JUNG the Java Universal Network/Graph Framework--is a software library that provides a common and extendible language for the modeling, analysis, and visualization of data that can be represented as a graph or network. It is written in Java, which allows JUNG-based applications to make use of the extensive built-in capabilities of the Java API, as well as those of other existing third-party Java libraries. The JUNG architecture is designed to support a variety of representations of entities and their relations, such as directed and undirected graphs, multi-modal graphs, graphs with parallel edges, and hypergraphs. It provides a mechanism for annotating graphs, entities, and relations with metadata. This facilitates the creation of analytic tools for complex data sets that can examine the relations between entities as well as the metadata attached to each entity and relation. The current distribution of JUNG includes implementations of a number of algorithms from graph theory, data mining, and social network analysis, such as routines for clustering, decomposition, optimization, random graph generation, statistical analysis, and calculation of network distances, flows, and importance measures (centrality, PageRank, HITS, etc.). JUNG also provides a visualization framework that makes it easy to construct tools for the interactive exploration of network data. Users can use one of the layout algorithms provided, or use the framework to create their own custom layouts. In addition, filtering mechanisms are provided which allow users to focus their attention, or their algorithms, on specific portions of the graph.
Complex numbers.
This is a 3D implementation of QuickHull for Java, based on the original paper by Barber, Dobkin, and Huhdanpaa and the C implementation known as qhull. The algorithm has O(n log(n)) complexity, works with double precision numbers, is fairly robust with respect to degenerate situations, and allows the merging of co-planar faces.
JUNG the Java Universal Network/Graph Framework--is a software library that provides a common and extendible language for the modeling, analysis, and visualization of data that can be represented as a graph or network. It is written in Java, which allows JUNG-based applications to make use of the extensive built-in capabilities of the Java API, as well as those of other existing third-party Java libraries. The JUNG architecture is designed to support a variety of representations of entities and their relations, such as directed and undirected graphs, multi-modal graphs, graphs with parallel edges, and hypergraphs. It provides a mechanism for annotating graphs, entities, and relations with metadata. This facilitates the creation of analytic tools for complex data sets that can examine the relations between entities as well as the metadata attached to each entity and relation. The current distribution of JUNG includes implementations of a number of algorithms from graph theory, data mining, and social network analysis, such as routines for clustering, decomposition, optimization, random graph generation, statistical analysis, and calculation of network distances, flows, and importance measures (centrality, PageRank, HITS, etc.). JUNG also provides a visualization framework that makes it easy to construct tools for the interactive exploration of network data. Users can use one of the layout algorithms provided, or use the framework to create their own custom layouts. In addition, filtering mechanisms are provided which allow users to focus their attention, or their algorithms, on specific portions of the graph.
A lightweight library that allows a comfortable handling of complex numbers in Kotlin
Calcscript is a stack based language designed with the purpose of executing complex calculations using minimum number of keystrokes
A Kotlin module for performing complex number and complex polynomial operations
JUNG the Java Universal Network/Graph Framework--is a software library that provides a common and extendible language for the modeling, analysis, and visualization of data that can be represented as a graph or network. It is written in Java, which allows JUNG-based applications to make use of the extensive built-in capabilities of the Java API, as well as those of other existing third-party Java libraries. The JUNG architecture is designed to support a variety of representations of entities and their relations, such as directed and undirected graphs, multi-modal graphs, graphs with parallel edges, and hypergraphs. It provides a mechanism for annotating graphs, entities, and relations with metadata. This facilitates the creation of analytic tools for complex data sets that can examine the relations between entities as well as the metadata attached to each entity and relation. The current distribution of JUNG includes implementations of a number of algorithms from graph theory, data mining, and social network analysis, such as routines for clustering, decomposition, optimization, random graph generation, statistical analysis, and calculation of network distances, flows, and importance measures (centrality, PageRank, HITS, etc.). JUNG also provides a visualization framework that makes it easy to construct tools for the interactive exploration of network data. Users can use one of the layout algorithms provided, or use the framework to create their own custom layouts. In addition, filtering mechanisms are provided which allow users to focus their attention, or their algorithms, on specific portions of the graph.
OpenCms-Module 'org.opencms.ade.editprovider'. This module contains an edit provider for the original Direct Edit which has a number of features from ADE.<br> <i>(c) 2013 by Alkacon Software GmbH (http://www.alkacon.com).</i> OpenCms is a Content Management System that is based on Open Source Software. Complex Intranet and Internet websites can be quickly and cost-effectively created, maintained and managed.
JUNG the Java Universal Network/Graph Framework--is a software library that provides a common and extensible language for the modeling, analysis, and visualization of data that can be represented as a graph or network. It is written in Java, which allows JUNG-based applications to make use of the extensive built-in capabilities of the Java API, as well as those of other existing third-party Java libraries. The JUNG architecture is designed to support a variety of representations of entities and their relations, such as directed and undirected graphs, multi-modal graphs, graphs with parallel edges, and hypergraphs. It provides a mechanism for annotating graphs, entities, and relations with metadata. This facilitates the creation of analytic tools for complex data sets that can examine the relations between entities as well as the metadata attached to each entity and relation. The current distribution of JUNG includes implementations of a number of algorithms from graph theory, data mining, and social network analysis, such as routines for clustering, decomposition, optimization, random graph generation, statistical analysis, and calculation of network distances, flows, and importance measures (centrality, PageRank, HITS, etc.). JUNG also provides a visualization framework that makes it easy to construct tools for the interactive exploration of network data. Users can use one of the layout algorithms provided, or use the framework to create their own custom layouts. In addition, filtering mechanisms are provided which allow users to focus their attention, or their algorithms, on specific portions of the graph.
A Java library for Complex Numbers.
An implementation of a complex number class with complex trigonometry and exponential functions.