Research
Security News
Quasar RAT Disguised as an npm Package for Detecting Vulnerabilities in Ethereum Smart Contracts
Socket researchers uncover a malicious npm package posing as a tool for detecting vulnerabilities in Etherium smart contracts.
github.com/DATA-DOG/godog
The API is likely to change a few times before we reach 1.0.0
Please read the full README, you may find it very useful. And do not forget to peek into the Release Notes and the CHANGELOG from time to time.
Package godog is the official Cucumber BDD framework for Golang, it merges specification and test documentation into one cohesive whole, using Gherkin formatted scenarios in the format of Given, When, Then.
The project was inspired by behat and cucumber.
Godog merges specification and test documentation into one cohesive whole.
Because they're automatically tested by Godog, your specifications are always bang up-to-date.
Business and IT don't always understand each other. Godog's executable specifications encourage closer collaboration, helping teams keep the business goal in mind at all times.
When automated testing is this much fun, teams can easily protect themselves from costly regressions.
Godog is a community driven Open Source Project within the Cucumber organization. We welcome contributions from everyone, and we're ready to support you if you have the enthusiasm to contribute.
See the contributing guide for more detail on how to get started.
See the releasing guide for release flow details.
We have a community Discord where you can chat with other users, developers, and BDD practitioners.
You can find a few examples here.
Note that if you want to execute any of the examples and have the Git repository checked out in the $GOPATH
, you need to use: GO111MODULE=off
. Issue for reference.
The following example can be found here.
Create a new go module named godogs in your go workspace by running mkdir godogs
From now on, use godogs as your working directory by running cd godogs
Initiate the go module inside the godogs directory by running go mod init godogs
Imagine we have a godog cart to serve godogs for lunch.
First of all, we describe our feature in plain text:
Feature: eat godogs
In order to be happy
As a hungry gopher
I need to be able to eat godogs
Scenario: Eat 5 out of 12
Given there are 12 godogs
When I eat 5
Then there should be 7 remaining
Run vim features/godogs.feature
and add the text above into the vim editor and save the file.
NOTE: Same as go test, godog respects package level isolation. All your step definitions should be in your tested package root directory. In this case: godogs.
Create and copy the step definitions below into a new file by running vim godogs_test.go
:
package main
import "github.com/cucumber/godog"
func iEat(arg1 int) error {
return godog.ErrPending
}
func thereAreGodogs(arg1 int) error {
return godog.ErrPending
}
func thereShouldBeRemaining(arg1 int) error {
return godog.ErrPending
}
func InitializeScenario(ctx *godog.ScenarioContext) {
ctx.Step(`^there are (\d+) godogs$`, thereAreGodogs)
ctx.Step(`^I eat (\d+)$`, iEat)
ctx.Step(`^there should be (\d+) remaining$`, thereShouldBeRemaining)
}
Alternatively, you can also specify the keyword (Given, When, Then...) when creating the step definitions:
func InitializeScenario(ctx *godog.ScenarioContext) {
ctx.Given(`^there are (\d+) godogs$`, thereAreGodogs)
ctx.When(`^I eat (\d+)$`, iEat)
ctx.Then(`^there should be (\d+) remaining$`, thereShouldBeRemaining)
}
Our module should now look like this:
godogs
- features
- godogs.feature
- go.mod
- go.sum
- godogs_test.go
Run go test
in the godogs directory to run the steps you have defined. You should now see that the scenario runs
with a warning stating there are no tests to run.
testing: warning: no tests to run
PASS
ok godogs 0.225s
By adding some logic to these steps, you will be able to thoroughly test the feature you just defined.
Let's keep it simple by only requiring an amount of godogs for now.
Create and copy the code below into a new file by running vim godogs.go
package main
// Godogs available to eat
var Godogs int
func main() { /* usual main func */ }
Our module should now look like this:
godogs
- features
- godogs.feature
- go.mod
- go.sum
- godogs.go
- godogs_test.go
Now lets implement our step definitions to test our feature requirements.
Replace the contents of godogs_test.go
with the code below by running vim godogs_test.go
.
package main
import (
"context"
"errors"
"fmt"
"testing"
"github.com/cucumber/godog"
)
// godogsCtxKey is the key used to store the available godogs in the context.Context.
type godogsCtxKey struct{}
func thereAreGodogs(ctx context.Context, available int) (context.Context, error) {
return context.WithValue(ctx, godogsCtxKey{}, available), nil
}
func iEat(ctx context.Context, num int) (context.Context, error) {
available, ok := ctx.Value(godogsCtxKey{}).(int)
if !ok {
return ctx, errors.New("there are no godogs available")
}
if available < num {
return ctx, fmt.Errorf("you cannot eat %d godogs, there are %d available", num, available)
}
available -= num
return context.WithValue(ctx, godogsCtxKey{}, available), nil
}
func thereShouldBeRemaining(ctx context.Context, remaining int) error {
available, ok := ctx.Value(godogsCtxKey{}).(int)
if !ok {
return errors.New("there are no godogs available")
}
if available != remaining {
return fmt.Errorf("expected %d godogs to be remaining, but there is %d", remaining, available)
}
return nil
}
func TestFeatures(t *testing.T) {
suite := godog.TestSuite{
ScenarioInitializer: InitializeScenario,
Options: &godog.Options{
Format: "pretty",
Paths: []string{"features"},
TestingT: t, // Testing instance that will run subtests.
},
}
if suite.Run() != 0 {
t.Fatal("non-zero status returned, failed to run feature tests")
}
}
func InitializeScenario(sc *godog.ScenarioContext) {
sc.Step(`^there are (\d+) godogs$`, thereAreGodogs)
sc.Step(`^I eat (\d+)$`, iEat)
sc.Step(`^there should be (\d+) remaining$`, thereShouldBeRemaining)
}
In this example, we are using context.Context
to pass the state between the steps.
Every scenario starts with an empty context and then steps and hooks can add relevant information to it.
Instrumented context is chained through the steps and hooks and is safe to use when multiple scenarios are running concurrently.
When you run godog again with go test -v godogs_test.go
, you should see a passing run:
=== RUN TestFeatures
Feature: eat godogs
In order to be happy
As a hungry gopher
I need to be able to eat godogs
=== RUN TestFeatures/Eat_5_out_of_12
Scenario: Eat 5 out of 12 # features/godogs.feature:6
Given there are 12 godogs # godog_test.go:15 -> command-line-arguments.thereAreGodogs
When I eat 5 # godog_test.go:19 -> command-line-arguments.iEat
Then there should be 7 remaining # godog_test.go:34 -> command-line-arguments.thereShouldBeRemaining
1 scenarios (1 passed)
3 steps (3 passed)
279.917µs
--- PASS: TestFeatures (0.00s)
--- PASS: TestFeatures/Eat_5_out_of_12 (0.00s)
PASS
ok command-line-arguments 0.164s
You may hook to ScenarioContext
Before event in order to reset or pre-seed the application state before each scenario.
You may hook into more events, like sc.StepContext()
After to print all state in case of an error.
Or BeforeSuite to prepare a database.
By now, you should have figured out, how to use godog. Another piece of advice is to make steps orthogonal, small and simple to read for a user. Whether the user is a dumb website user or an API developer, who may understand a little more technical context - it should target that user.
When steps are orthogonal and small, you can combine them just like you do with Unix tools. Look how to simplify or remove ones, which can be composed.
TestFeatures
acts as a regular Go test, so you can leverage your IDE facilities to run and debug it.
An example showing how to make attachments (aka embeddings) to the results is shown in _examples/attachments
Everyone interacting in this codebase and issue tracker is expected to follow the Cucumber code of conduct.
See pkg documentation for general API details.
See Circle Config for supported go versions.
See godog -h
for general command options.
See implementation examples:
You may integrate running godog in your go test command.
You can run test suite using go Subtests. In this case it is not necessary to have godog command installed. See the following example.
package main_test
import (
"testing"
"github.com/cucumber/godog"
)
func TestFeatures(t *testing.T) {
suite := godog.TestSuite{
ScenarioInitializer: func(s *godog.ScenarioContext) {
// Add step definitions here.
},
Options: &godog.Options{
Format: "pretty",
Paths: []string{"features"},
TestingT: t, // Testing instance that will run subtests.
},
}
if suite.Run() != 0 {
t.Fatal("non-zero status returned, failed to run feature tests")
}
}
Then you can run suite.
go test -test.v -test.run ^TestFeatures$
Or a particular scenario.
go test -test.v -test.run ^TestFeatures$/^my_scenario$
You can run test suite using go TestMain func available since go 1.4. In this case it is not necessary to have godog command installed. See the following examples.
The following example binds godog flags with specified prefix godog
in order to prevent flag collisions.
package main
import (
"os"
"testing"
"github.com/cucumber/godog"
"github.com/cucumber/godog/colors"
"github.com/spf13/pflag" // godog v0.11.0 and later
)
var opts = godog.Options{
Output: colors.Colored(os.Stdout),
Format: "progress", // can define default values
}
func init() {
godog.BindFlags("godog.", pflag.CommandLine, &opts) // godog v0.10.0 and earlier
godog.BindCommandLineFlags("godog.", &opts) // godog v0.11.0 and later
}
func TestMain(m *testing.M) {
pflag.Parse()
opts.Paths = pflag.Args()
status := godog.TestSuite{
Name: "godogs",
TestSuiteInitializer: InitializeTestSuite,
ScenarioInitializer: InitializeScenario,
Options: &opts,
}.Run()
// Optional: Run `testing` package's logic besides godog.
if st := m.Run(); st > status {
status = st
}
os.Exit(status)
}
Then you may run tests with by specifying flags in order to filter features.
go test -v --godog.random --godog.tags=wip
go test -v --godog.format=pretty --godog.random -race -coverprofile=coverage.txt -covermode=atomic
The following example does not bind godog flags, instead manually configuring needed options.
func TestMain(m *testing.M) {
opts := godog.Options{
Format: "progress",
Paths: []string{"features"},
Randomize: time.Now().UTC().UnixNano(), // randomize scenario execution order
}
status := godog.TestSuite{
Name: "godogs",
TestSuiteInitializer: InitializeTestSuite,
ScenarioInitializer: InitializeScenario,
Options: &opts,
}.Run()
// Optional: Run `testing` package's logic besides godog.
if st := m.Run(); st > status {
status = st
}
os.Exit(status)
}
You can even go one step further and reuse go test flags, like verbose mode in order to switch godog format. See the following example:
func TestMain(m *testing.M) {
format := "progress"
for _, arg := range os.Args[1:] {
if arg == "-test.v=true" { // go test transforms -v option
format = "pretty"
break
}
}
opts := godog.Options{
Format: format,
Paths: []string{"features"},
}
status := godog.TestSuite{
Name: "godogs",
TestSuiteInitializer: InitializeTestSuite,
ScenarioInitializer: InitializeScenario,
Options: &opts,
}.Run()
// Optional: Run `testing` package's logic besides godog.
if st := m.Run(); st > status {
status = st
}
os.Exit(status)
}
Now when running go test -v
it will use pretty format.
If you want to filter scenarios by tags, you can use the -t=<expression>
or --tags=<expression>
where <expression>
is one of the following:
@wip
- run all scenarios with wip tag~@wip
- exclude all scenarios with wip tag@wip && ~@new
- run wip scenarios, but exclude new@wip,@undone
- run wip or undone scenariosA more extensive example can be found here.
func thereShouldBeRemaining(ctx context.Context, remaining int) error {
assert.Equal(
godog.T(ctx), Godogs, remaining,
"Expected %d godogs to be remaining, but there is %d", remaining, Godogs,
)
return nil
}
If you're looking to compile your test binary in advance of running, you can compile the feature files into the binary via go:embed
:
//go:embed features/*
var features embed.FS
var opts = godog.Options{
Paths: []string{"features"},
FS: features,
}
Now, the test binary can be compiled with all feature files embedded, and can be ran independently from the feature files:
> go test -c ./test/integration/integration_test.go
> mv integration.test /some/random/dir
> cd /some/random/dir
> ./integration.test
NOTE: godog.Options.FS
is as fs.FS
, so custom filesystem loaders can be used.
NOTE: The godog
CLI has been deprecated. It is recommended to use go test
instead.
Another way to use godog
is to run it in CLI mode.
In this mode godog
CLI will use go
under the hood to compile and run your test suite.
Godog does not intervene with the standard go test command behavior. You can leverage both frameworks to functionally test your application while maintaining all test related source code in _test.go files.
Godog acts similar compared to go test command, by using go compiler and linker tool in order to produce test executable. Godog contexts need to be exported the same way as Test functions for go tests. Note, that if you use godog command tool, it will use go
executable to determine compiler and linker.
go install github.com/cucumber/godog/cmd/godog@latest
Adding @v0.12.0
will install v0.12.0 specifically instead of master.
With go
version prior to 1.17, use go get github.com/cucumber/godog/cmd/godog@v0.12.0
.
Running within the $GOPATH
, you would also need to set GO111MODULE=on
, like this:
GO111MODULE=on go get github.com/cucumber/godog/cmd/godog@v0.12.0
There are no global options or configuration files. Alias your common or project based commands: alias godog-wip="godog --format=progress --tags=@wip"
When concurrency is configured in options, godog will execute the scenarios concurrently, which is supported by all supplied formatters.
In order to support concurrency well, you should reset the state and isolate each scenario. They should not share any state. It is suggested to run the suite concurrently in order to make sure there is no state corruption or race conditions in the application.
It is also useful to randomize the order of scenario execution, which you can now do with --random
command option or godog.Options.Randomize
setting.
A simple example can be found here.
Godog and Gherkin are licensed under the MIT and developed as a part of the cucumber project
FAQs
Unknown package
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Research
Security News
Socket researchers uncover a malicious npm package posing as a tool for detecting vulnerabilities in Etherium smart contracts.
Security News
Research
A supply chain attack on Rspack's npm packages injected cryptomining malware, potentially impacting thousands of developers.
Research
Security News
Socket researchers discovered a malware campaign on npm delivering the Skuld infostealer via typosquatted packages, exposing sensitive data.