🚀 Big News: Socket Acquires Coana to Bring Reachability Analysis to Every Appsec Team.Learn more
Socket
Book a DemoInstallSign in
Socket

@cdxoo/dbscan

Package Overview
Dependencies
Maintainers
1
Versions
7
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

@cdxoo/dbscan

Customizable DBSCAN clustering for arbitrary datasets

1.1.1
latest
Source
npm
Version published
Maintainers
1
Created
Source

@cdxoo/dbscan

Customizable DBSCAN clustering for arbirary datasets.

Installation

npm install --save @cdxoo/dbscan

Usage

const dbscan = require('@cdxoo/dbscan');
    
let simpleResult = dbscan({
    dataset: [21,22,23,24, 27,28,29,30, 9001],
    epsilon: 1.01,
});
// => {
//    clusters: [ [0,1,2,3], [4,5,6,7] ],
//    noise: [ 8 ]
//}

let objectResult = dbscan({
    dataset: [{ foo: 21 }, { foo: 22 }, { foo: 27 }, { foo: 28 }],
    epsilon: 1.1,
    distanceFunction: (a,b) => Math.abs(a.foo - b.foo)
});
// => {
//    clusters: [ [0,1], [2,3] ],
//    noise: []
//}

Parameters

dbscan({
    dataset: [],  // An array of datapoints.
                  // Datapojnts can be anything when you
                  // use a custom distance function.
    epsilon: 1.3, // Maximum distance between datapoints.
                  // Determine if a datapoint is in a cluster or not.
                  // Default is 1.0
    epsilonCompare: (distance, epsilon) => ( /*...*/ ),
                  // Custom function to compare calculated
                  // distance and epsilon. Must return true/false.
                  // Default is (dist, e) => (dist < e)
    distanceFunction: (a, b) => ( /*...*/ ),
                  // Custom function to calculate the distance
                  // between two datapoints. Must be given when
                  // working with higher dimensional datasets,
                  // or datasets whose items are objects.
                  // The default function only works on
                  // one-dimensional data points.
                  // Defaults is (a, b) => Math.abs(a - b)
    minimumPoints: 2,
                  // Threshold of how many points are needed
                  // in the same neighborhood to form a cluster.
                  // Default is 2
             
})

Keywords

cluster

FAQs

Package last updated on 11 Jul 2023

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts