šŸš€ Big News: Socket Acquires Coana to Bring Reachability Analysis to Every Appsec Team.Learn more →
Socket
Sign inDemoInstall
Socket

github.com/mkadirtan/kdtree

Package Overview
Dependencies
Alerts
File Explorer
Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

github.com/mkadirtan/kdtree

v0.0.0-20200419031308-84cf40be9d53
Source
Go
Version published
Created
Source

kdtree

GoDoc Build Status Codecov Go Report Card License

A k-d tree implementation in Go with:

  • n-dimensional points
  • k-nearest neighbor search
  • range search
  • remove without rebuilding the whole subtree
  • data attached to the points
  • using own structs by implementing a simple 2 function interface

Usage

go get github.com/kyroy/kdtree
import "github.com/kyroy/kdtree"

Implement the kdtree.Point interface

// Point specifies one element of the k-d tree.
type Point interface {
	// Dimensions returns the total number of dimensions
	Dimensions() int
	// Dimension returns the value of the i-th dimension
	Dimension(i int) float64
}

points.Point2d

type Data struct {
	value string
}

func main() {
	tree := kdtree.New([]kdtree.Point{
		&points.Point2D{X: 3, Y: 1},
		&points.Point2D{X: 5, Y: 0},
		&points.Point2D{X: 8, Y: 3},
	})

	// Insert
	tree.Insert(&points.Point2D{X: 1, Y: 8})
	tree.Insert(&points.Point2D{X: 7, Y: 5})

	// KNN (k-nearest neighbor)
	fmt.Println(tree.KNN(&points.Point{Coordinates: []float64{1, 1, 1}}, 2))
	// [{3.00 1.00} {5.00 0.00}]
	
	// RangeSearch
	fmt.Println(tree.RangeSearch(kdrange.New(1, 8, 0, 2)))
	// [{5.00 0.00} {3.00 1.00}]
    
	// Points
	fmt.Println(tree.Points())
	// [{3.00 1.00} {1.00 8.00} {5.00 0.00} {8.00 3.00} {7.00 5.00}]

	// Remove
	fmt.Println(tree.Remove(&points.Point2D{X: 5, Y: 0}))
	// {5.00 0.00}

	// String
	fmt.Println(tree)
	// [[{1.00 8.00} {3.00 1.00} [<nil> {8.00 3.00} {7.00 5.00}]]]

	// Balance
	tree.Balance()
	fmt.Println(tree)
	// [[[{3.00 1.00} {1.00 8.00} <nil>] {7.00 5.00} {8.00 3.00}]]
}

n-dimensional Points (points.Point)

type Data struct {
	value string
}

func main() {
    tree := kdtree.New([]kdtree.Point{
        points.NewPoint([]float64{7, 2, 3}, Data{value: "first"}),
        points.NewPoint([]float64{3, 7, 10}, Data{value: "second"}),
        points.NewPoint([]float64{4, 6, 1}, Data{value: "third"}),
    })
    
    // Insert
    tree.Insert(points.NewPoint([]float64{12, 4, 6}, Data{value: "fourth"}))
    tree.Insert(points.NewPoint([]float64{8, 1, 0}, Data{value: "fifth"}))
    
    // KNN (k-nearest neighbor)
    fmt.Println(tree.KNN(&points.Point{Coordinates: []float64{1, 1, 1}}, 2))
    // [{[4 6 1] {third}} {[7 2 3] {first}}]
    
    // RangeSearch
    fmt.Println(tree.RangeSearch(kdrange.New(1, 15, 1, 5, 0, 5)))
    // [{[7 2 3] {first}} {[8 1 0] {fifth}}]
    
    // Points
    fmt.Println(tree.Points())
    // [{[3 7 10] {second}} {[4 6 1] {third}} {[8 1 0] {fifth}} {[7 2 3] {first}} {[12 4 6] {fourth}}]

    // Remove
    fmt.Println(tree.Remove(points.NewPoint([]float64{3, 7, 10}, nil)))
    // {[3 7 10] {second}}

    // String
    fmt.Println(tree)
    // [[<nil> {[4 6 1] {third}} [{[8 1 0] {fifth}} {[7 2 3] {first}} {[12 4 6] {fourth}}]]]

    // Balance
    tree.Balance()
    fmt.Println(tree)
    // [[[{[7 2 3] {first}} {[4 6 1] {third}} <nil>] {[8 1 0] {fifth}} {[12 4 6] {fourth}}]]
}

FAQs

Package last updated on 19 Apr 2020

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts