Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

github.com/willf/bloom

Package Overview
Dependencies
Alerts
File Explorer
Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

github.com/willf/bloom

  • v2.0.3+incompatible
  • Source
  • Go
  • Socket score

Version published
Created
Source

Bloom filters

Master Build Status Coverage Status Go Report Card GoDoc

A Bloom filter is a representation of a set of n items, where the main requirement is to make membership queries; i.e., whether an item is a member of a set.

A Bloom filter has two parameters: m, a maximum size (typically a reasonably large multiple of the cardinality of the set to represent) and k, the number of hashing functions on elements of the set. (The actual hashing functions are important, too, but this is not a parameter for this implementation). A Bloom filter is backed by a BitSet; a key is represented in the filter by setting the bits at each value of the hashing functions (modulo m). Set membership is done by testing whether the bits at each value of the hashing functions (again, modulo m) are set. If so, the item is in the set. If the item is actually in the set, a Bloom filter will never fail (the true positive rate is 1.0); but it is susceptible to false positives. The art is to choose k and m correctly.

In this implementation, the hashing functions used is murmurhash, a non-cryptographic hashing function.

This implementation accepts keys for setting and testing as []byte. Thus, to add a string item, "Love":

n := uint(1000)
filter := bloom.New(20*n, 5) // load of 20, 5 keys
filter.Add([]byte("Love"))

Similarly, to test if "Love" is in bloom:

if filter.Test([]byte("Love"))

For numeric data, I recommend that you look into the encoding/binary library. But, for example, to add a uint32 to the filter:

i := uint32(100)
n1 := make([]byte, 4)
binary.BigEndian.PutUint32(n1, i)
filter.Add(n1)

Finally, there is a method to estimate the false positive rate of a particular bloom filter for a set of size n:

if filter.EstimateFalsePositiveRate(1000) > 0.001

Given the particular hashing scheme, it's best to be empirical about this. Note that estimating the FP rate will clear the Bloom filter.

Discussion here: Bloom filter

Godoc documentation: https://godoc.org/github.com/willf/bloom

Installation

go get -u github.com/willf/bloom

Contributing

If you wish to contribute to this project, please branch and issue a pull request against master ("GitHub Flow")

This project include a Makefile that allows you to test and build the project with simple commands. To see all available options:

make help

Running all tests

Before committing the code, please check if it passes all tests using (note: this will install some dependencies):

make deps
make qa

FAQs

Package last updated on 05 May 2017

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc