
Security News
Insecure Agents Podcast: Certified Patches, Supply Chain Security, and AI Agents
Socket CEO Feross Aboukhadijeh joins Insecure Agents to discuss CVE remediation and why supply chain attacks require a different security approach.
@langchain/azure-openai
Advanced tools
[!IMPORTANT] This package is now deprecated in favor of the new Azure integration in the OpenAI SDK. Please use the package
@langchain/openaiinstead. You can find the migration guide here.
This package contains the Azure SDK for OpenAI LangChain.js integrations.
It provides Azure OpenAI support through the Azure SDK for OpenAI library.
npm install @langchain/azure-openai
This package, along with the main LangChain package, depends on @langchain/core.
If you are using this package with other LangChain packages, you should make sure that all of the packages depend on the same instance of @langchain/core.
You can do so by adding appropriate fields to your project's package.json like this:
{
"name": "your-project",
"version": "0.0.0",
"dependencies": {
"@langchain/azure-openai": "^0.0.4",
"langchain": "0.0.207"
},
"resolutions": {
"@langchain/core": "0.1.5"
},
"overrides": {
"@langchain/core": "0.1.5"
},
"pnpm": {
"overrides": {
"@langchain/core": "0.1.5"
}
}
}
The field you need depends on the package manager you're using, but we recommend adding a field for the common yarn, npm, and pnpm to maximize compatibility.
This package contains the AzureChatOpenAI class, which is the recommended way to interface with deployed models on Azure OpenAI.
To use, install the requirements, and configure your environment.
export AZURE_OPENAI_API_ENDPOINT=<your_endpoint>
export AZURE_OPENAI_API_KEY=<your_key>
export AZURE_OPENAI_API_DEPLOYMENT_NAME=<your_deployment_name>
Then initialize the model and make the calls:
import { AzureChatOpenAI } from "@langchain/azure-openai";
const model = new AzureChatOpenAI({
// Note that the following are optional, and will default to the values below
// if not provided.
azureOpenAIEndpoint: process.env.AZURE_OPENAI_API_ENDPOINT,
azureOpenAIApiKey: process.env.AZURE_OPENAI_API_KEY,
azureOpenAIApiDeploymentName: process.env.AZURE_OPENAI_API_DEPLOYMENT_NAME,
});
const response = await model.invoke(new HumanMessage("Hello world!"));
import { AzureChatOpenAI } from "@langchain/azure-openai";
const model = new AzureChatOpenAI({
// Note that the following are optional, and will default to the values below
// if not provided.
azureOpenAIEndpoint: process.env.AZURE_OPENAI_API_ENDPOINT,
azureOpenAIApiKey: process.env.AZURE_OPENAI_API_KEY,
azureOpenAIApiDeploymentName: process.env.AZURE_OPENAI_API_DEPLOYMENT_NAME,
});
const response = await model.stream(new HumanMessage("Hello world!"));
This package also supports embeddings with Azure OpenAI.
import { AzureOpenAIEmbeddings } from "@langchain/azure-openai";
const embeddings = new AzureOpenAIEmbeddings({
// Note that the following are optional, and will default to the values below
// if not provided.
azureOpenAIEndpoint: process.env.AZURE_OPENAI_API_ENDPOINT,
azureOpenAIApiKey: process.env.AZURE_OPENAI_API_KEY,
azureOpenAIApiDeploymentName: process.env.AZURE_OPENAI_API_EMBEDDINGS_DEPLOYMENT_NAME,
});
const res = await embeddings.embedQuery("Hello world");
If you're using Azure Managed Identity, you can also pass the credentials directly to the constructor:
import { DefaultAzureCredential } from "@azure/identity";
import { AzureOpenAI } from "@langchain/azure-openai";
const credentials = new DefaultAzureCredential();
const model = new AzureOpenAI({
credentials,
azureOpenAIEndpoint: process.env.AZURE_OPENAI_API_ENDPOINT,
azureOpenAIApiDeploymentName: process.env.AZURE_OPENAI_API_DEPLOYMENT_NAME,
});
This library is provides compatibility with the OpenAI API. You can use an API key from OpenAI's developer portal like in the example below:
import { AzureOpenAI, OpenAIKeyCredential } from "@langchain/azure-openai";
const model = new AzureOpenAI({
modelName: "gpt-3.5-turbo",
credentials: new OpenAIKeyCredential("<your_openai_api_key>"),
});
To develop the Azure OpenAI package, you'll need to follow these instructions:
yarn install
yarn build
Or from the repo root:
yarn build --filter=@langchain/azure-openai
Test files should live within a tests/ file in the src/ folder. Unit tests should end in .test.ts and integration tests should
end in .int.test.ts:
$ yarn test
$ yarn test:int
Run the linter & formatter to ensure your code is up to standard:
yarn lint && yarn format
If you add a new file to be exported, either import & re-export from src/index.ts, or add it to scripts/create-entrypoints.js and run yarn build to generate the new entrypoint.
FAQs
Azure SDK for OpenAI integrations for LangChain.js
The npm package @langchain/azure-openai receives a total of 7,589 weekly downloads. As such, @langchain/azure-openai popularity was classified as popular.
We found that @langchain/azure-openai demonstrated a not healthy version release cadence and project activity because the last version was released a year ago. It has 8 open source maintainers collaborating on the project.
Did you know?

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Security News
Socket CEO Feross Aboukhadijeh joins Insecure Agents to discuss CVE remediation and why supply chain attacks require a different security approach.

Security News
Tailwind Labs laid off 75% of its engineering team after revenue dropped 80%, as LLMs redirect traffic away from documentation where developers discover paid products.

Security News
The planned feature introduces a review step before releases go live, following the Shai-Hulud attacks and a rocky migration off classic tokens that disrupted maintainer workflows.