Socket
Book a DemoInstallSign in
Socket

@litertjs/tfjs-interop

Package Overview
Dependencies
Maintainers
3
Versions
2
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

@litertjs/tfjs-interop

Tensorflow.js interop for LiteRT.js

latest
Source
npmnpm
Version
0.1.1
Version published
Maintainers
3
Created
Source

@litertjs/tfjs-interop

Utility package for using @litertjs/core with TensorFlow.js.

This package provides helper functions to allow seamless interoperability between the LiteRT.js and TensorFlow.js libraries. You can use it to run a LiteRT model using TFJS tensors as inputs and receiving TFJS tensors as outputs, making it easy to integrate LiteRT.js into an existing TFJS pipeline.

Prerequisites

This package has peer dependencies on @litertjs/core, @tensorflow/tfjs, and @tensorflow/tfjs-backend-webgpu. You must have these installed in your project.

npm install @litertjs/core @litertjs/tfjs-interop @tensorflow/tfjs @tensorflow/tfjs-backend-webgpu

Usage

For a complete guide, see our Get Started section on ai.google.dev.

Setup

Before you can run a model, you must initialize both TensorFlow.js and LiteRT.js. To enable efficient GPU tensor conversion, you must also configure LiteRT.js to use the same WebGPU device as the TFJS WebGPU backend.

import {loadLiteRt, liteRt} from '@litertjs/core';
import * as tf from '@tensorflow/tfjs';
import '@tensorflow/tfjs-backend-webgpu';
import { WebGPUBackend } from '@tensorflow/tfjs-backend-webgpu';

// Initialize TFJS WebGPU backend
await tf.setBackend('webgpu');

// Initialize LiteRT.js's Wasm files.
// These files are located in `node_modules/@litertjs/core/wasm/`
// and need to be served by your web server.
await loadLiteRt('/path/to/wasm/directory/');

// Make LiteRT use the same GPU device as TFJS for efficient tensor conversion.
// This must be run before loading a LiteRT model.
const backend = tf.backend() as WebGPUBackend;
liteRt.setWebGpuDevice(backend.device);

Running a Model with TFJS Tensors

Once set up, you can use the runWithTfjsTensors function to wrap a LiteRT model.run call. This function handles the conversion of TFJS input tensors to LiteRT tensors and converts the LiteRT output tensors back into TFJS tensors.

// Assumes the prior setup code has already been run.
import {runWithTfjsTensors} from '@litertjs/tfjs-interop';
import {loadAndCompile} from '@litertjs/core';
import * as tf from '@tensorflow/tfjs';

const model = await loadAndCompile(
  '/path/to/your/model/torchvision_mobilenet_v2.tflite',
  {accelerator: 'webgpu'}, // or 'wasm' for CPU.
);

// You can inspect the model's expected inputs and outputs.
console.log(model.getInputDetails());
console.log(model.getOutputDetails());

// Create a random TFJS tensor for input.
const input = tf.randomUniform([1, 3, 224, 224]);

// `runWithTfjsTensors` accepts a single tensor, an array of tensors,
// or a map of tensors by name.

// 1. Pass a single tensor
let results = runWithTfjsTensors(model, input);

// The result is an array of TFJS tensors.
await results[0].data();
results[0].print();
results[0].dispose();

// 2. Pass an array of tensors
results = runWithTfjsTensors(model, [input]);
await results[0].data();
results[0].print();
results[0].dispose();

// 3. Pass a map of inputs by name.
// Find the input tensor's name from `model.getInputDetails()`:
let resultsObject = runWithTfjsTensors(model, {
  'serving_default_args_0:0': input,
});

// The output is a Record<string, tf.Tensor>
// Find the output name from `model.getOutputDetails()`:
const result = resultsObject['StatefulPartitionedCall:0'];
await result.data();
result.print();
result.dispose();

// You can also run a specific model signature. Find available
// signatures from `model.signatures`.
console.log(model.signatures); // e.g., { 'serving_default': SignatureRunner }

// Pass the signature name as the second argument.
results = runWithTfjsTensors(model, 'serving_default', input);
await results[0].data();
results[0].print();
results[0].dispose();

// Or pass the signature object directly.
const signature = model.signatures['serving_default'];
results = runWithTfjsTensors(signature, input);
await results[0].data();
results[0].print();
results[0].dispose();

FAQs

Package last updated on 19 Sep 2025

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts