
Research
NPM targeted by malware campaign mimicking familiar library names
Socket uncovered npm malware campaign mimicking popular Node.js libraries and packages from other ecosystems; packages steal data and execute remote code.
@data-ui/histogram
Advanced tools
A React + d3 library for creating histograms. Vertical or horizontal, raw data or binned data, numeric or categorical bins, counts or densities, cumulative or not.
npm install --save @data-ui/histogram
Demo it live at williaster.github.io/data-ui.
Similar to the @data-ui/xy-chart
package, this @data-ui/histogram
package exports a parent <Histogram />
container component that renders an svg and coordinates scales across its children. You can pass the parent container optionally-animated <BarSeries />
and/or <DensitySeries />
as well as <XAxis />
and <YAxis />
.
import { Histogram, DensitySeries, BarSeries, withParentSize, XAxis, YAxis } from '@data-ui/histogram';
const ResponsiveHistogram = withParentSize(({ parentWidth, parentHeight, ...rest}) => (
<Histogram
width={parentWidth}
height={parentHeight}
{...rest}
/>
);
const rawData = Array(100).fill().map(Math.random);
...
render () {
return (
<ResponsiveHistogram
ariaLabel="My histogram of ..."
orientation="vertical"
cumulative={false}
normalized={true}
binCount={25}
valueAccessor={datum => datum}
binType="numeric"
renderTooltip={({ event, datum, data, color }) => (
<div>
<strong style={{ color }}>{datum.bin0} to {datum.bin1}</strong>
<div><strong>count </strong>{datum.count}</div>
<div><strong>cumulative </strong>{datum.cumulative}</div>
<div><strong>density </strong>{datum.density}</div>
</div>
)}
>
<BarSeries
animated
rawData={rawData /* or binnedData={...} */}
/>
<XAxis />
<YAxis />
</ResponsiveHistogram>
);
}
Demo with the Histogram playground.
Check out the example source code and PropTable tabs in the Storybook williaster.github.io/data-ui.
<Histogram />
Name | Type | Default | Description |
---|---|---|---|
ariaLabel | PropTypes.string.isRequired | - | Accessibility label |
binValues | PropTypes.arrayOf(PropTypes.oneOfType([PropTypes.number, PropTypes.string])) | null | Bin thresholds, overrides binCount |
binCount | PropTypes.number | 10 | an approximate number of bins to use (if data is not already binned) |
binType | PropTypes.oneOf(['numeric', 'categorical']) | 'numeric' | Specify whether to bins are categorical or numeric |
children | PropTypes.node.isRequired | - | Child Series, Axis, or other |
cumulative | PropTypes.bool | false | whether to show a cumulative histogram |
height | PropTypes.number.isRequired | - | height of the visualization |
horizontal | PropTypes.bool | false | whether the histograms is oriented vertically or horizontally |
limits | PropTypes.array | null | values outside the limits are ignored |
margin | PropTypes.shape({ top: PropTypes.number, right: PropTypes.number, bottom: PropTypes.number, left: PropTypes.number }) | { top: 32, right: 32, bottom: 64, left: 64 } | chart margin, leave room for axes and labels! |
normalized | PropTypes.bool | false | whether the value axis is normalized as fraction of total |
theme | PropTypes.object | {} | chart theme object, see theme below. |
width | PropTypes.number.isRequired | - | width of the svg |
valueAccessor | PropTypes.func | d => d | for raw data, how to access the bin value |
<*Series />
<BarSeries />
and <DensitySeries />
components accept either rawData
or binnnedData
. Raw data can be in any format as long as the value of each datum can be accessed with the Histogram valueAccessor
function. Binned data should have the following shapes:
export const numericBinnedDatumShape = PropTypes.shape({
id: PropTypes.string.isRequired,
bin0: PropTypes.number.isRequired,
bin1: PropTypes.number.isRequired,
count: PropTypes.number.isRequired,
});
export const categoricalBinnedDatumShape = PropTypes.shape({
id: PropTypes.string.isRequired,
bin: PropTypes.string.isRequired,
count: PropTypes.number.isRequired,
});
If both rawData
and binnnedData
are provided, rawData
is ignored.
<BarSeries />
Name | Type | Default | Description |
---|---|---|---|
animated | PropTypes.bool | true | whether to animate updates to the data in the series |
rawData | PropTypes.array | [] | raw datum |
binnedData | binnedDataShape | [] | binned data |
fill | PropTypes.oneOfType([PropTypes.func, PropTypes.string]) | @data-ui/theme.color.default | determines bar fill color |
fillOpacity | PropTypes.oneOfType([PropTypes.func, PropTypes.number]) | 0.7 | opacity of bar fill |
stroke | PropTypes.oneOfType([PropTypes.func, PropTypes.string]) | 'white' | determines bar stroke color |
strokeWidth | PropTypes.oneOfType([PropTypes.func, PropTypes.number]) | 1 | determines width of bar outline |
onClick | PropTypes.func | -- | Called on bar click with a signature of ({ event, data, datum, color, index }) |
<DensitySeries />
For raw data that is numeric, the <DensitySeries />
plots an estimates of the probability density function, i.e., a kernel density estimate. If pre-aggregated and/or categorical data is passed to the Series, it plots an Area graph of values based on the data counts.
Name | Type | Default | Description |
---|---|---|---|
animated | PropTypes.bool | true | whether to animate updates to the data in the series |
rawData | PropTypes.array | [] | raw datum |
binnedData | binnedDataShape | [] | binned data |
fill | PropTypes.oneOfType([PropTypes.func, PropTypes.string]) | @data-ui/theme.color.default | determines bar fill color |
kernel | PropTypes.oneOf(['gaussian', 'parabolic']) | 'gaussian' | kernel function type, parabolic = epanechnikov kernel |
showArea | PropTypes.bool | true | whether to show density area fill |
showLine | PropTypes.bool | true | whether to show density line path |
smoothing | PropTypes.number | 1 | smoothing constant for parabolic / epanechinikov kernel function |
fillOpacity | PropTypes.oneOfType([PropTypes.func, PropTypes.number]) | 0.7 | opacity of area fill if shown |
stroke | PropTypes.oneOfType([PropTypes.func, PropTypes.string]) | 'white' | determines line color if shown |
strokeWidth | PropTypes.oneOfType([PropTypes.func, PropTypes.number]) | 2 | determines width of line path if shown |
strokeDasharray | PropTypes.oneOfType([PropTypes.func, PropTypes.string]) | '' | determines dash pattern of line if shown |
strokeLinecap | PropTypes.oneOf(['butt', 'square', 'round', 'inherit']) | 'round' | style of line path stroke |
useEntireScale | PropTypes.bool | false | if true, density plots will scale to fill the entire y-range of the plot. if false, the maximum value is scaled to the count of the series |
<XAxis />
and <YAxis />
Name | Type | Default | Description |
---|---|---|---|
axisStyles | axisStylesShape | {} | config object for axis and axis label styles, see theme below |
label | PropTypes.oneOfType([PropTypes.string, PropTypes.element]) | <text {...axisStyles.label[orientation]} /> | string or component for axis labels |
numTicks | PropTypes.number | null | approximate number of ticks |
orientation | XAxis PropTypes.oneOf(['bottom', 'top']) or YAxis PropTypes.oneOf(['left', 'right']) | bottom, left | orientation of axis |
tickStyles | tickStylesShape | {} | config object for styling ticks and tick labels, see theme below |
tickLabelComponent | PropTypes.element | <text {...tickStyles.label[orientation]} /> | component to use for tick labels |
tickFormat | PropTypes.func | null | (tick, tickIndex) => formatted tick |
tickValues | PropTypes.arrayOf(PropTypes.oneOfType([PropTypes.number, PropTypes.string])) | null | custom tick values |
Tooltips are supported for histogram BarSeries
. The easiest way to use tooltips out of the box is by passing a renderTooltip
function to <Histogram />
as shown in the above example. This function takes an object with the shape { event, datum, data, color }
as input and should return the inner contents of the tooltip (not the tooltip container!) as shown above. datum
corresponds to the binned data point, see the above-specified shapes which depend on whether your bins are categorical or numeric. color
represents the bar fill. If this function returns a falsy
value, a tooltip will not be rendered.
Under the covers this will wrap the <Histogram />
component in the exported <WithTooltip />
HOC, which wraps the svg
in a <div />
and handles the positioning and rendering of an HTML-based tooltip with the contents returned by renderTooltip()
. This tooltip is aware of the bounds of its container and should position itself "smartly".
If you'd like more customizability over tooltip rendering you can do either of the following:
Roll your own tooltip positioning logic and pass onMouseMove
and onMouseLeave
functions to Histogram
. These functions are passed to the <BarSeries />
children and are called with the signature onMouseMove({ data, datum, event, color })
and onMouseLeave()
upon appropriate trigger.
Wrap <Histogram />
in <WithTooltip />
yourself, which accepts props for additional customization:
Name | Type | Default | Description |
---|---|---|---|
children | PropTypes.func or PropTypes.object | - | Child function (to call) or element (to clone) with onMouseMove, onMouseLeave, and tooltipData props/keys |
className | PropTypes.string | - | Class name to add to the <div> container wrapper |
renderTooltip | PropTypes.func.isRequired | - | Renders the contents of the tooltip, signature of ({ event, data, datum, color, index }) => node . If this function returns a falsy value, a tooltip will not be rendered. |
styles | PropTypes.object | {} | Styles to add to the <div> container wrapper |
TooltipComponent | PropTypes.func or PropTypes.object | @vx 's TooltipWithBounds | Component (not instance) to use as the tooltip container component. It is passed top and left numbers for positioning |
tooltipProps | PropTypes.object | - | Props that are passed to TooltipComponent |
tooltipTimeout | PropTypes.number | 200 | Timeout in ms for the tooltip to hide upon calling onMouseLeave |
A theme object with the following shape can be passed to <Histogram />
to style the chart, axes, and series. Alternatively, keys (eg xAxisStyles
) can be passed directly to the axes components.
See @data-ui/theme
for an example.
export const themeShape = PropTypes.shape({
gridStyles: PropTypes.shape({
stroke: PropTypes.string,
strokeWidth: PropTypes.number,
}),
xAxisStyles: PropTypes.shape({
stroke: PropTypes.string,
strokeWidth: PropTypes.number,
label: PropTypes.shape({
bottom: PropTypes.object,
top: PropTypes.object,
}),
}),
yAxisStyles: PropTypes.shape({
stroke: PropTypes.string,
strokeWidth: PropTypes.number,
label: PropTypes.shape({
left: PropTypes.object,
right: PropTypes.object,
}),
})
xTickStyles: PropTypes.shape({
stroke: PropTypes.string,
tickLength: PropTypes.number,
label: PropTypes.shape({
bottom: PropTypes.object,
top: PropTypes.object,
}),
}),
yTickStyles: PropTypes.shape({
stroke: PropTypes.string,
tickLength: PropTypes.number,
label: PropTypes.shape({
left: PropTypes.object,
right: PropTypes.object,
}),
}),
});
npm install
yarn run dev # or 'build'
FAQs
React + d3 library for creating histograms
The npm package @data-ui/histogram receives a total of 6,331 weekly downloads. As such, @data-ui/histogram popularity was classified as popular.
We found that @data-ui/histogram demonstrated a not healthy version release cadence and project activity because the last version was released a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Research
Socket uncovered npm malware campaign mimicking popular Node.js libraries and packages from other ecosystems; packages steal data and execute remote code.
Research
Socket's research uncovers three dangerous Go modules that contain obfuscated disk-wiping malware, threatening complete data loss.
Research
Socket uncovers malicious packages on PyPI using Gmail's SMTP protocol for command and control (C2) to exfiltrate data and execute commands.