Introducing Socket Firewall: Free, Proactive Protection for Your Software Supply Chain.Learn More
Socket
Book a DemoInstallSign in
Socket

@leolee9086/vector-metrics

Package Overview
Dependencies
Maintainers
1
Versions
2
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

@leolee9086/vector-metrics

向量度量算法集合

latest
Source
npmnpm
Version
1.0.1
Version published
Maintainers
1
Created
Source

Vector Metrics

向量度量算法集合,支持15种距离和相似度算法。

安装

npm install @base/vector-metrics

使用方法

import { 
  computeCosineSimilarity,
  computeEuclideanDistance,
  computeDotProduct,
  computeVectorNorm,
  computeManhattanDistance,
  computeHammingDistance,
  computeJaccardDistance,
  computeBrayCurtisDistance,
  computeChebyshevDistance,
  computeMinkowskiDistance,
  computeChiSquareDistance,
  computeClarkDistance,
  computeCorrelationDistance,
  computeLorentzianDistance,
  computeSquaredEuclideanDistance,
  getMetric,
  getAvailableMetrics
} from '@base/vector-metrics';

// 直接使用算法函数
const similarity = computeCosineSimilarity([1, 2, 3], [4, 5, 6]);
const distance = computeEuclideanDistance([1, 2, 3], [4, 5, 6]);
const dotProduct = computeDotProduct([1, 2, 3], [4, 5, 6]);

// 通过算法名获取算法
const cosineMetric = getMetric('cosine-similarity');
const euclideanMetric = getMetric('euclidean');
const manhattanMetric = getMetric('manhattan');

// 使用获取的算法
const similarity2 = cosineMetric([1, 2, 3], [4, 5, 6]);
const distance2 = euclideanMetric([1, 2, 3], [4, 5, 6]);

// 获取所有可用算法名称
const availableMetrics = getAvailableMetrics();
console.log(availableMetrics); // ['dot-product', 'vector-norm', 'cosine-similarity', ...]

支持的算法

基础度量

  • 点积 (Dot Product) - 向量内积计算
  • 向量范数 (Vector Norm) - L2范数计算
  • 余弦相似度 (Cosine Similarity) - 角度相似性度量

距离度量

  • 欧几里得距离 (Euclidean Distance) - 直线距离
  • 平方欧几里得距离 (Squared Euclidean) - 避免开方运算
  • 曼哈顿距离 (Manhattan Distance) - L1距离
  • 切比雪夫距离 (Chebyshev Distance) - L∞距离
  • 闵可夫斯基距离 (Minkowski Distance) - 广义距离

特殊距离

  • 汉明距离 (Hamming Distance) - 二进制向量距离
  • 杰卡德距离 (Jaccard Distance) - 集合相似度
  • 布雷-柯蒂斯距离 (Bray-Curtis Distance) - 生态学距离
  • 卡方距离 (Chi-Square Distance) - 统计距离
  • 克拉克距离 (Clark Distance) - 比例敏感距离
  • 相关距离 (Correlation Distance) - 相关性度量
  • 洛伦兹距离 (Lorentzian Distance) - 异常检测距离

开发

# 运行测试
npm test

# 运行基准测试
npm run tournament

# 构建
npm run build

许可证

AGPL-3.0

Keywords

vector

FAQs

Package last updated on 04 Jul 2025

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts