New Case Study:See how Anthropic automated 95% of dependency reviews with Socket.Learn More
Socket
Sign inDemoInstall
Socket

@paddlejs-models/humanseg

Package Overview
Dependencies
Maintainers
5
Versions
29
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

@paddlejs-models/humanseg

[中文版](./README_cn.md)

  • 1.2.3
  • latest
  • npm
  • Socket score

Version published
Weekly downloads
2
decreased by-66.67%
Maintainers
5
Weekly downloads
 
Created
Source

中文版

humanseg

A real-time human-segmentation model. You can use it to change background. The output of the model is gray value. Model supplies simple api for users.

Api drawHumanSeg can draw human segmentation with a specified background. Api blurBackground can draw human segmentation with a blurred origin background. Api drawMask can draw the background without human.

version size downloads downloads

Run Demo

  1. Execute in the current directory
npm install
npm run dev
  1. Visit http://0.0.0.0:8866
  2. Visit gpu pipeline http://0.0.0.0:8866/gpu.html

Usage


import * as humanseg from '@paddlejs-models/humanseg';

// load humanseg model, use 398x224 shape model, and preheat
await humanseg.load();

// use 288x160 shape model, preheat and predict faster with a little loss of precision
// await humanseg.load(true, true);

// get the gray value [2, 398, 224] or [2, 288, 160];
const { data } = await humanseg.getGrayValue(img);

// background canvas
const back_canvas = document.getElementById('background') as HTMLCanvasElement;

// draw human segmentation
const canvas1 = document.getElementById('back') as HTMLCanvasElement;
humanseg.drawHumanSeg(data, canvas1, back_canvas) ;

// blur background
const canvas2 = document.getElementById('blur') as HTMLCanvasElement;
humanseg.drawHumanSeg(data, canvas2) ;

// draw the mask with background
const canvas3 = document.getElementById('mask') as HTMLCanvasElement;
humanseg.drawMask(data, canvas3, back_canvas);

gpu pipeline


// 引入 humanseg sdk
import * as humanseg from '@paddlejs-models/humanseg/lib/index_gpu';

// load humanseg model, use 398x224 shape model, and preheat
await humanseg.load();

// use 288x160 shape model, preheat and predict faster with a little loss of precision
// await humanseg.load(true, true);


// background canvas
const back_canvas = document.getElementById('background') as HTMLCanvasElement;

// draw human segmentation
const canvas1 = document.getElementById('back') as HTMLCanvasElement;
await humanseg.drawHumanSeg(input, canvas1, back_canvas) ;

// blur background
const canvas2 = document.getElementById('blur') as HTMLCanvasElement;
await humanseg.drawHumanSeg(input, canvas2) ;

// draw the mask with background
const canvas3 = document.getElementById('mask') as HTMLCanvasElement;
await humanseg.drawMask(input, canvas3, back_canvas);

Online experience

image human segmentation:https://paddlejs.baidu.com/humanseg

video-streaming human segmentation:https://paddlejs.baidu.com/humanStream

Performance

Used in Video Meeting

FAQs

Package last updated on 01 Sep 2022

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc