@operational/frame
Advanced tools
Comparing version 0.3.5 to 0.3.6
import { PivotFrame } from "./PivotFrame"; | ||
import { ColumnCursor, IterableFrame, Matrix, PivotProps, Schema, RawRow } from "./types"; | ||
import { ColumnCursor, IterableFrame, Matrix, PivotProps, Schema, RowCursor } from "./types"; | ||
import { getData } from "./secret"; | ||
import { GroupFrame } from "./GroupFrame"; | ||
export declare class DataFrame<Name extends string = string> implements IterableFrame<Name> { | ||
@@ -8,2 +9,3 @@ private readonly data; | ||
private readonly cursorCache; | ||
private readonly referentialCache; | ||
constructor(schema: Schema<Name>, data: Matrix<any>); | ||
@@ -17,6 +19,6 @@ stats(): { | ||
getCursor(column: Name): ColumnCursor<Name>; | ||
groupBy(columns: Array<Name | ColumnCursor<Name>>): Array<IterableFrame<Name>>; | ||
pivot<Column extends Name, Row extends Name>(prop: PivotProps<Column, Row>): PivotFrame<Name>; | ||
groupBy(columns: Array<Name | ColumnCursor<Name>>): GroupFrame<Name>; | ||
uniqueValues(columns: Array<Name | ColumnCursor<Name>>): string[][]; | ||
mapRows<A>(callback: (row: RawRow[], index: number) => A): A[]; | ||
pivot<Column extends Name, Row extends Name>(prop: PivotProps<Column, Row>): PivotFrame<Name>; | ||
mapRows<A>(callback: (row: RowCursor[], index: number) => A): A[]; | ||
[getData](): readonly [{ | ||
@@ -23,0 +25,0 @@ name: Name; |
import { PivotFrame } from "./PivotFrame"; | ||
import { getData } from "./secret"; | ||
import { isCursor } from "./utils"; | ||
import { uniqueValueCombinations } from "./stats"; | ||
import { FragmentFrame } from "./FragmentFrame"; | ||
import { isCursor, hashCursors } from "./utils"; | ||
import { GroupFrame } from "./GroupFrame"; | ||
import flru from "flru"; | ||
export class DataFrame { | ||
@@ -11,2 +11,4 @@ constructor(schema, data) { | ||
this.cursorCache = new Map(); | ||
// this one is small cache, because it is for rare operations | ||
this.referentialCache = flru(5); | ||
} | ||
@@ -31,3 +33,3 @@ stats() { | ||
} | ||
const cursor = ((row) => row[index]); | ||
const cursor = (row => row[index]); | ||
cursor.column = column; | ||
@@ -39,22 +41,21 @@ cursor.index = index; | ||
} | ||
pivot(prop) { | ||
const columnCursors = prop.columns.map(c => (isCursor(c) ? c : this.getCursor(c))); | ||
const rowCursors = prop.rows.map(r => (isCursor(r) ? r : this.getCursor(r))); | ||
const hash = `${hashCursors(columnCursors)}x${hashCursors(rowCursors)}`; | ||
if (!this.referentialCache.has(hash)) { | ||
this.referentialCache.set(hash, new PivotFrame(this, prop)); | ||
} | ||
return this.referentialCache.get(hash); | ||
} | ||
groupBy(columns) { | ||
// If no columns are provided, returns an array with the current frame as the sole entry. | ||
if (columns.length === 0) { | ||
return [this]; | ||
const columnCursors = columns.map(c => (isCursor(c) ? c : this.getCursor(c))); | ||
const hash = hashCursors(columnCursors); | ||
if (!this.referentialCache.has(hash)) { | ||
this.referentialCache.set(hash, new GroupFrame(this, columnCursors)); | ||
} | ||
const columnCursors = columns.map(c => isCursor(c) ? c : this.getCursor(c)); | ||
// Returns a FragmentFrame for every unique combination of column values. | ||
return uniqueValueCombinations(this, columnCursors).map(u => { | ||
const indices = this.data.reduce((arr, row, i) => { | ||
if (columnCursors.every((cursor, j) => cursor(row) === u[j])) { | ||
arr.push(i); | ||
} | ||
return arr; | ||
}, []); | ||
return new FragmentFrame(this, indices); | ||
}); | ||
return this.referentialCache.get(hash); | ||
} | ||
uniqueValues(columns) { | ||
const columnCursors = columns.map(c => isCursor(c) ? c : this.getCursor(c)); | ||
return uniqueValueCombinations(this, columnCursors); | ||
return this.groupBy(columns).uniqueValues(); | ||
} | ||
@@ -64,5 +65,2 @@ mapRows(callback) { | ||
} | ||
pivot(prop) { | ||
return new PivotFrame(this, prop); | ||
} | ||
// for internal use only | ||
@@ -69,0 +67,0 @@ [getData]() { |
import { DataFrame } from "./DataFrame"; | ||
import { IterableFrame, RawRow, ColumnCursor, Schema } from "./types"; | ||
import { IterableFrame, RowCursor, ColumnCursor, Schema } from "./types"; | ||
import { getData } from "./secret"; | ||
import { GroupFrame } from "./GroupFrame"; | ||
export declare class FragmentFrame<Name extends string = string> implements IterableFrame<Name> { | ||
@@ -8,10 +10,15 @@ private readonly data; | ||
private readonly origin; | ||
constructor(origin: DataFrame<Name>, index: number[]); | ||
getCursor(column: Name): ColumnCursor<Name, any>; | ||
groupBy(columns: Array<Name | ColumnCursor<Name>>): Array<IterableFrame<Name>>; | ||
private readonly groupByCache; | ||
constructor(origin: DataFrame<Name> | FragmentFrame<Name>, index: number[]); | ||
getCursor(column: Name): ColumnCursor<Name>; | ||
groupBy(columns: Array<Name | ColumnCursor<Name>>): GroupFrame<Name>; | ||
uniqueValues(columns: Array<Name | ColumnCursor<Name>>): string[][]; | ||
mapRows<A>(callback: (row: RawRow, index: number) => A): A[]; | ||
mapRows<A>(callback: (row: RowCursor, index: number) => A): A[]; | ||
row(rowIndex: number): any[]; | ||
[getData](): readonly [{ | ||
name: Name; | ||
type?: any; | ||
}[], any[][], number[]]; | ||
peak(column: Name | ColumnCursor<Name>): any; | ||
} | ||
//# sourceMappingURL=FragmentFrame.d.ts.map |
import { getData } from "./secret"; | ||
import { isCursor } from "./utils"; | ||
import { uniqueValueCombinations } from "./stats"; | ||
const isColumnCursor = (column) => { | ||
return column.index !== undefined; | ||
}; | ||
import { isCursor, hashCursors } from "./utils"; | ||
import { GroupFrame } from "./GroupFrame"; | ||
export class FragmentFrame { | ||
@@ -14,2 +11,3 @@ constructor(origin, index) { | ||
this.index = index; | ||
this.groupByCache = new Map(); | ||
} | ||
@@ -20,21 +18,11 @@ getCursor(column) { | ||
groupBy(columns) { | ||
// If no columns are provided, returns an array with the current frame as a FragmentFrame as the sole entry. | ||
if (columns.length === 0) { | ||
return [this]; | ||
const columnCursors = columns.map(c => (isCursor(c) ? c : this.getCursor(c))); | ||
const hash = hashCursors(columnCursors); | ||
if (!this.groupByCache.has(hash)) { | ||
this.groupByCache.set(hash, new GroupFrame(this, columnCursors)); | ||
} | ||
const columnCursors = columns.map(c => isCursor(c) ? c : this.getCursor(c)); | ||
// Returns a FragmentFrame for every unique combination of column values. | ||
return uniqueValueCombinations(this, columnCursors).map(u => { | ||
const indices = this.data.reduce((arr, row, i) => { | ||
if (columnCursors.every((cursor, j) => cursor(row) === u[j]) && this.index.includes(i)) { | ||
arr.push(i); | ||
} | ||
return arr; | ||
}, []); | ||
return new FragmentFrame(this.origin, indices); | ||
}); | ||
return this.groupByCache.get(hash); | ||
} | ||
uniqueValues(columns) { | ||
const columnCursors = columns.map(c => isCursor(c) ? c : this.getCursor(c)); | ||
return uniqueValueCombinations(this, columnCursors); | ||
return this.groupBy(columns).uniqueValues(); | ||
} | ||
@@ -47,5 +35,9 @@ mapRows(callback) { | ||
} | ||
// for internal use only | ||
[getData]() { | ||
return [this.schema, this.data, this.index]; | ||
} | ||
// we need this function for table display | ||
peak(column) { | ||
const columnIndex = isColumnCursor(column) ? column.index : this.schema.findIndex(x => x.name === column); | ||
const columnIndex = isCursor(column) ? column.index : this.schema.findIndex(x => x.name === column); | ||
if (columnIndex < 0) { | ||
@@ -52,0 +44,0 @@ throw new Error(`Unknown column ${column}`); |
@@ -7,2 +7,3 @@ export * from "./types"; | ||
export { FragmentFrame } from "./FragmentFrame"; | ||
export { GroupFrame } from "./GroupFrame"; | ||
//# sourceMappingURL=index.d.ts.map |
@@ -6,2 +6,3 @@ export * from "./stats"; | ||
export { FragmentFrame } from "./FragmentFrame"; | ||
export { GroupFrame } from "./GroupFrame"; | ||
//# sourceMappingURL=index.js.map |
import { DataFrame } from "./DataFrame"; | ||
import { FragmentFrame } from "./FragmentFrame"; | ||
import { PivotProps, WithCursor } from "./types"; | ||
export declare type DimensionValue = string; | ||
import { PivotProps, WithCursor, DimensionValue } from "./types"; | ||
export declare class PivotFrame<Name extends string = string> implements WithCursor<Name> { | ||
private readonly data; | ||
private readonly schema; | ||
private readonly prop; | ||
@@ -14,5 +11,3 @@ private readonly origin; | ||
protected rowIndex: number[][]; | ||
protected frameWithoutPivoting: FragmentFrame<Name>; | ||
private readonly rowCache; | ||
private readonly columnCache; | ||
private readonly cache; | ||
constructor(origin: DataFrame<Name>, prop: PivotProps<Name, Name>); | ||
@@ -19,0 +14,0 @@ getCursor(column: Name): import("./types").ColumnCursor<Name, any>; |
@@ -0,1 +1,2 @@ | ||
import flru from "flru"; | ||
import { FragmentFrame } from "./FragmentFrame"; | ||
@@ -7,8 +8,4 @@ import { getData } from "./secret"; | ||
this.origin = origin; | ||
const [schema, data] = origin[getData](); | ||
this.schema = schema; | ||
this.data = data; | ||
this.prop = prop; | ||
this.rowCache = new Map(); | ||
this.columnCache = new Map(); | ||
this.cache = flru(1024); | ||
} | ||
@@ -18,3 +15,3 @@ getCursor(column) { | ||
} | ||
// this is reverse operation of pivot in the DataFrame | ||
// reverse operation of pivot in the DataFrame | ||
// in Pandas this called melt | ||
@@ -52,6 +49,7 @@ unpivot() { | ||
} | ||
if (!this.rowCache.has(rowIdentifier)) { | ||
this.rowCache.set(rowIdentifier, new FragmentFrame(this.origin, row)); | ||
const key = `${rowIdentifier}r`; | ||
if (!this.cache.has(key)) { | ||
this.cache.set(key, new FragmentFrame(this.origin, row)); | ||
} | ||
return this.rowCache.get(rowIdentifier); | ||
return this.cache.get(key); | ||
} | ||
@@ -66,6 +64,7 @@ column(columnIdentifier) { | ||
} | ||
if (!this.columnCache.has(columnIdentifier)) { | ||
this.columnCache.set(columnIdentifier, new FragmentFrame(this.origin, column)); | ||
const key = `${columnIdentifier}c`; | ||
if (!this.cache.has(key)) { | ||
this.cache.set(key, new FragmentFrame(this.origin, column)); | ||
} | ||
return this.columnCache.get(columnIdentifier); | ||
return this.cache.get(key); | ||
} | ||
@@ -83,6 +82,10 @@ cell(rowIdentifier, columnIdentifier) { | ||
this.buildIndex(); | ||
const row = this.rowIndex[rowIdentifier]; | ||
const column = this.columnIndex[columnIdentifier]; | ||
const cell = intersect(row, column); | ||
return new FragmentFrame(this.origin, cell); | ||
const key = `${rowIdentifier}x${columnIdentifier}`; | ||
if (!this.cache.has(key)) { | ||
const row = this.rowIndex[rowIdentifier]; | ||
const column = this.columnIndex[columnIdentifier]; | ||
const cell = intersect(row, column); | ||
this.cache.set(key, new FragmentFrame(this.origin, cell)); | ||
} | ||
return this.cache.get(key); | ||
} | ||
@@ -93,6 +96,8 @@ // This is very specific case when we need PivotFrame, but without pivoting itself. | ||
getFrameWithoutPivoting() { | ||
if (!this.frameWithoutPivoting) { | ||
this.frameWithoutPivoting = new FragmentFrame(this.origin, this.data.map((_, i) => i)); | ||
const key = `0`; | ||
if (!this.cache.has(key)) { | ||
const [, data] = this.origin[getData](); | ||
this.cache.set(key, new FragmentFrame(this.origin, data.map((_, i) => i))); | ||
} | ||
return this.frameWithoutPivoting; | ||
return this.cache.get(key); | ||
} | ||
@@ -103,3 +108,4 @@ buildIndex() { | ||
} | ||
const nameToIndex = this.schema.reduce((acc, columnDefinition, index) => { | ||
const [schema, data] = this.origin[getData](); | ||
const nameToIndex = schema.reduce((acc, columnDefinition, index) => { | ||
acc[columnDefinition.name] = index; | ||
@@ -116,3 +122,3 @@ return acc; | ||
* In the end there is a list of indexes of rows from original data. | ||
* If we need to find what rows (from the `this.data`) correspond to [valueFromRowA, valueFromRowB ...] | ||
* If we need to find what rows (from the `data`) correspond to [valueFromRowA, valueFromRowB ...] | ||
* we can do following rowTreeIndex[valueFromRowA][valueFromRowB][...] and we will get array on indexes | ||
@@ -129,3 +135,3 @@ */ | ||
* matrix structure implemented as array of arrays | ||
* [[<numbers of rows in this.data with valueFromRowA, valueFromRowB ...>]] | ||
* [[<numbers of rows in data with valueFromRowA, valueFromRowB ...>]] | ||
* first row in rowHeaders corresponds to first row in rowHeaders etc. | ||
@@ -142,3 +148,3 @@ */ | ||
const columnIndex = []; | ||
this.data.forEach((dataRow, rowNumber) => { | ||
data.forEach((dataRow, rowNumber) => { | ||
const rowHeader = []; | ||
@@ -145,0 +151,0 @@ let previousRow = rowTreeIndex; |
import { DataFrame } from "./DataFrame"; | ||
import { DimensionValue, PivotFrame } from "./PivotFrame"; | ||
import { PivotProps } from "./types"; | ||
import { PivotFrame } from "./PivotFrame"; | ||
import { PivotProps, DimensionValue } from "./types"; | ||
/** | ||
@@ -5,0 +5,0 @@ * This class exposes internal implementation of PivotFrame, |
import { IterableFrame, ColumnCursor } from "./types"; | ||
export declare const maxValue: <Name extends string>(frame: IterableFrame<Name>, column: ColumnCursor<Name, any>) => number; | ||
export declare const uniqueValues: <Name extends string>(frame: IterableFrame<Name>, column: ColumnCursor<Name, any>) => string[]; | ||
export declare const uniqueValueCombinations: <Name extends string>(frame: IterableFrame<Name>, columns: ColumnCursor<Name, any>[]) => string[][]; | ||
import { GroupFrame } from "./GroupFrame"; | ||
export declare const maxValue: <Name extends string>(frame: IterableFrame<Name> | GroupFrame<Name>, column: ColumnCursor<Name, any>) => number; | ||
export declare const total: <Name extends string>(frame: IterableFrame<Name> | GroupFrame<Name>, column: ColumnCursor<Name, any>) => number; | ||
export declare const uniqueValues: <Name extends string>(frame: IterableFrame<Name> | GroupFrame<Name>, column: ColumnCursor<Name, any>) => string[]; | ||
//# sourceMappingURL=stats.d.ts.map |
@@ -0,1 +1,2 @@ | ||
import { isGroupFrame } from "./GroupFrame"; | ||
const statsCache = new WeakMap(); | ||
@@ -12,2 +13,3 @@ const getStatsCacheItem = (frame, column) => { | ||
}; | ||
// rename to max | ||
export const maxValue = (frame, column) => { | ||
@@ -26,5 +28,21 @@ const cacheItem = getStatsCacheItem(frame, column); | ||
let max = undefined; | ||
frame.mapRows(row => { | ||
max = max === undefined ? row[column.index] : Math.max(max, row[column.index]); | ||
}); | ||
if (isGroupFrame(frame)) { | ||
// we use sum as aggregation function, but we can use average or mean | ||
// we can pass information about which aggregation to use inside GroupFrame | ||
const aggregation = total; | ||
frame.map(row => { | ||
const value = aggregation(row, column); | ||
if (value != null) { | ||
max = max === undefined ? value : Math.max(max, value); | ||
} | ||
}); | ||
} | ||
else { | ||
frame.mapRows(row => { | ||
const value = row[column.index]; | ||
if (value != null) { | ||
max = max === undefined ? value : Math.max(max, value); | ||
} | ||
}); | ||
} | ||
cacheItem.max = max; | ||
@@ -34,3 +52,25 @@ } | ||
}; | ||
export const total = (frame, column) => { | ||
if (isGroupFrame(frame)) { | ||
frame = frame.ungroup(); | ||
} | ||
const cacheItem = getStatsCacheItem(frame, column); | ||
if (cacheItem.total === undefined) { | ||
// https://github.com/contiamo/operational-visualizations/issues/72 | ||
let total = undefined; | ||
frame.mapRows(row => { | ||
const value = row[column.index]; | ||
if (value) { | ||
total = total === undefined ? parseFloat(value) : total + parseFloat(value); | ||
} | ||
}); | ||
cacheItem.total = total; | ||
} | ||
return cacheItem.total; | ||
}; | ||
// rename to unique | ||
export const uniqueValues = (frame, column) => { | ||
if (isGroupFrame(frame)) { | ||
frame = frame.ungroup(); | ||
} | ||
const cacheItem = getStatsCacheItem(frame, column); | ||
@@ -40,3 +80,5 @@ if (cacheItem.unique === undefined) { | ||
frame.mapRows(row => { | ||
unique.add(row[column.index]); | ||
if (row[column.index] != null) { | ||
unique.add(row[column.index]); | ||
} | ||
}); | ||
@@ -47,13 +89,2 @@ cacheItem.unique = [...unique]; | ||
}; | ||
export const uniqueValueCombinations = (frame, columns) => { | ||
const columnValues = columns.map(c => uniqueValues(frame, c)); | ||
const combineValues = (i, values) => { | ||
return i === columns.length - 1 | ||
? columnValues[i].map(val => [...values, val]) | ||
: columnValues[i].reduce((arr, val) => { | ||
return [...arr, ...combineValues(i + 1, [...values, val])]; | ||
}, []); | ||
}; | ||
return combineValues(0, []); | ||
}; | ||
//# sourceMappingURL=stats.js.map |
@@ -0,1 +1,2 @@ | ||
import { GroupFrame } from "./GroupFrame"; | ||
/** | ||
@@ -10,14 +11,32 @@ * Can represent array of arrays or list of tuples or tuple of lists | ||
/** | ||
* Tuple representing raw row in the frame. | ||
* Initially it was tuple representing raw row in the frame and the implementation is still the same. | ||
* | ||
* At the moment it is array of any, but we can try to derive more precise type from the Schema. | ||
* But conceptually, it's supposed to be `RowCursor`. So you take `RowCursor` and `ColumnCursor` | ||
* and can get value at their crossing (like x and y cooordinate). | ||
* | ||
* We expose implementation details with the fact that row is an array `any[]`. | ||
* Instead we can use RowCursor, this way we would be able to change implementation to column oriented storage | ||
* without changing external code. | ||
* The fact that this is an array exposes implementation detail - DataFrame is row oriented storage. | ||
* | ||
* If we will keep exposing this implementation detail and rely on it a lot | ||
* at some point it would be hard to change implementation without breaking existing code. | ||
*/ | ||
export declare type RawRow = any[]; | ||
export declare type RowCursor = ReadonlyArray<any>; | ||
/** | ||
* Cursor is a function which gets rowCursor from the IterableFrame.map | ||
* and returns value from the corresponding column in the given row. | ||
* | ||
* As well it contains `column` name and index, so you can do `rowCursor[column.index]`, | ||
* I guess it is more performant, but probably we will regret about it if we will change | ||
* implementation of `RowCursor`. | ||
* | ||
* `rowCursor[column.index]` exposes implementation details. | ||
*/ | ||
export interface ColumnCursor<Name extends string, ValueInRawRow = any> { | ||
(rowCursor: RowCursor): ValueInRawRow; | ||
column: Name; | ||
index: number; | ||
} | ||
export interface WithCursor<Name extends string> { | ||
getCursor(column: Name): ColumnCursor<Name>; | ||
} | ||
export declare type DimensionValue = string; | ||
export interface IterableFrame<Name extends string> extends WithCursor<Name> { | ||
@@ -27,9 +46,9 @@ /** needed for stats module */ | ||
/** needed for visualisations */ | ||
mapRows<Result>(callback: (row: RawRow, index: number) => Result): Result[]; | ||
mapRows<Result>(callback: (rowCursor: RowCursor, rowIndex: number) => Result): Result[]; | ||
/** needed for visualizations */ | ||
groupBy(columns: Array<string | ColumnCursor<string>>): Array<IterableFrame<Name>>; | ||
groupBy(columns: Array<Name | ColumnCursor<Name>>): GroupFrame<Name>; | ||
/** needed for visualizations */ | ||
uniqueValues(columns: Array<Name | ColumnCursor<Name>>): string[][]; | ||
uniqueValues(columns: Array<Name | ColumnCursor<Name>>): DimensionValue[][]; | ||
/** needed for visualizations */ | ||
row(rowIndex: number): RawRow; | ||
row(rowIndex: number): RowCursor; | ||
} | ||
@@ -40,15 +59,3 @@ export interface PivotProps<Column extends string, Row extends string> { | ||
} | ||
/** | ||
* Cursor is a function which gets row from the IterableFrame.map | ||
* and returns value from the corresponding column in the given row. | ||
* | ||
* As well it contains `column` name and index, so you can do `row[accessor.index]`, | ||
* I guess it is more performant, but probably we will regret about it if we will change | ||
* implementation of `RawRow`. | ||
*/ | ||
export interface ColumnCursor<Name extends string, ValueInRawRow = any> { | ||
(row: RawRow): ValueInRawRow; | ||
column: Name; | ||
index: number; | ||
} | ||
export declare type GroupProps<Name extends string> = ReadonlyArray<Name | ColumnCursor<Name>>; | ||
//# sourceMappingURL=types.d.ts.map |
import { ColumnCursor } from "./types"; | ||
export declare const isCursor: (x: any) => x is ColumnCursor<any, any>; | ||
export declare const hashCursors: <Name extends string = string>(columns: ColumnCursor<Name, any>[]) => string; | ||
//# sourceMappingURL=utils.d.ts.map |
export const isCursor = (x) => (!!x.index || x.index === 0) && x instanceof Function; | ||
export const hashCursors = (columns) => `${columns.map(column => column.index).join(",")}`; | ||
//# sourceMappingURL=utils.js.map |
{ | ||
"name": "@operational/frame", | ||
"version": "0.3.5", | ||
"version": "0.3.6", | ||
"description": "Contiamo DataFrame.", | ||
@@ -22,3 +22,6 @@ "main": "./lib/index.js", | ||
"prepare": "tsc" | ||
}, | ||
"dependencies": { | ||
"flru": "^1.0.2" | ||
} | ||
} |
Sorry, the diff of this file is not supported yet
Sorry, the diff of this file is not supported yet
Sorry, the diff of this file is not supported yet
Sorry, the diff of this file is not supported yet
Sorry, the diff of this file is not supported yet
Sorry, the diff of this file is not supported yet
Sorry, the diff of this file is not supported yet
Sorry, the diff of this file is not supported yet
Sorry, the diff of this file is not supported yet
Sorry, the diff of this file is not supported yet
Sorry, the diff of this file is not supported yet
Sorry, the diff of this file is not supported yet
Sorry, the diff of this file is not supported yet
Sorry, the diff of this file is not supported yet
Sorry, the diff of this file is not supported yet
62939
46
729
1
+ Addedflru@^1.0.2
+ Addedflru@1.0.2(transitive)