
Research
PyPI Package Disguised as Instagram Growth Tool Harvests User Credentials
A deceptive PyPI package posing as an Instagram growth tool collects user credentials and sends them to third-party bot services.
github.com/LiYangHart/Hyperparameter-Optimization-of-Machine-Learning-Algorithms
This code provides a hyper-parameter optimization implementation for machine learning algorithms, as described in the paper:
L. Yang and A. Shami, βOn hyperparameter optimization of machine learning algorithms: Theory and practice,β Neurocomputing, vol. 415, pp. 295β316, 2020, doi: https://doi.org/10.1016/j.neucom.2020.07.061.
To fit a machine learning model into different problems, its hyper-parameters must be tuned. Selecting the best hyper-parameter configuration for machine learning models has a direct impact on the model's performance. In this paper, optimizing the hyper-parameters of common machine learning models is studied. We introduce several state-of-the-art optimization techniques and discuss how to apply them to machine learning algorithms. Many available libraries and frameworks developed for hyper-parameter optimization problems are provided, and some open challenges of hyper-parameter optimization research are also discussed in this paper. Moreover, experiments are conducted on benchmark datasets to compare the performance of different optimization methods and provide practical examples of hyper-parameter optimization.
This paper and code will help industrial users, data analysts, and researchers to better develop machine learning models by identifying the proper hyper-parameter configurations effectively.
On Hyperparameter Optimization of Machine Learning Algorithms: Theory and Practice
One-column version: arXiv
Two-column version: Elsevier
Section 3: Important hyper-parameters of common machine learning algorithms
Section 4: Hyper-parameter optimization techniques introduction
Section 5: How to choose optimization techniques for different machine learning models
Section 6: Common Python libraries/tools for hyper-parameter optimization
Section 7: Experimental results (sample code in "HPO_Regression.ipynb" and "HPO_Classification.ipynb")
Section 8: Open challenges and future research directions
Summary table for Sections 3-6: Table 2: A comprehensive overview of common ML models, their hyper-parameters, suitable optimization techniques, and available Python libraries
Summary table for Sections 8: Table 10: The open challenges and future directions of HPO research
Sample code for hyper-parameter optimization implementation for machine learning algorithms is provided in this repository.
HPO_Regression.ipynb
Dataset used: Boston-Housing
HPO_Classification.ipynb
Dataset used: MNIST
ML Model | Hyper-parameter | Type | Search Space |
---|---|---|---|
RF Classifier | n_estimators | Discrete | [10,100] |
max_depth | Discrete | [5,50] | |
min_samples_split | Discrete | [2,11] | |
min_samples_leaf | Discrete | [1,11] | |
criterion | Categorical | 'gini', 'entropy' | |
max_features | Discrete | [1,64] | |
SVM Classifier | C | Continuous | [0.1,50] |
kernel | Categorical | 'linear', 'poly', 'rbf', 'sigmoid' | |
KNN Classifier | n_neighbors | Discrete | [1,20] |
ANN Classifier | optimizer | Categorical | 'adam', 'rmsprop', 'sgd' |
activation | Categorical | 'relu', 'tanh' | |
batch_size | Discrete | [16,64] | |
neurons | Discrete | [10,100] | |
epochs | Discrete | [20,50] | |
patience | Discrete | [3,20] | |
RF Regressor | n_estimators | Discrete | [10,100] |
max_depth | Discrete | [5,50] | |
min_samples_split | Discrete | [2,11] | |
min_samples_leaf | Discrete | [1,11] | |
criterion | Categorical | 'mse', 'mae' | |
max_features | Discrete | [1,13] | |
SVM Regressor | C | Continuous | [0.1,50] |
kernel | Categorical | 'linear', 'poly', 'rbf', 'sigmoid' | |
epsilon | Continuous | [0.001,1] | |
KNN Regressor | n_neighbors | Discrete | [1,20] |
ANN Regressor | optimizer | Categorical | 'adam', 'rmsprop' |
activation | Categorical | 'relu', 'tanh' | |
loss | Categorical | 'mse', 'mae' | |
batch_size | Discrete | [16,64] | |
neurons | Discrete | [10,100] | |
epochs | Discrete | [20,50] | |
patience | Discrete | [3,20] |
Please feel free to contact me for any questions or cooperation opportunities. I'd be happy to help.
If you find this repository useful in your research, please cite this article as:
L. Yang and A. Shami, βOn hyperparameter optimization of machine learning algorithms: Theory and practice,β Neurocomputing, vol. 415, pp. 295β316, 2020, doi: https://doi.org/10.1016/j.neucom.2020.07.061.
@article{YANG2020295,
title = "On hyperparameter optimization of machine learning algorithms: Theory and practice",
author = "Li Yang and Abdallah Shami",
volume = "415",
pages = "295 - 316",
journal = "Neurocomputing",
year = "2020",
issn = "0925-2312",
doi = "https://doi.org/10.1016/j.neucom.2020.07.061",
url = "http://www.sciencedirect.com/science/article/pii/S0925231220311693"
}
FAQs
Unknown package
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Research
A deceptive PyPI package posing as an Instagram growth tool collects user credentials and sends them to third-party bot services.
Product
Socket now supports pylock.toml, enabling secure, reproducible Python builds with advanced scanning and full alignment with PEP 751's new standard.
Security News
Research
Socket uncovered two npm packages that register hidden HTTP endpoints to delete all files on command.