The @flatfile/plugin-xlsx-extractor plugin is designed to extract structured data from Excel files. It utilizes various libraries to parse Excel files and retrieve the structured data efficiently.
Event Type:
listener.on('file:created')
Supported file types:
.xls, .xlsx, .xlsm, .xlsb, .xltx, .xltm
When embedding Flatfile, this plugin should be deployed in a server-side listener. Learn more
Parameters
raw - boolean
In Excel, you could have formatting on a text cell (i.e. date formatting). By
default, Flatfile will just take the formatted text versus the raw values. Set
this value to true to take the raw values and disregard how it's displayed in
Excel.
rawNumbers - boolean
In Excel, you could have rounding or formatting on a number cell to only
display say 2 decimal places. By default, Flatfile will just take the
displayed decimal places versus the raw numbers. Set this value to true to
take the raw numbers and disregard how it's displayed in Excel.
dateNF - string - (optional)
The dateNF parameter allows you to specify the date format for parsing
dates. (i.e. yyyy-mm-dd)
chunkSize - default: "10_000" - number - (optional)
The chunkSize parameter allows you to specify the quantity of records to in
each chunk.
parallel - default: "1" - number - (optional)
The parallel parameter allows you to specify the number of chunks to process
in parallel.
The headerDetectionOptions parameter allows you to specify the options for
detecting headers in the file. By default, the first 10 rows are scanned for
the row with the most non-empty cells.
skipEmptyLines - default: "false" - boolean - (optional)
The skipEmptyLines parameter allows you to specify if empty lines should be
skipped. By default, empty lines are included.
debug - default: "false" - boolean - (optional)
The debug parameter lets you toggle on/off helpful debugging messages for
development purposes.
cascadeRowValues - default: "false" - boolean - (optional)
The cascadeRowValues parameter automatically cascades values down the dataset until a blank row, new value, or end of dataset. This is useful for hierarchical data where values in a column apply to multiple rows below them.
The cascadeHeaderValues parameter automatically cascades values across the header rows until a blank column, new value, or end of dataset. This is useful for multi-level headers where a header value applies to multiple columns.
mergedCellOptions - Object - (optional)
The mergedCellOptions parameter allows you to specify how merged cells should be handled during extraction. You can define different treatments for cells merged across columns, rows, or ranges.
Merged Cell Vectors
acrossColumns: Applies to cells merged horizontally (across multiple columns in the same row)
acrossRows: Applies to cells merged vertically (across multiple rows in the same column)
acrossRanges: Applies to cells merged both horizontally and vertically (across multiple rows and columns)
Treatment Options
For all vectors:
applyToAll: Applies the merged cell value to all cells in the un-merged range
applyToTopLeft: Applies the merged cell value only to the top-left cell in the un-merged range
For acrossColumns and acrossRows only:
coalesce: Keeps only the first row/column and removes other rows/columns
concatenate: Combines values from all cells using a separator (requires separator parameter)
Example configuration:
mergedCellOptions: {
acrossColumns: {
treatment: 'concatenate',
separator: ', '
},
acrossRows: {
treatment: 'applyToAll'
},
acrossRanges: {
treatment: 'applyToTopLeft'
}
}
API Calls
api.files.download
api.files.get
api.files.update
api.jobs.ack
api.jobs.complete
api.jobs.create
api.jobs.fail
api.jobs.update
api.records.insert
api.workbooks.create
Usage
Listen for an Excel file (all extensions supported) to be uploaded to Flatfile. The platform will then extract the file automatically. Once complete, the file will be ready for import in the Files area.
npm i @flatfile/plugin-xlsx-extractor
import { ExcelExtractor } from "@flatfile/plugin-xlsx-extractor";
listener.js
listener.use(ExcelExtractor());
Additional options
listener.use(ExcelExtractor({
raw: true,
rawNumbers: true,
cascadeRowValues: true,
cascadeHeaderValues: true,
mergedCellOptions: {
acrossColumns: {
treatment: 'concatenate',
separator: ', '
},
acrossRows: {
treatment: 'applyToAll'
},
acrossRanges: {
treatment: 'applyToTopLeft'
}
}
}));
Three detection options are provided for detecting headers in the file: default, explicitHeaders, and specificRows. By default, the first 10 rows are scanned for the row with the most non-empty cells. This row is then used as the header row.
Default
It looks at the first rowsToSearch rows and takes the row
with the most non-empty cells as the header, preferring the earliest
such row in the case of a tie.
listener.use(ExcelExtractor());
listener.use(
ExcelExtractor({
headerDetectionOptions: {
algorithm: "default",
rowsToSearch: 30,
},
})
);
This implementation simply returns an explicit list of headers it was provided with.
listener.use(
ExcelExtractor({
headerDetectionOptions: {
algorithm: "explicitHeaders",
headers: ["fiRsT NamE", "LaSt nAme", "emAil"],
},
})
);
Specific Rows
This implementation looks at specific rows and combines them into a single header. For example, if you knew that the header was in the third row, you could pass it { rowNumbers: [2] }.
listener.use(
ExcelExtractor({
headerDetectionOptions: {
algorithm: "specificRows",
rowNumbers: [2],
},
})
);
This implementation attempts to detect the first data row and select the previous
row as the header. If the data row cannot be detected due to all the sample
rows being full and not castable to a number or boolean type, it also will attempt
to detect a sub header row by checking following rows after a header is detected
for significant fuzzy matching. If over half of the fields in a possible sub header
row fuzzy match with the originally detected header row, the sub header row becomes
the new header.
listener.use(
ExcelExtractor({
headerDetectionOptions: {
algorithm: "dataRowAndSubHeaderDetection",
rowsToSearch: 30,
},
})
);
Full Example
In this example, the ExcelExtractor is initialized with optional options, and then registered as middleware with the Flatfile listener. When an Excel file is uploaded, the plugin will extract the structured data and process it using the extractor's parser.
listener.js
import { ExcelExtractor } from "@flatfile/plugin-xlsx-extractor";
export default async function (listener) {
const options = {
raw: true,
rawNumbers: true,
cascadeRowValues: true,
cascadeHeaderValues: true,
};
const excelExtractor = ExcelExtractor(options);
listener.use(excelExtractor);
}