caller's perspective, the request simply takes longer to complete. The caller may invoke the Shutdown method on the client to force the client to cease reconnect attempts and return ErrClientShutdown for all outstanding commands. The automatic reconnection can be disabled by setting the DisableAutoReconnect flag to true in the connection config when creating the client. Minor RPC Server Differences and Chain/Wallet Separation Some of the commands are extensions specific to a particular RPC server. For example, the DebugLevel call is an extension only provided by btcd (and btcwallet passthrough). Therefore if you call one of these commands against an RPC server that doesn't provide them, you will get an unimplemented error from the server. An effort has been made to call out which commmands are extensions in their documentation. Also, it is important to realize that btcd intentionally separates the wallet functionality into a separate process named btcwallet. This means if you are connected to the btcd RPC server directly, only the RPCs which are related to chain services will be available. Depending on your application, you might only need chain-related RPCs. In contrast, btcwallet provides pass through treatment for chain-related RPCs, so it supports them in addition to wallet-related RPCs. There are 3 categories of errors that will be returned throughout this package: The first category of errors are typically one of ErrInvalidAuth, ErrInvalidEndpoint, ErrClientDisconnect, or ErrClientShutdown. NOTE: The ErrClientDisconnect will not be returned unless the DisableAutoReconnect flag is set since the client automatically handles reconnect by default as previously described. The second category of errors typically indicates a programmer error and as such the type can vary, but usually will be best handled by simply showing/logging it. The third category of errors, that is errors returned by the server, can be detected by type asserting the error in a *btcjson.RPCError. For example, to detect if a command is unimplemented by the remote RPC server: The following full-blown client examples are in the examples directory:
Package rpcclient implements a websocket-enabled Decred JSON-RPC client. This client provides a robust and easy to use client for interfacing with a Decred RPC server that uses a mostly btcd/bitcoin core style Decred JSON-RPC API. This client has been tested with dcrd (https://github.com/decred/dcrd) and dcrwallet (https://github.com/decred/dcrwallet). In addition to the compatible standard HTTP POST JSON-RPC API, dcrd and dcrwallet provide a websocket interface that is more efficient than the standard HTTP POST method of accessing RPC. The section below discusses the differences between HTTP POST and websockets. By default, this client assumes the RPC server supports websockets and has TLS enabled. In practice, this currently means it assumes you are talking to dcrd or dcrwallet by default. However, configuration options are provided to fall back to HTTP POST and disable TLS to support talking with inferior bitcoin core style RPC servers. In HTTP POST-based JSON-RPC, every request creates a new HTTP connection, issues the call, waits for the response, and closes the connection. This adds quite a bit of overhead to every call and lacks flexibility for features such as notifications. In contrast, the websocket-based JSON-RPC interface provided by dcrd and dcrwallet only uses a single connection that remains open and allows asynchronous bi-directional communication. The websocket interface supports all of the same commands as HTTP POST, but they can be invoked without having to go through a connect/disconnect cycle for every call. In addition, the websocket interface provides other nice features such as the ability to register for asynchronous notifications of various events. The client provides both a synchronous (blocking) and asynchronous API. The synchronous (blocking) API is typically sufficient for most use cases. It works by issuing the RPC and blocking until the response is received. This allows straightforward code where you have the response as soon as the function returns. The asynchronous API works on the concept of futures. When you invoke the async version of a command, it will quickly return an instance of a type that promises to provide the result of the RPC at some future time. In the background, the RPC call is issued and the result is stored in the returned instance. Invoking the Receive method on the returned instance will either return the result immediately if it has already arrived, or block until it has. This is useful since it provides the caller with greater control over concurrency. The first important part of notifications is to realize that they will only work when connected via websockets. This should intuitively make sense because HTTP POST mode does not keep a connection open! All notifications provided by dcrd require registration to opt-in. For example, if you want to be notified when funds are received by a set of addresses, you register the addresses via the NotifyReceived (or NotifyReceivedAsync) function. Notifications are exposed by the client through the use of callback handlers which are setup via a NotificationHandlers instance that is specified by the caller when creating the client. It is important that these notification handlers complete quickly since they are intentionally in the main read loop and will block further reads until they complete. This provides the caller with the flexibility to decide what to do when notifications are coming in faster than they are being handled. In particular this means issuing a blocking RPC call from a callback handler will cause a deadlock as more server responses won't be read until the callback returns, but the callback would be waiting for a response. Thus, any additional RPCs must be issued an a completely decoupled manner. By default, when running in websockets mode, this client will automatically keep trying to reconnect to the RPC server should the connection be lost. There is a back-off in between each connection attempt until it reaches one try per minute. Once a connection is re-established, all previously registered notifications are automatically re-registered and any in-flight commands are re-issued. This means from the caller's perspective, the request simply takes longer to complete. The caller may invoke the Shutdown method on the client to force the client to cease reconnect attempts and return ErrClientShutdown for all outstanding commands. The automatic reconnection can be disabled by setting the DisableAutoReconnect flag to true in the connection config when creating the client. This package only provides methods for dcrd RPCs. Using the websocket connection and request-response mapping provided by rpcclient with arbitrary methods or different servers is possible through the generic RawRequest and RawRequestAsync methods (each of which deal with json.RawMessage for parameters and return results). Previous versions of this package provided methods for dcrwallet's JSON-RPC server in addition to dcrd. These were removed in major version 6 of this module. Projects depending on these calls are advised to use the decred.org/dcrwallet/rpc/client/dcrwallet package which is able to wrap rpcclient.Client using the aforementioned RawRequest method: Using struct embedding, it is possible to create a single variable with the combined method sets of both rpcclient.Client and dcrwallet.Client: This technique is valuable as dcrwallet (syncing in RPC mode) will passthrough any unknown RPCs to the backing dcrd server, proxying requests and responses for the client. There are 3 categories of errors that will be returned throughout this package: The first category of errors are typically one of ErrInvalidAuth, ErrInvalidEndpoint, ErrClientDisconnect, or ErrClientShutdown. NOTE: The ErrClientDisconnect will not be returned unless the DisableAutoReconnect flag is set since the client automatically handles reconnect by default as previously described. The second category of errors typically indicates a programmer error and as such the type can vary, but usually will be best handled by simply showing/logging it. The third category of errors, that is errors returned by the server, can be detected by type asserting the error in a *dcrjson.RPCError. For example, to detect if a command is unimplemented by the remote RPC server: The following full-blown client examples are in the examples directory:
Package testify is a set of packages that provide many tools for testifying that your code will behave as you intend. testify contains the following packages: The assert package provides a comprehensive set of assertion functions that tie in to the Go testing system. The http package contains tools to make it easier to test http activity using the Go testing system. The mock package provides a system by which it is possible to mock your objects and verify calls are happening as expected. The suite package provides a basic structure for using structs as testing suites, and methods on those structs as tests. It includes setup/teardown functionality in the way of interfaces.
Package anaconda provides structs and functions for accessing version 1.1 of the Twitter API. Successful API queries return native Go structs that can be used immediately, with no need for type assertions. If you already have the access token (and secret) for your user (Twitter provides this for your own account on the developer portal), creating the client is simple: Executing queries on an authenticated TwitterApi struct is simple. Certain endpoints allow separate optional parameter; if desired, these can be passed as the final parameter. Anaconda implements most of the endpoints defined in the Twitter API documentation: https://dev.twitter.com/docs/api/1.1. For clarity, in most cases, the function name is simply the name of the HTTP method and the endpoint (e.g., the endpoint `GET /friendships/incoming` is provided by the function `GetFriendshipsIncoming`). In a few cases, a shortened form has been chosen to make life easier (for example, retweeting is simply the function `Retweet`) More detailed information about the behavior of each particular endpoint can be found at the official Twitter API documentation.
Package zcashrpcclient implements a websocket-enabled Bitcoin JSON-RPC client. This client provides a robust and easy to use client for interfacing with a Bitcoin RPC server that uses a btcd/bitcoin core compatible Bitcoin JSON-RPC API. This client has been tested with btcd (https://github.com/btcsuite/btcd), btcwallet (https://github.com/btcsuite/btcwallet), and bitcoin core (https://github.com/bitcoin). In addition to the compatible standard HTTP POST JSON-RPC API, btcd and btcwallet provide a websocket interface that is more efficient than the standard HTTP POST method of accessing RPC. The section below discusses the differences between HTTP POST and websockets. By default, this client assumes the RPC server supports websockets and has TLS enabled. In practice, this currently means it assumes you are talking to btcd or btcwallet by default. However, configuration options are provided to fall back to HTTP POST and disable TLS to support talking with inferior bitcoin core style RPC servers. In HTTP POST-based JSON-RPC, every request creates a new HTTP connection, issues the call, waits for the response, and closes the connection. This adds quite a bit of overhead to every call and lacks flexibility for features such as notifications. In contrast, the websocket-based JSON-RPC interface provided by btcd and btcwallet only uses a single connection that remains open and allows asynchronous bi-directional communication. The websocket interface supports all of the same commands as HTTP POST, but they can be invoked without having to go through a connect/disconnect cycle for every call. In addition, the websocket interface provides other nice features such as the ability to register for asynchronous notifications of various events. The client provides both a synchronous (blocking) and asynchronous API. The synchronous (blocking) API is typically sufficient for most use cases. It works by issuing the RPC and blocking until the response is received. This allows straightforward code where you have the response as soon as the function returns. The asynchronous API works on the concept of futures. When you invoke the async version of a command, it will quickly return an instance of a type that promises to provide the result of the RPC at some future time. In the background, the RPC call is issued and the result is stored in the returned instance. Invoking the Receive method on the returned instance will either return the result immediately if it has already arrived, or block until it has. This is useful since it provides the caller with greater control over concurrency. The first important part of notifications is to realize that they will only work when connected via websockets. This should intuitively make sense because HTTP POST mode does not keep a connection open! All notifications provided by btcd require registration to opt-in. For example, if you want to be notified when funds are received by a set of addresses, you register the addresses via the NotifyReceived (or NotifyReceivedAsync) function. Notifications are exposed by the client through the use of callback handlers which are setup via a NotificationHandlers instance that is specified by the caller when creating the client. It is important that these notification handlers complete quickly since they are intentionally in the main read loop and will block further reads until they complete. This provides the caller with the flexibility to decide what to do when notifications are coming in faster than they are being handled. In particular this means issuing a blocking RPC call from a callback handler will cause a deadlock as more server responses won't be read until the callback returns, but the callback would be waiting for a response. Thus, any additional RPCs must be issued an a completely decoupled manner. By default, when running in websockets mode, this client will automatically keep trying to reconnect to the RPC server should the connection be lost. There is a back-off in between each connection attempt until it reaches one try per minute. Once a connection is re-established, all previously registered notifications are automatically re-registered and any in-flight commands are re-issued. This means from the caller's perspective, the request simply takes longer to complete. The caller may invoke the Shutdown method on the client to force the client to cease reconnect attempts and return ErrClientShutdown for all outstanding commands. The automatic reconnection can be disabled by setting the DisableAutoReconnect flag to true in the connection config when creating the client. Minor RPC Server Differences and Chain/Wallet Separation Some of the commands are extensions specific to a particular RPC server. For example, the DebugLevel call is an extension only provided by btcd (and btcwallet passthrough). Therefore if you call one of these commands against an RPC server that doesn't provide them, you will get an unimplemented error from the server. An effort has been made to call out which commmands are extensions in their documentation. Also, it is important to realize that btcd intentionally separates the wallet functionality into a separate process named btcwallet. This means if you are connected to the btcd RPC server directly, only the RPCs which are related to chain services will be available. Depending on your application, you might only need chain-related RPCs. In contrast, btcwallet provides pass through treatment for chain-related RPCs, so it supports them in addition to wallet-related RPCs. There are 3 categories of errors that will be returned throughout this package: The first category of errors are typically one of ErrInvalidAuth, ErrInvalidEndpoint, ErrClientDisconnect, or ErrClientShutdown. NOTE: The ErrClientDisconnect will not be returned unless the DisableAutoReconnect flag is set since the client automatically handles reconnect by default as previously described. The second category of errors typically indicates a programmer error and as such the type can vary, but usually will be best handled by simply showing/logging it. The third category of errors, that is errors returned by the server, can be detected by type asserting the error in a *btcjson.RPCError. For example, to detect if a command is unimplemented by the remote RPC server: The following full-blown client examples are in the examples directory:
Package saml contains a partial implementation of the SAML standard in golang. SAML is a standard for identity federation, i.e. either allowing a third party to authenticate your users or allowing third parties to rely on us to authenticate their users. In SAML parlance an Identity Provider (IDP) is a service that knows how to authenticate users. A Service Provider (SP) is a service that delegates authentication to an IDP. If you are building a service where users log in with someone else's credentials, then you are a Service Provider. This package supports implementing both service providers and identity providers. The core package contains the implementation of SAML. The package samlsp provides helper middleware suitable for use in Service Provider applications. The package samlidp provides a rudimentary IDP service that is useful for testing or as a starting point for other integrations. Note: between version 0.2.0 and the current master include changes to the API that will break your existing code a little. This change turned some fields from pointers to a single optional struct into the more correct slice of struct, and to pluralize the field name. For example, `IDPSSODescriptor *IDPSSODescriptor` has become `IDPSSODescriptors []IDPSSODescriptor`. This more accurately reflects the standard. The struct `Metadata` has been renamed to `EntityDescriptor`. In 0.2.0 and before, every struct derived from the standard has the same name as in the standard, *except* for `Metadata` which should always have been called `EntityDescriptor`. In various places `url.URL` is now used where `string` was used <= version 0.1.0. In various places where keys and certificates were modeled as `string` <= version 0.1.0 (what was I thinking?!) they are now modeled as `*rsa.PrivateKey`, `*x509.Certificate`, or `crypto.PrivateKey` as appropriate. Let us assume we have a simple web appliation to protect. We'll modify this application so it uses SAML to authenticate users. ```golang package main import "net/http" ``` Each service provider must have an self-signed X.509 key pair established. You can generate your own with something like this: We will use `samlsp.Middleware` to wrap the endpoint we want to protect. Middleware provides both an `http.Handler` to serve the SAML specific URLs and a set of wrappers to require the user to be logged in. We also provide the URL where the service provider can fetch the metadata from the IDP at startup. In our case, we'll use [testshib.org](https://www.testshib.org/), an identity provider designed for testing. ```golang package main import ( ) ``` Next we'll have to register our service provider with the identiy provider to establish trust from the service provider to the IDP. For [testshib.org](https://www.testshib.org/), you can do something like: Naviate to https://www.testshib.org/register.html and upload the file you fetched. Now you should be able to authenticate. The flow should look like this: 1. You browse to `localhost:8000/hello` 1. The middleware redirects you to `https://idp.testshib.org/idp/profile/SAML2/Redirect/SSO` 1. testshib.org prompts you for a username and password. 1. testshib.org returns you an HTML document which contains an HTML form setup to POST to `localhost:8000/saml/acs`. The form is automatically submitted if you have javascript enabled. 1. The local service validates the response, issues a session cookie, and redirects you to the original URL, `localhost:8000/hello`. 1. This time when `localhost:8000/hello` is requested there is a valid session and so the main content is served. Please see `examples/idp/` for a substantially complete example of how to use the library and helpers to be an identity provider. The SAML standard is huge and complex with many dark corners and strange, unused features. This package implements the most commonly used subset of these features required to provide a single sign on experience. The package supports at least the subset of SAML known as [interoperable SAML](http://saml2int.org). This package supports the Web SSO profile. Message flows from the service provider to the IDP are supported using the HTTP Redirect binding and the HTTP POST binding. Message flows from the IDP to the service provider are supported via the HTTP POST binding. The package supports signed and encrypted SAML assertions. It does not support signed or encrypted requests. The *RelayState* parameter allows you to pass user state information across the authentication flow. The most common use for this is to allow a user to request a deep link into your site, be redirected through the SAML login flow, and upon successful completion, be directed to the originaly requested link, rather than the root. Unfortunately, *RelayState* is less useful than it could be. Firstly, it is not authenticated, so anything you supply must be signed to avoid XSS or CSRF. Secondly, it is limited to 80 bytes in length, which precludes signing. (See section 3.6.3.1 of SAMLProfiles.) The SAML specification is a collection of PDFs (sadly): - [SAMLCore](http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf) defines data types. - [SAMLBindings](http://docs.oasis-open.org/security/saml/v2.0/saml-bindings-2.0-os.pdf) defines the details of the HTTP requests in play. - [SAMLProfiles](http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf) describes data flows. - [SAMLConformance](http://docs.oasis-open.org/security/saml/v2.0/saml-conformance-2.0-os.pdf) includes a support matrix for various parts of the protocol. [TestShib](https://www.testshib.org/) is a testing ground for SAML service and identity providers. Please do not report security issues in the issue tracker. Rather, please contact me directly at ross@kndr.org ([PGP Key `8EA205C01C425FF195A5E9A43FA0768F26FD2554`](https://keybase.io/tbugai)).
Package anaconda provides structs and functions for accessing version 1.1 of the Twitter API. Successful API queries return native Go structs that can be used immediately, with no need for type assertions. If you already have the access token (and secret) for your user (Twitter provides this for your own account on the developer portal), creating the client is simple: Executing queries on an authenticated TwitterApi struct is simple. Certain endpoints allow separate optional parameter; if desired, these can be passed as the final parameter. Anaconda implements most of the endpoints defined in the Twitter API documentation: https://dev.twitter.com/docs/api/1.1. For clarity, in most cases, the function name is simply the name of the HTTP method and the endpoint (e.g., the endpoint `GET /friendships/incoming` is provided by the function `GetFriendshipsIncoming`). In a few cases, a shortened form has been chosen to make life easier (for example, retweeting is simply the function `Retweet`) More detailed information about the behavior of each particular endpoint can be found at the official Twitter API documentation.
Package testify is a set of packages that provide many tools for testifying that your code will behave as you intend. testify contains the following packages: The assert package provides a comprehensive set of assertion functions that tie in to the Go testing system. The http package contains tools to make it easier to test http activity using the Go testing system. The mock package provides a system by which it is possible to mock your objects and verify calls are happening as expected. The suite package provides a basic structure for using structs as testing suites, and methods on those structs as tests. It includes setup/teardown functionality in the way of interfaces.
Package anaconda provides structs and functions for accessing version 1.1 of the Twitter API. Successful API queries return native Go structs that can be used immediately, with no need for type assertions. If you already have the access token (and secret) for your user (Twitter provides this for your own account on the developer portal), creating the client is simple: Executing queries on an authenticated TwitterApi struct is simple. Certain endpoints allow separate optional parameter; if desired, these can be passed as the final parameter. Anaconda implements most of the endpoints defined in the Twitter API documentation: https://dev.twitter.com/docs/api/1.1. For clarity, in most cases, the function name is simply the name of the HTTP method and the endpoint (e.g., the endpoint `GET /friendships/incoming` is provided by the function `GetFriendshipsIncoming`). In a few cases, a shortened form has been chosen to make life easier (for example, retweeting is simply the function `Retweet`) More detailed information about the behavior of each particular endpoint can be found at the official Twitter API documentation.
Package saml contains a partial implementation of the SAML standard in golang. SAML is a standard for identity federation, i.e. either allowing a third party to authenticate your users or allowing third parties to rely on us to authenticate their users. In SAML parlance an Identity Provider (IDP) is a service that knows how to authenticate users. A Service Provider (SP) is a service that delegates authentication to an IDP. If you are building a service where users log in with someone else's credentials, then you are a Service Provider. This package supports implementing both service providers and identity providers. The core package contains the implementation of SAML. The package samlsp provides helper middleware suitable for use in Service Provider applications. The package samlidp provides a rudimentary IDP service that is useful for testing or as a starting point for other integrations. Note: between version 0.2.0 and the current master include changes to the API that will break your existing code a little. This change turned some fields from pointers to a single optional struct into the more correct slice of struct, and to pluralize the field name. For example, `IDPSSODescriptor *IDPSSODescriptor` has become `IDPSSODescriptors []IDPSSODescriptor`. This more accurately reflects the standard. The struct `Metadata` has been renamed to `EntityDescriptor`. In 0.2.0 and before, every struct derived from the standard has the same name as in the standard, *except* for `Metadata` which should always have been called `EntityDescriptor`. In various places `url.URL` is now used where `string` was used <= version 0.1.0. In various places where keys and certificates were modeled as `string` <= version 0.1.0 (what was I thinking?!) they are now modeled as `*rsa.PrivateKey`, `*x509.Certificate`, or `crypto.PrivateKey` as appropriate. Let us assume we have a simple web appliation to protect. We'll modify this application so it uses SAML to authenticate users. ```golang package main import "net/http" ``` Each service provider must have an self-signed X.509 key pair established. You can generate your own with something like this: We will use `samlsp.Middleware` to wrap the endpoint we want to protect. Middleware provides both an `http.Handler` to serve the SAML specific URLs and a set of wrappers to require the user to be logged in. We also provide the URL where the service provider can fetch the metadata from the IDP at startup. In our case, we'll use [testshib.org](https://www.testshib.org/), an identity provider designed for testing. ```golang package main import ( ) ``` Next we'll have to register our service provider with the identiy provider to establish trust from the service provider to the IDP. For [testshib.org](https://www.testshib.org/), you can do something like: Naviate to https://www.testshib.org/register.html and upload the file you fetched. Now you should be able to authenticate. The flow should look like this: 1. You browse to `localhost:8000/hello` 1. The middleware redirects you to `https://idp.testshib.org/idp/profile/SAML2/Redirect/SSO` 1. testshib.org prompts you for a username and password. 1. testshib.org returns you an HTML document which contains an HTML form setup to POST to `localhost:8000/saml/acs`. The form is automatically submitted if you have javascript enabled. 1. The local service validates the response, issues a session cookie, and redirects you to the original URL, `localhost:8000/hello`. 1. This time when `localhost:8000/hello` is requested there is a valid session and so the main content is served. Please see `examples/idp/` for a substantially complete example of how to use the library and helpers to be an identity provider. The SAML standard is huge and complex with many dark corners and strange, unused features. This package implements the most commonly used subset of these features required to provide a single sign on experience. The package supports at least the subset of SAML known as [interoperable SAML](http://saml2int.org). This package supports the Web SSO profile. Message flows from the service provider to the IDP are supported using the HTTP Redirect binding and the HTTP POST binding. Message flows from the IDP to the service provider are supported via the HTTP POST binding. The package supports signed and encrypted SAML assertions. It does not support signed or encrypted requests. The *RelayState* parameter allows you to pass user state information across the authentication flow. The most common use for this is to allow a user to request a deep link into your site, be redirected through the SAML login flow, and upon successful completion, be directed to the originally requested link, rather than the root. Unfortunately, *RelayState* is less useful than it could be. Firstly, it is not authenticated, so anything you supply must be signed to avoid XSS or CSRF. Secondly, it is limited to 80 bytes in length, which precludes signing. (See section 3.6.3.1 of SAMLProfiles.) The SAML specification is a collection of PDFs (sadly): - [SAMLCore](http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf) defines data types. - [SAMLBindings](http://docs.oasis-open.org/security/saml/v2.0/saml-bindings-2.0-os.pdf) defines the details of the HTTP requests in play. - [SAMLProfiles](http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf) describes data flows. - [SAMLConformance](http://docs.oasis-open.org/security/saml/v2.0/saml-conformance-2.0-os.pdf) includes a support matrix for various parts of the protocol. [TestShib](https://www.testshib.org/) is a testing ground for SAML service and identity providers. Please do not report security issues in the issue tracker. Rather, please contact me directly at ross@kndr.org ([PGP Key `8EA205C01C425FF195A5E9A43FA0768F26FD2554`](https://keybase.io/crewjam)).
Package saml contains a partial implementation of the SAML standard in golang. SAML is a standard for identity federation, i.e. either allowing a third party to authenticate your users or allowing third parties to rely on us to authenticate their users. In SAML parlance an Identity Provider (IDP) is a service that knows how to authenticate users. A Service Provider (SP) is a service that delegates authentication to an IDP. If you are building a service where users log in with someone else's credentials, then you are a Service Provider. This package supports implementing both service providers and identity providers. The core package contains the implementation of SAML. The package samlsp provides helper middleware suitable for use in Service Provider applications. The package samlidp provides a rudimentary IDP service that is useful for testing or as a starting point for other integrations. Note: between version 0.2.0 and the current master include changes to the API that will break your existing code a little. This change turned some fields from pointers to a single optional struct into the more correct slice of struct, and to pluralize the field name. For example, `IDPSSODescriptor *IDPSSODescriptor` has become `IDPSSODescriptors []IDPSSODescriptor`. This more accurately reflects the standard. The struct `Metadata` has been renamed to `EntityDescriptor`. In 0.2.0 and before, every struct derived from the standard has the same name as in the standard, *except* for `Metadata` which should always have been called `EntityDescriptor`. In various places `url.URL` is now used where `string` was used <= version 0.1.0. In various places where keys and certificates were modeled as `string` <= version 0.1.0 (what was I thinking?!) they are now modeled as `*rsa.PrivateKey`, `*x509.Certificate`, or `crypto.PrivateKey` as appropriate. Let us assume we have a simple web appliation to protect. We'll modify this application so it uses SAML to authenticate users. ```golang package main import "net/http" ``` Each service provider must have an self-signed X.509 key pair established. You can generate your own with something like this: We will use `samlsp.Middleware` to wrap the endpoint we want to protect. Middleware provides both an `http.Handler` to serve the SAML specific URLs and a set of wrappers to require the user to be logged in. We also provide the URL where the service provider can fetch the metadata from the IDP at startup. In our case, we'll use [testshib.org](https://www.testshib.org/), an identity provider designed for testing. ```golang package main import ( ) ``` Next we'll have to register our service provider with the identiy provider to establish trust from the service provider to the IDP. For [testshib.org](https://www.testshib.org/), you can do something like: Naviate to https://www.testshib.org/register.html and upload the file you fetched. Now you should be able to authenticate. The flow should look like this: 1. You browse to `localhost:8000/hello` 1. The middleware redirects you to `https://idp.testshib.org/idp/profile/SAML2/Redirect/SSO` 1. testshib.org prompts you for a username and password. 1. testshib.org returns you an HTML document which contains an HTML form setup to POST to `localhost:8000/saml/acs`. The form is automatically submitted if you have javascript enabled. 1. The local service validates the response, issues a session cookie, and redirects you to the original URL, `localhost:8000/hello`. 1. This time when `localhost:8000/hello` is requested there is a valid session and so the main content is served. Please see `examples/idp/` for a substantially complete example of how to use the library and helpers to be an identity provider. The SAML standard is huge and complex with many dark corners and strange, unused features. This package implements the most commonly used subset of these features required to provide a single sign on experience. The package supports at least the subset of SAML known as [interoperable SAML](http://saml2int.org). This package supports the Web SSO profile. Message flows from the service provider to the IDP are supported using the HTTP Redirect binding and the HTTP POST binding. Message flows from the IDP to the service provider are supported via the HTTP POST binding. The package supports signed and encrypted SAML assertions. It does not support signed or encrypted requests. The *RelayState* parameter allows you to pass user state information across the authentication flow. The most common use for this is to allow a user to request a deep link into your site, be redirected through the SAML login flow, and upon successful completion, be directed to the originaly requested link, rather than the root. Unfortunately, *RelayState* is less useful than it could be. Firstly, it is not authenticated, so anything you supply must be signed to avoid XSS or CSRF. Secondly, it is limited to 80 bytes in length, which precludes signing. (See section 3.6.3.1 of SAMLProfiles.) The SAML specification is a collection of PDFs (sadly): - [SAMLCore](http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf) defines data types. - [SAMLBindings](http://docs.oasis-open.org/security/saml/v2.0/saml-bindings-2.0-os.pdf) defines the details of the HTTP requests in play. - [SAMLProfiles](http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf) describes data flows. - [SAMLConformance](http://docs.oasis-open.org/security/saml/v2.0/saml-conformance-2.0-os.pdf) includes a support matrix for various parts of the protocol. [TestShib](https://www.testshib.org/) is a testing ground for SAML service and identity providers. Please do not report security issues in the issue tracker. Rather, please contact me directly at ross@kndr.org ([PGP Key `8EA205C01C425FF195A5E9A43FA0768F26FD2554`](https://keybase.io/crewjam)).
Package saml contains a partial implementation of the SAML standard in golang. SAML is a standard for identity federation, i.e. either allowing a third party to authenticate your users or allowing third parties to rely on us to authenticate their users. In SAML parlance an Identity Provider (IDP) is a service that knows how to authenticate users. A Service Provider (SP) is a service that delegates authentication to an IDP. If you are building a service where users log in with someone else's credentials, then you are a Service Provider. This package supports implementing both service providers and identity providers. The core package contains the implementation of SAML. The package samlsp provides helper middleware suitable for use in Service Provider applications. The package samlidp provides a rudimentary IDP service that is useful for testing or as a starting point for other integrations. Note: between version 0.2.0 and the current master include changes to the API that will break your existing code a little. This change turned some fields from pointers to a single optional struct into the more correct slice of struct, and to pluralize the field name. For example, `IDPSSODescriptor *IDPSSODescriptor` has become `IDPSSODescriptors []IDPSSODescriptor`. This more accurately reflects the standard. The struct `Metadata` has been renamed to `EntityDescriptor`. In 0.2.0 and before, every struct derived from the standard has the same name as in the standard, *except* for `Metadata` which should always have been called `EntityDescriptor`. In various places `url.URL` is now used where `string` was used <= version 0.1.0. In various places where keys and certificates were modeled as `string` <= version 0.1.0 (what was I thinking?!) they are now modeled as `*rsa.PrivateKey`, `*x509.Certificate`, or `crypto.PrivateKey` as appropriate. Let us assume we have a simple web appliation to protect. We'll modify this application so it uses SAML to authenticate users. ```golang package main import "net/http" ``` Each service provider must have an self-signed X.509 key pair established. You can generate your own with something like this: We will use `samlsp.Middleware` to wrap the endpoint we want to protect. Middleware provides both an `http.Handler` to serve the SAML specific URLs and a set of wrappers to require the user to be logged in. We also provide the URL where the service provider can fetch the metadata from the IDP at startup. In our case, we'll use [testshib.org](https://www.testshib.org/), an identity provider designed for testing. ```golang package main import ( ) ``` Next we'll have to register our service provider with the identiy provider to establish trust from the service provider to the IDP. For [testshib.org](https://www.testshib.org/), you can do something like: Naviate to https://www.testshib.org/register.html and upload the file you fetched. Now you should be able to authenticate. The flow should look like this: 1. You browse to `localhost:8000/hello` 1. The middleware redirects you to `https://idp.testshib.org/idp/profile/SAML2/Redirect/SSO` 1. testshib.org prompts you for a username and password. 1. testshib.org returns you an HTML document which contains an HTML form setup to POST to `localhost:8000/saml/acs`. The form is automatically submitted if you have javascript enabled. 1. The local service validates the response, issues a session cookie, and redirects you to the original URL, `localhost:8000/hello`. 1. This time when `localhost:8000/hello` is requested there is a valid session and so the main content is served. Please see `examples/idp/` for a substantially complete example of how to use the library and helpers to be an identity provider. The SAML standard is huge and complex with many dark corners and strange, unused features. This package implements the most commonly used subset of these features required to provide a single sign on experience. The package supports at least the subset of SAML known as [interoperable SAML](http://saml2int.org). This package supports the Web SSO profile. Message flows from the service provider to the IDP are supported using the HTTP Redirect binding and the HTTP POST binding. Message flows from the IDP to the service provider are supported via the HTTP POST binding. The package supports signed and encrypted SAML assertions. It does not support signed or encrypted requests. The *RelayState* parameter allows you to pass user state information across the authentication flow. The most common use for this is to allow a user to request a deep link into your site, be redirected through the SAML login flow, and upon successful completion, be directed to the originaly requested link, rather than the root. Unfortunately, *RelayState* is less useful than it could be. Firstly, it is not authenticated, so anything you supply must be signed to avoid XSS or CSRF. Secondly, it is limited to 80 bytes in length, which precludes signing. (See section 3.6.3.1 of SAMLProfiles.) The SAML specification is a collection of PDFs (sadly): - [SAMLCore](http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf) defines data types. - [SAMLBindings](http://docs.oasis-open.org/security/saml/v2.0/saml-bindings-2.0-os.pdf) defines the details of the HTTP requests in play. - [SAMLProfiles](http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf) describes data flows. - [SAMLConformance](http://docs.oasis-open.org/security/saml/v2.0/saml-conformance-2.0-os.pdf) includes a support matrix for various parts of the protocol. [TestShib](https://www.testshib.org/) is a testing ground for SAML service and identity providers. Please do not report security issues in the issue tracker. Rather, please contact me directly at ross@kndr.org ([PGP Key `8EA205C01C425FF195A5E9A43FA0768F26FD2554`](https://keybase.io/crewjam)).
Package anaconda provides structs and functions for accessing version 1.1 of the Twitter API. Successful API queries return native Go structs that can be used immediately, with no need for type assertions. If you already have the access token (and secret) for your user (Twitter provides this for your own account on the developer portal), creating the client is simple: Executing queries on an authenticated TwitterApi struct is simple. Certain endpoints allow separate optional parameter; if desired, these can be passed as the final parameter. Anaconda implements most of the endpoints defined in the Twitter API documentation: https://dev.twitter.com/docs/api/1.1. For clarity, in most cases, the function name is simply the name of the HTTP method and the endpoint (e.g., the endpoint `GET /friendships/incoming` is provided by the function `GetFriendshipsIncoming`). In a few cases, a shortened form has been chosen to make life easier (for example, retweeting is simply the function `Retweet`) More detailed information about the behavior of each particular endpoint can be found at the official Twitter API documentation.
Package testify is a set of packages that provide many tools for testifying that your code will behave as you intend. testify contains the following packages: The assert package provides a comprehensive set of assertion functions that tie in to the Go testing system. The http package contains tools to make it easier to test http activity using the Go testing system. The mock package provides a system by which it is possible to mock your objects and verify calls are happening as expected. The suite package provides a basic structure for using structs as testing suites, and methods on those structs as tests. It includes setup/teardown functionality in the way of interfaces.
Package testify is a set of packages that provide many tools for testifying that your code will behave as you intend. testify contains the following packages: The assert package provides a comprehensive set of assertion functions that tie in to the Go testing system. The http package contains tools to make it easier to test http activity using the Go testing system. The mock package provides a system by which it is possible to mock your objects and verify calls are happening as expected. The suite package provides a basic structure for using structs as testing suites, and methods on those structs as tests. It includes setup/teardown functionality in the way of interfaces.
Package testify is a set of packages that provide many tools for testifying that your code will behave as you intend. testify contains the following packages: The assert package provides a comprehensive set of assertion functions that tie in to the Go testing system. The http package contains tools to make it easier to test http activity using the Go testing system. The mock package provides a system by which it is possible to mock your objects and verify calls are happening as expected. The suite package provides a basic structure for using structs as testing suites, and methods on those structs as tests. It includes setup/teardown functionality in the way of interfaces.
Package saml contains a partial implementation of the SAML standard in golang. SAML is a standard for identity federation, i.e. either allowing a third party to authenticate your users or allowing third parties to rely on us to authenticate their users. **NOTE:** This package was forked from github.com/crewjam/saml and has had PRs merged into it from that fork to fix bugs that were running in production. We suggest using the parent repository if at all possible and do not make any guarantees of the correctness of this package. In SAML parlance an Identity Provider (IDP) is a service that knows how to authenticate users. A Service Provider (SP) is a service that delegates authentication to an IDP. If you are building a service where users log in with someone else's credentials, then you are a Service Provider. This package supports implementing both service providers and identity providers. The core package contains the implementation of SAML. The package samlsp provides helper middleware suitable for use in Service Provider applications. The package samlidp provides a rudimentary IDP service that is useful for testing or as a starting point for other integrations. Note: between version 0.2.0 and the current master include changes to the API that will break your existing code a little. This change turned some fields from pointers to a single optional struct into the more correct slice of struct, and to pluralize the field name. For example, `IDPSSODescriptor *IDPSSODescriptor` has become `IDPSSODescriptors []IDPSSODescriptor`. This more accurately reflects the standard. The struct `Metadata` has been renamed to `EntityDescriptor`. In 0.2.0 and before, every struct derived from the standard has the same name as in the standard, *except* for `Metadata` which should always have been called `EntityDescriptor`. In various places `url.URL` is now used where `string` was used <= version 0.1.0. In various places where keys and certificates were modeled as `string` <= version 0.1.0 (what was I thinking?!) they are now modeled as `*rsa.PrivateKey`, `*x509.Certificate`, or `crypto.PrivateKey` as appropriate. Let us assume we have a simple web appliation to protect. We'll modify this application so it uses SAML to authenticate users. ```golang package main import "net/http" ``` Each service provider must have an self-signed X.509 key pair established. You can generate your own with something like this: We will use `samlsp.Middleware` to wrap the endpoint we want to protect. Middleware provides both an `http.Handler` to serve the SAML specific URLs and a set of wrappers to require the user to be logged in. We also provide the URL where the service provider can fetch the metadata from the IDP at startup. In our case, we'll use [testshib.org](https://www.testshib.org/), an identity provider designed for testing. ```golang package main import ( ) ``` Next we'll have to register our service provider with the identiy provider to establish trust from the service provider to the IDP. For [testshib.org](https://www.testshib.org/), you can do something like: Naviate to https://www.testshib.org/register.html and upload the file you fetched. Now you should be able to authenticate. The flow should look like this: 1. You browse to `localhost:8000/hello` 1. The middleware redirects you to `https://idp.testshib.org/idp/profile/SAML2/Redirect/SSO` 1. testshib.org prompts you for a username and password. 1. testshib.org returns you an HTML document which contains an HTML form setup to POST to `localhost:8000/saml/acs`. The form is automatically submitted if you have javascript enabled. 1. The local service validates the response, issues a session cookie, and redirects you to the original URL, `localhost:8000/hello`. 1. This time when `localhost:8000/hello` is requested there is a valid session and so the main content is served. Please see `examples/idp/` for a substantially complete example of how to use the library and helpers to be an identity provider. The SAML standard is huge and complex with many dark corners and strange, unused features. This package implements the most commonly used subset of these features required to provide a single sign on experience. The package supports at least the subset of SAML known as [interoperable SAML](http://saml2int.org). This package supports the Web SSO profile. Message flows from the service provider to the IDP are supported using the HTTP Redirect binding and the HTTP POST binding. Message flows from the IDP to the service provider are supported via the HTTP POST binding. The package supports signed and encrypted SAML assertions. It does not support signed or encrypted requests. The *RelayState* parameter allows you to pass user state information across the authentication flow. The most common use for this is to allow a user to request a deep link into your site, be redirected through the SAML login flow, and upon successful completion, be directed to the originaly requested link, rather than the root. Unfortunately, *RelayState* is less useful than it could be. Firstly, it is not authenticated, so anything you supply must be signed to avoid XSS or CSRF. Secondly, it is limited to 80 bytes in length, which precludes signing. (See section 3.6.3.1 of SAMLProfiles.) The SAML specification is a collection of PDFs (sadly): - [SAMLCore](http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf) defines data types. - [SAMLBindings](http://docs.oasis-open.org/security/saml/v2.0/saml-bindings-2.0-os.pdf) defines the details of the HTTP requests in play. - [SAMLProfiles](http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf) describes data flows. - [SAMLConformance](http://docs.oasis-open.org/security/saml/v2.0/saml-conformance-2.0-os.pdf) includes a support matrix for various parts of the protocol. [TestShib](https://www.testshib.org/) is a testing ground for SAML service and identity providers. Please do not report security issues in the issue tracker. Rather, please contact me directly at ross@kndr.org ([PGP Key `8EA205C01C425FF195A5E9A43FA0768F26FD2554`](https://keybase.io/crewjam)).
Package dcrrpcclient implements a websocket-enabled Decred JSON-RPC client. This client provides a robust and easy to use client for interfacing with a Decred RPC server that uses a mostly btcd/bitcoin core style Decred JSON-RPC API. This client has been tested with dcrd (https://github.com/decred/dcrd) and dcrwallet (https://github.com/decred/dcrwallet). In addition to the compatible standard HTTP POST JSON-RPC API, dcrd and dcrwallet provide a websocket interface that is more efficient than the standard HTTP POST method of accessing RPC. The section below discusses the differences between HTTP POST and websockets. By default, this client assumes the RPC server supports websockets and has TLS enabled. In practice, this currently means it assumes you are talking to dcrd or dcrwallet by default. However, configuration options are provided to fall back to HTTP POST and disable TLS to support talking with inferior bitcoin core style RPC servers. In HTTP POST-based JSON-RPC, every request creates a new HTTP connection, issues the call, waits for the response, and closes the connection. This adds quite a bit of overhead to every call and lacks flexibility for features such as notifications. In contrast, the websocket-based JSON-RPC interface provided by dcrd and dcrwallet only uses a single connection that remains open and allows asynchronous bi-directional communication. The websocket interface supports all of the same commands as HTTP POST, but they can be invoked without having to go through a connect/disconnect cycle for every call. In addition, the websocket interface provides other nice features such as the ability to register for asynchronous notifications of various events. The client provides both a synchronous (blocking) and asynchronous API. The synchronous (blocking) API is typically sufficient for most use cases. It works by issuing the RPC and blocking until the response is received. This allows straightforward code where you have the response as soon as the function returns. The asynchronous API works on the concept of futures. When you invoke the async version of a command, it will quickly return an instance of a type that promises to provide the result of the RPC at some future time. In the background, the RPC call is issued and the result is stored in the returned instance. Invoking the Receive method on the returned instance will either return the result immediately if it has already arrived, or block until it has. This is useful since it provides the caller with greater control over concurrency. The first important part of notifications is to realize that they will only work when connected via websockets. This should intuitively make sense because HTTP POST mode does not keep a connection open! All notifications provided by dcrd require registration to opt-in. For example, if you want to be notified when funds are received by a set of addresses, you register the addresses via the NotifyReceived (or NotifyReceivedAsync) function. Notifications are exposed by the client through the use of callback handlers which are setup via a NotificationHandlers instance that is specified by the caller when creating the client. It is important that these notification handlers complete quickly since they are intentionally in the main read loop and will block further reads until they complete. This provides the caller with the flexibility to decide what to do when notifications are coming in faster than they are being handled. In particular this means issuing a blocking RPC call from a callback handler will cause a deadlock as more server responses won't be read until the callback returns, but the callback would be waiting for a response. Thus, any additional RPCs must be issued an a completely decoupled manner. By default, when running in websockets mode, this client will automatically keep trying to reconnect to the RPC server should the connection be lost. There is a back-off in between each connection attempt until it reaches one try per minute. Once a connection is re-established, all previously registered notifications are automatically re-registered and any in-flight commands are re-issued. This means from the caller's perspective, the request simply takes longer to complete. The caller may invoke the Shutdown method on the client to force the client to cease reconnect attempts and return ErrClientShutdown for all outstanding commands. The automatic reconnection can be disabled by setting the DisableAutoReconnect flag to true in the connection config when creating the client. Minor RPC Server Differences and Chain/Wallet Separation Some of the commands are extensions specific to a particular RPC server. For example, the DebugLevel call is an extension only provided by dcrd (and dcrwallet passthrough). Therefore if you call one of these commands against an RPC server that doesn't provide them, you will get an unimplemented error from the server. An effort has been made to call out which commmands are extensions in their documentation. Also, it is important to realize that dcrd intentionally separates the wallet functionality into a separate process named dcrwallet. This means if you are connected to the dcrd RPC server directly, only the RPCs which are related to chain services will be available. Depending on your application, you might only need chain-related RPCs. In contrast, dcrwallet provides pass through treatment for chain-related RPCs, so it supports them in addition to wallet-related RPCs. There are 3 categories of errors that will be returned throughout this package: The first category of errors are typically one of ErrInvalidAuth, ErrInvalidEndpoint, ErrClientDisconnect, or ErrClientShutdown. NOTE: The ErrClientDisconnect will not be returned unless the DisableAutoReconnect flag is set since the client automatically handles reconnect by default as previously described. The second category of errors typically indicates a programmer error and as such the type can vary, but usually will be best handled by simply showing/logging it. The third category of errors, that is errors returned by the server, can be detected by type asserting the error in a *dcrjson.RPCError. For example, to detect if a command is unimplemented by the remote RPC server: The following full-blown client examples are in the examples directory:
Package testify is a set of packages that provide many tools for testifying that your code will behave as you intend. testify contains the following packages: The assert package provides a comprehensive set of assertion functions that tie in to the Go testing system. The http package contains tools to make it easier to test http activity using the Go testing system. The mock package provides a system by which it is possible to mock your objects and verify calls are happening as expected. The suite package provides a basic structure for using structs as testing suites, and methods on those structs as tests. It includes setup/teardown functionality in the way of interfaces.
Package testify is a set of packages that provide many tools for testifying that your code will behave as you intend. testify contains the following packages: The assert package provides a comprehensive set of assertion functions that tie in to the Go testing system. The http package contains tools to make it easier to test http activity using the Go testing system. The mock package provides a system by which it is possible to mock your objects and verify calls are happening as expected. The suite package provides a basic structure for using structs as testing suites, and methods on those structs as tests. It includes setup/teardown functionality in the way of interfaces.
Package saml contains a partial implementation of the SAML standard in golang. SAML is a standard for identity federation, i.e. either allowing a third party to authenticate your users or allowing third parties to rely on us to authenticate their users. In SAML parlance an Identity Provider (IDP) is a service that knows how to authenticate users. A Service Provider (SP) is a service that delegates authentication to an IDP. If you are building a service where users log in with someone else's credentials, then you are a Service Provider. This package supports implementing both service providers and identity providers. The core package contains the implementation of SAML. The package samlsp provides helper middleware suitable for use in Service Provider applications. The package samlidp provides a rudimentary IDP service that is useful for testing or as a starting point for other integrations. Note: between version 0.2.0 and the current master include changes to the API that will break your existing code a little. This change turned some fields from pointers to a single optional struct into the more correct slice of struct, and to pluralize the field name. For example, `IDPSSODescriptor *IDPSSODescriptor` has become `IDPSSODescriptors []IDPSSODescriptor`. This more accurately reflects the standard. The struct `Metadata` has been renamed to `EntityDescriptor`. In 0.2.0 and before, every struct derived from the standard has the same name as in the standard, *except* for `Metadata` which should always have been called `EntityDescriptor`. In various places `url.URL` is now used where `string` was used <= version 0.1.0. In various places where keys and certificates were modeled as `string` <= version 0.1.0 (what was I thinking?!) they are now modeled as `*rsa.PrivateKey`, `*x509.Certificate`, or `crypto.PrivateKey` as appropriate. Let us assume we have a simple web appliation to protect. We'll modify this application so it uses SAML to authenticate users. ```golang package main import "net/http" ``` Each service provider must have an self-signed X.509 key pair established. You can generate your own with something like this: We will use `samlsp.Middleware` to wrap the endpoint we want to protect. Middleware provides both an `http.Handler` to serve the SAML specific URLs and a set of wrappers to require the user to be logged in. We also provide the URL where the service provider can fetch the metadata from the IDP at startup. In our case, we'll use [testshib.org](https://www.testshib.org/), an identity provider designed for testing. ```golang package main import ( ) ``` Next we'll have to register our service provider with the identiy provider to establish trust from the service provider to the IDP. For [testshib.org](https://www.testshib.org/), you can do something like: Naviate to https://www.testshib.org/register.html and upload the file you fetched. Now you should be able to authenticate. The flow should look like this: 1. You browse to `localhost:8000/hello` 1. The middleware redirects you to `https://idp.testshib.org/idp/profile/SAML2/Redirect/SSO` 1. testshib.org prompts you for a username and password. 1. testshib.org returns you an HTML document which contains an HTML form setup to POST to `localhost:8000/saml/acs`. The form is automatically submitted if you have javascript enabled. 1. The local service validates the response, issues a session cookie, and redirects you to the original URL, `localhost:8000/hello`. 1. This time when `localhost:8000/hello` is requested there is a valid session and so the main content is served. Please see `examples/idp/` for a substantially complete example of how to use the library and helpers to be an identity provider. The SAML standard is huge and complex with many dark corners and strange, unused features. This package implements the most commonly used subset of these features required to provide a single sign on experience. The package supports at least the subset of SAML known as [interoperable SAML](http://saml2int.org). This package supports the Web SSO profile. Message flows from the service provider to the IDP are supported using the HTTP Redirect binding and the HTTP POST binding. Message flows from the IDP to the service provider are supported via the HTTP POST binding. The package supports signed and encrypted SAML assertions. It does not support signed or encrypted requests. The *RelayState* parameter allows you to pass user state information across the authentication flow. The most common use for this is to allow a user to request a deep link into your site, be redirected through the SAML login flow, and upon successful completion, be directed to the originaly requested link, rather than the root. Unfortunately, *RelayState* is less useful than it could be. Firstly, it is not authenticated, so anything you supply must be signed to avoid XSS or CSRF. Secondly, it is limited to 80 bytes in length, which precludes signing. (See section 3.6.3.1 of SAMLProfiles.) The SAML specification is a collection of PDFs (sadly): - [SAMLCore](http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf) defines data types. - [SAMLBindings](http://docs.oasis-open.org/security/saml/v2.0/saml-bindings-2.0-os.pdf) defines the details of the HTTP requests in play. - [SAMLProfiles](http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf) describes data flows. - [SAMLConformance](http://docs.oasis-open.org/security/saml/v2.0/saml-conformance-2.0-os.pdf) includes a support matrix for various parts of the protocol. [TestShib](https://www.testshib.org/) is a testing ground for SAML service and identity providers. Please do not report security issues in the issue tracker. Rather, please contact me directly at ross@kndr.org ([PGP Key `8EA205C01C425FF195A5E9A43FA0768F26FD2554`](https://keybase.io/crewjam)).
Package testify is a set of packages that provide many tools for testifying that your code will behave as you intend. testify contains the following packages: The assert package provides a comprehensive set of assertion functions that tie in to the Go testing system. The http package contains tools to make it easier to test http activity using the Go testing system. The mock package provides a system by which it is possible to mock your objects and verify calls are happening as expected. The suite package provides a basic structure for using structs as testing suites, and methods on those structs as tests. It includes setup/teardown functionality in the way of interfaces.
Package saml contains a partial implementation of the SAML standard in golang. SAML is a standard for identity federation, i.e. either allowing a third party to authenticate your users or allowing third parties to rely on us to authenticate their users. In SAML parlance an Identity Provider (IDP) is a service that knows how to authenticate users. A Service Provider (SP) is a service that delegates authentication to an IDP. If you are building a service where users log in with someone else's credentials, then you are a Service Provider. This package supports implementing both service providers and identity providers. The core package contains the implementation of SAML. The package samlsp provides helper middleware suitable for use in Service Provider applications. The package samlidp provides a rudimentary IDP service that is useful for testing or as a starting point for other integrations. Note: between version 0.2.0 and the current master include changes to the API that will break your existing code a little. This change turned some fields from pointers to a single optional struct into the more correct slice of struct, and to pluralize the field name. For example, `IDPSSODescriptor *IDPSSODescriptor` has become `IDPSSODescriptors []IDPSSODescriptor`. This more accurately reflects the standard. The struct `Metadata` has been renamed to `EntityDescriptor`. In 0.2.0 and before, every struct derived from the standard has the same name as in the standard, *except* for `Metadata` which should always have been called `EntityDescriptor`. In various places `url.URL` is now used where `string` was used <= version 0.1.0. In various places where keys and certificates were modeled as `string` <= version 0.1.0 (what was I thinking?!) they are now modeled as `*rsa.PrivateKey`, `*x509.Certificate`, or `crypto.PrivateKey` as appropriate. Let us assume we have a simple web appliation to protect. We'll modify this application so it uses SAML to authenticate users. ```golang package main import "net/http" ``` Each service provider must have an self-signed X.509 key pair established. You can generate your own with something like this: We will use `samlsp.Middleware` to wrap the endpoint we want to protect. Middleware provides both an `http.Handler` to serve the SAML specific URLs and a set of wrappers to require the user to be logged in. We also provide the URL where the service provider can fetch the metadata from the IDP at startup. In our case, we'll use [testshib.org](https://www.testshib.org/), an identity provider designed for testing. ```golang package main import ( ) ``` Next we'll have to register our service provider with the identiy provider to establish trust from the service provider to the IDP. For [testshib.org](https://www.testshib.org/), you can do something like: Naviate to https://www.testshib.org/register.html and upload the file you fetched. Now you should be able to authenticate. The flow should look like this: 1. You browse to `localhost:8000/hello` 1. The middleware redirects you to `https://idp.testshib.org/idp/profile/SAML2/Redirect/SSO` 1. testshib.org prompts you for a username and password. 1. testshib.org returns you an HTML document which contains an HTML form setup to POST to `localhost:8000/saml/acs`. The form is automatically submitted if you have javascript enabled. 1. The local service validates the response, issues a session cookie, and redirects you to the original URL, `localhost:8000/hello`. 1. This time when `localhost:8000/hello` is requested there is a valid session and so the main content is served. Please see `examples/idp/` for a substantially complete example of how to use the library and helpers to be an identity provider. The SAML standard is huge and complex with many dark corners and strange, unused features. This package implements the most commonly used subset of these features required to provide a single sign on experience. The package supports at least the subset of SAML known as [interoperable SAML](http://saml2int.org). This package supports the Web SSO profile. Message flows from the service provider to the IDP are supported using the HTTP Redirect binding and the HTTP POST binding. Message flows from the IDP to the service provider are supported via the HTTP POST binding. The package supports signed and encrypted SAML assertions. It does not support signed or encrypted requests. The *RelayState* parameter allows you to pass user state information across the authentication flow. The most common use for this is to allow a user to request a deep link into your site, be redirected through the SAML login flow, and upon successful completion, be directed to the originally requested link, rather than the root. Unfortunately, *RelayState* is less useful than it could be. Firstly, it is not authenticated, so anything you supply must be signed to avoid XSS or CSRF. Secondly, it is limited to 80 bytes in length, which precludes signing. (See section 3.6.3.1 of SAMLProfiles.) The SAML specification is a collection of PDFs (sadly): - [SAMLCore](http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf) defines data types. - [SAMLBindings](http://docs.oasis-open.org/security/saml/v2.0/saml-bindings-2.0-os.pdf) defines the details of the HTTP requests in play. - [SAMLProfiles](http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf) describes data flows. - [SAMLConformance](http://docs.oasis-open.org/security/saml/v2.0/saml-conformance-2.0-os.pdf) includes a support matrix for various parts of the protocol. [TestShib](https://www.testshib.org/) is a testing ground for SAML service and identity providers. Please do not report security issues in the issue tracker. Rather, please contact me directly at ross@kndr.org ([PGP Key `8EA205C01C425FF195A5E9A43FA0768F26FD2554`](https://keybase.io/crewjam)).
Package testify is a set of packages that provide many tools for testifying that your code will behave as you intend. testify contains the following packages: The assert package provides a comprehensive set of assertion functions that tie in to the Go testing system. The http package contains tools to make it easier to test http activity using the Go testing system. The mock package provides a system by which it is possible to mock your objects and verify calls are happening as expected. The suite package provides a basic structure for using structs as testing suites, and methods on those structs as tests. It includes setup/teardown functionality in the way of interfaces.
Package testify is a set of packages that provide many tools for testifying that your code will behave as you intend. testify contains the following packages: The assert package provides a comprehensive set of assertion functions that tie in to the Go testing system. The http package contains tools to make it easier to test http activity using the Go testing system. The mock package provides a system by which it is possible to mock your objects and verify calls are happening as expected. The suite package provides a basic structure for using structs as testing suites, and methods on those structs as tests. It includes setup/teardown functionality in the way of interfaces.
A set of packages that provide many tools for testifying that your code will behave as you intend. testify contains the following packages: The assert package provides a comprehensive set of assertion functions that tie in to the Go testing system. The http package contains tools to make it easier to test http activity using the Go testing system. The mock package provides a system by which it is possible to mock your objects and verify calls are happening as expected. The suite package provides a basic structure for using structs as testing suites, and methods on those structs as tests. It includes setup/teardown functionality in the way of interfaces.
Package testify is a set of packages that provide many tools for testifying that your code will behave as you intend. testify contains the following packages: The assert package provides a comprehensive set of assertion functions that tie in to the Go testing system. The http package contains tools to make it easier to test http activity using the Go testing system. The mock package provides a system by which it is possible to mock your objects and verify calls are happening as expected. The suite package provides a basic structure for using structs as testing suites, and methods on those structs as tests. It includes setup/teardown functionality in the way of interfaces.
A set of packages that provide many tools for testifying that your code will behave as you intend. testify contains the following packages: The assert package provides a comprehensive set of assertion functions that tie in to the Go testing system. The http package contains tools to make it easier to test http activity using the Go testing system. The mock package provides a system by which it is possible to mock your objects and verify calls are happening as expected. The suite package provides a basic structure for using structs as testing suites, and methods on those structs as tests. It includes setup/teardown functionality in the way of interfaces.
Package btcrpcclient implements a websocket-enabled Bitcoin JSON-RPC client. This client provides a robust and easy to use client for interfacing with a Bitcoin RPC server that uses a btcd/bitcoin core compatible Bitcoin JSON-RPC API. This client has been tested with btcd (https://github.com/btcsuite/btcd), btcwallet (https://github.com/btcsuite/btcwallet), and bitcoin core (https://github.com/bitcoin). In addition to the compatible standard HTTP POST JSON-RPC API, btcd and btcwallet provide a websocket interface that is more efficient than the standard HTTP POST method of accessing RPC. The section below discusses the differences between HTTP POST and websockets. By default, this client assumes the RPC server supports websockets and has TLS enabled. In practice, this currently means it assumes you are talking to btcd or btcwallet by default. However, configuration options are provided to fall back to HTTP POST and disable TLS to support talking with inferior bitcoin core style RPC servers. In HTTP POST-based JSON-RPC, every request creates a new HTTP connection, issues the call, waits for the response, and closes the connection. This adds quite a bit of overhead to every call and lacks flexibility for features such as notifications. In contrast, the websocket-based JSON-RPC interface provided by btcd and btcwallet only uses a single connection that remains open and allows asynchronous bi-directional communication. The websocket interface supports all of the same commands as HTTP POST, but they can be invoked without having to go through a connect/disconnect cycle for every call. In addition, the websocket interface provides other nice features such as the ability to register for asynchronous notifications of various events. The client provides both a synchronous (blocking) and asynchronous API. The synchronous (blocking) API is typically sufficient for most use cases. It works by issuing the RPC and blocking until the response is received. This allows straightforward code where you have the response as soon as the function returns. The asynchronous API works on the concept of futures. When you invoke the async version of a command, it will quickly return an instance of a type that promises to provide the result of the RPC at some future time. In the background, the RPC call is issued and the result is stored in the returned instance. Invoking the Receive method on the returned instance will either return the result immediately if it has already arrived, or block until it has. This is useful since it provides the caller with greater control over concurrency. The first important part of notifications is to realize that they will only work when connected via websockets. This should intuitively make sense because HTTP POST mode does not keep a connection open! All notifications provided by btcd require registration to opt-in. For example, if you want to be notified when funds are received by a set of addresses, you register the addresses via the NotifyReceived (or NotifyReceivedAsync) function. Notifications are exposed by the client through the use of callback handlers which are setup via a NotificationHandlers instance that is specified by the caller when creating the client. It is important that these notification handlers complete quickly since they are intentionally in the main read loop and will block further reads until they complete. This provides the caller with the flexibility to decide what to do when notifications are coming in faster than they are being handled. In particular this means issuing a blocking RPC call from a callback handler will cause a deadlock as more server responses won't be read until the callback returns, but the callback would be waiting for a response. Thus, any additional RPCs must be issued an a completely decoupled manner. By default, when running in websockets mode, this client will automatically keep trying to reconnect to the RPC server should the connection be lost. There is a back-off in between each connection attempt until it reaches one try per minute. Once a connection is re-established, all previously registered notifications are automatically re-registered and any in-flight commands are re-issued. This means from the caller's perspective, the request simply takes longer to complete. The caller may invoke the Shutdown method on the client to force the client to cease reconnect attempts and return ErrClientShutdown for all outstanding commands. The automatic reconnection can be disabled by setting the DisableAutoReconnect flag to true in the connection config when creating the client. Minor RPC Server Differences and Chain/Wallet Separation Some of the commands are extensions specific to a particular RPC server. For example, the DebugLevel call is an extension only provided by btcd (and btcwallet passthrough). Therefore if you call one of these commands against an RPC server that doesn't provide them, you will get an unimplemented error from the server. An effort has been made to call out which commmands are extensions in their documentation. Also, it is important to realize that btcd intentionally separates the wallet functionality into a separate process named btcwallet. This means if you are connected to the btcd RPC server directly, only the RPCs which are related to chain services will be available. Depending on your application, you might only need chain-related RPCs. In contrast, btcwallet provides pass through treatment for chain-related RPCs, so it supports them in addition to wallet-related RPCs. There are 3 categories of errors that will be returned throughout this package: The first category of errors are typically one of ErrInvalidAuth, ErrInvalidEndpoint, ErrClientDisconnect, or ErrClientShutdown. NOTE: The ErrClientDisconnect will not be returned unless the DisableAutoReconnect flag is set since the client automatically handles reconnect by default as previously described. The second category of errors typically indicates a programmer error and as such the type can vary, but usually will be best handled by simply showing/logging it. The third category of errors, that is errors returned by the server, can be detected by type asserting the error in a *btcjson.RPCError. For example, to detect if a command is unimplemented by the remote RPC server: The following full-blown client examples are in the examples directory: