Research
Security News
Malicious npm Packages Inject SSH Backdoors via Typosquatted Libraries
Socket’s threat research team has detected six malicious npm packages typosquatting popular libraries to insert SSH backdoors.
@push.rocks/smartstream
Advanced tools
A library to simplify the creation and manipulation of Node.js streams, providing utilities for handling transform, duplex, and readable/writable streams effectively in TypeScript.
# @push.rocks/smartstream
A TypeScript library to simplify the creation and manipulation of Node.js streams, providing utilities for transform, duplex, and readable/writable stream handling while managing backpressure effectively.
## Install
To install `@push.rocks/smartstream`, you can use npm or yarn as follows:
```bash
npm install @push.rocks/smartstream --save
# OR
yarn add @push.rocks/smartstream
This will add @push.rocks/smartstream
to your project's dependencies.
The @push.rocks/smartstream
module is designed to simplify working with Node.js streams by providing a set of utilities for creating and manipulating streams. This module makes extensive use of TypeScript for improved code quality, readability, and maintenance. ESM syntax is utilized throughout the examples.
Start by importing the module into your TypeScript file:
import * as smartstream from '@push.rocks/smartstream';
For a more specific import, you may do the following:
import { SmartDuplex, StreamWrapper, StreamIntake, createTransformFunction, createPassThrough } from '@push.rocks/smartstream';
The module provides utilities for creating transform streams. For example, to create a transform stream that modifies chunks of data, you can use the createTransformFunction
utility:
import { createTransformFunction } from '@push.rocks/smartstream';
const upperCaseTransform = createTransformFunction<string, string>(async (chunk) => {
return chunk.toUpperCase();
});
// Usage with pipe
readableStream
.pipe(upperCaseTransform)
.pipe(writableStream);
SmartDuplex
is a powerful part of the smartstream
module designed to handle backpressure effectively. Here's an example of how to create a SmartDuplex
stream that processes data and respects the consumer's pace:
import { SmartDuplex } from '@push.rocks/smartstream';
const processDataDuplex = new SmartDuplex({
async writeFunction(chunk, { push }) {
const processedChunk = await processChunk(chunk); // Assume this is a defined asynchronous function
push(processedChunk);
}
});
sourceStream.pipe(processDataDuplex).pipe(destinationStream);
Smartstream
facilitates easy combining of multiple streams into a single pipeline, handling errors and cleanup automatically. Here's how you can combine multiple streams:
import { StreamWrapper } from '@push.rocks/smartstream';
const combinedStream = new StreamWrapper([
readStream, // Source stream
transformStream1, // Transformation
transformStream2, // Another transformation
writeStream // Destination stream
]);
combinedStream.run()
.then(() => console.log('Processing completed.'))
.catch(err => console.error('An error occurred:', err));
StreamIntake
allows for more dynamic control of the reading process, facilitating scenarios where data is not continuously available:
import { StreamIntake } from '@push.rocks/smartstream';
const streamIntake = new StreamIntake<string>();
// Dynamically push data into the intake
streamIntake.pushData('Hello, World!');
streamIntake.pushData('Another message');
// Signal end when no more data is to be pushed
streamIntake.signalEnd();
Consider a scenario where you need to process a large CSV file, transform the data row-by-row, and then write the results to a database or another file. With smartstream
, you could create a pipe that reads the CSV, processes each row, and handles backpressure, ensuring efficient use of resources.
import { SmartDuplex, createTransformFunction } from '@push.rocks/smartstream';
import fs from 'fs';
import csvParser from 'csv-parser';
const csvReadTransform = createTransformFunction<any, any>(async (row) => {
// Process row
return processedRow;
});
fs.createReadStream('path/to/largeFile.csv')
.pipe(csvParser())
.pipe(csvReadTransform)
.pipe(new SmartDuplex({
async writeFunction(chunk, { push }) {
await writeToDatabase(chunk); // Assume this writes to a database
}
}))
.on('finish', () => console.log('File processed successfully.'));
This example demonstrates reading a large CSV file, transforming each row with createTransformFunction
, and using a SmartDuplex
to manage the processed data flow efficiently, ensuring no data is lost due to backpressure issues.
Effective backpressure handling is crucial when working with streams to avoid overwhelming the downstream consumers. Here’s a comprehensive example that demonstrates handling backpressure in a pipeline with multiple SmartDuplex
instances:
import { SmartDuplex } from '@push.rocks/smartstream';
// Define the first SmartDuplex, which writes data slowly to simulate backpressure
const slowProcessingStream = new SmartDuplex({
name: 'SlowProcessor',
objectMode: true,
writeFunction: async (chunk, { push }) => {
await new Promise(resolve => setTimeout(resolve, 100)); // Simulated delay
console.log('Processed chunk:', chunk);
push(chunk);
}
});
// Define the second SmartDuplex as a fast processor
const fastProcessingStream = new SmartDuplex({
name: 'FastProcessor',
objectMode: true,
writeFunction: async (chunk, { push }) => {
console.log('Fast processing chunk:', chunk);
push(chunk);
}
});
// Create a StreamIntake to dynamically handle incoming data
const streamIntake = new StreamIntake<string>();
// Chain the streams together and handle the backpressure scenario
streamIntake
.pipe(fastProcessingStream)
.pipe(slowProcessingStream)
.pipe(createPassThrough()) // Use Pass-Through to provide intermediary handling
.on('data', data => console.log('Final output:', data))
.on('error', error => console.error('Stream encountered an error:', error));
// Simulate data pushing with intervals to observe backpressure handling
let counter = 0;
const interval = setInterval(() => {
if (counter >= 10) {
streamIntake.signalEnd();
clearInterval(interval);
} else {
streamIntake.pushData(`Chunk ${counter}`);
counter++;
}
}, 50);
In this advanced use case, a SlowProcessor
and FastProcessor
are created using SmartDuplex
, simulating a situation where one stream is slower than another. The StreamIntake
dynamically handles incoming chunks of data and the intermediary Pass-Through handles any potential interruptions.
For scenarios where you need to process data in parallel:
import { SmartDuplex, createTransformFunction } from '@push.rocks/smartstream';
const parallelTransform = createTransformFunction<any, any>(async (chunk) => {
// Parallel Processing
const results = await Promise.all(chunk.map(async item => await processItem(item)));
return results;
});
const streamIntake = new StreamIntake<any[]>();
streamIntake
.pipe(parallelTransform)
.pipe(new SmartDuplex({
async writeFunction(chunk, { push }) {
console.log('Processed parallel chunk:', chunk);
push(chunk);
}
}))
.on('finish', () => console.log('Parallel processing completed.'));
// Simulate data pushing
streamIntake.pushData([1, 2, 3, 4]);
streamIntake.pushData([5, 6, 7, 8]);
streamIntake.signalEnd();
Error handling is an essential part of working with streams. The StreamWrapper
assists in combining multiple streams while managing errors seamlessly:
import { StreamWrapper } from '@push.rocks/smartstream';
const faultyStream = new SmartDuplex({
async writeFunction(chunk, { push }) {
if (chunk === 'bad data') {
throw new Error('Faulty data encountered');
}
push(chunk);
}
});
const readStream = new StreamIntake<string>();
const writeStream = new SmartDuplex({
async writeFunction(chunk) {
console.log('Written chunk:', chunk);
}
});
const combinedStream = new StreamWrapper([readStream, faultyStream, writeStream]);
combinedStream.run()
.then(() => console.log('Stream processing completed.'))
.catch(err => console.error('Stream error:', err.message));
// Push Data
readStream.pushData('good data');
readStream.pushData('bad data'); // This will throw an error
readStream.pushData('more good data');
readStream.signalEnd();
Here's an example test case using the tap
testing framework to verify the integrity of the SmartDuplex
from a buffer:
import { expect, tap } from '@push.rocks/tapbundle';
import { SmartDuplex } from '@push.rocks/smartstream';
tap.test('should create a SmartStream from a Buffer', async () => {
const bufferData = Buffer.from('This is a test buffer');
const smartStream = SmartDuplex.fromBuffer(bufferData, {});
let receivedData = Buffer.alloc(0);
return new Promise<void>((resolve) => {
smartStream.on('data', (chunk: Buffer) => {
receivedData = Buffer.concat([receivedData, chunk]);
});
smartStream.on('end', () => {
expect(receivedData.toString()).toEqual(bufferData.toString());
resolve();
});
});
});
tap.start();
You can easily stream files and buffers with smartstream
. Here’s a test illustrating reading and writing with file streams using smartfile
combined with smartstream
utilities:
import { tap } from '@push.rocks/tapbundle';
import * as smartfile from '@push.rocks/smartfile';
import { SmartDuplex, StreamWrapper } from '@push.rocks/smartstream';
tap.test('should handle file read and write streams', async () => {
const readStream = smartfile.fsStream.createReadStream('./test/assets/readabletext.txt');
const writeStream = smartfile.fsStream.createWriteStream('./test/assets/writabletext.txt');
const transformStream = new SmartDuplex({
async writeFunction(chunk, { push }) {
const transformedChunk = chunk.toString().toUpperCase();
push(transformedChunk);
}
});
const streamWrapper = new StreamWrapper([readStream, transformStream, writeStream]);
await streamWrapper.run();
const outputContent = await smartfile.fs.promises.readFile('./test/assets/writabletext.txt', 'utf-8');
console.log('Output Content:', outputContent);
});
tap.start();
Creating modular and scoped transformations is straightforward with SmartDuplex
:
import { SmartDuplex } from '@push.rocks/smartstream';
type DataChunk = {
id: number;
data: string;
};
const transformationStream1 = new SmartDuplex<DataChunk, DataChunk>({
async writeFunction(chunk, { push }) {
chunk.data = chunk.data.toUpperCase();
push(chunk);
}
})
const transformationStream2 = new SmartDuplex<DataChunk, DataChunk>({
async writeFunction(chunk, { push }) {
chunk.data = `${chunk.data} processed with transformation 2`;
push(chunk);
}
});
const initialData: DataChunk[] = [
{ id: 1, data: 'first' },
{ id: 2, data: 'second' }
];
const intakeStream = new StreamIntake<DataChunk>();
intakeStream
.pipe(transformationStream1)
.pipe(transformationStream2)
.on('data', data => console.log('Transformed Data:', data));
initialData.forEach(item => intakeStream.pushData(item));
intakeStream.signalEnd();
By leveraging SmartDuplex
, StreamWrapper
, and StreamIntake
, you can streamline and enhance your data transformation pipelines in Node.js with a clear, efficient, and backpressure-friendly approach.
## License and Legal Information
This repository contains open-source code that is licensed under the MIT License. A copy of the MIT License can be found in the [license](license) file within this repository.
**Please note:** The MIT License does not grant permission to use the trade names, trademarks, service marks, or product names of the project, except as required for reasonable and customary use in describing the origin of the work and reproducing the content of the NOTICE file.
### Trademarks
This project is owned and maintained by Task Venture Capital GmbH. The names and logos associated with Task Venture Capital GmbH and any related products or services are trademarks of Task Venture Capital GmbH and are not included within the scope of the MIT license granted herein. Use of these trademarks must comply with Task Venture Capital GmbH's Trademark Guidelines, and any usage must be approved in writing by Task Venture Capital GmbH.
### Company Information
Task Venture Capital GmbH
Registered at District court Bremen HRB 35230 HB, Germany
For any legal inquiries or if you require further information, please contact us via email at hello@task.vc.
By using this repository, you acknowledge that you have read this section, agree to comply with its terms, and understand that the licensing of the code does not imply endorsement by Task Venture Capital GmbH of any derivative works.
FAQs
A library to simplify the creation and manipulation of Node.js streams, providing utilities for handling transform, duplex, and readable/writable streams effectively in TypeScript.
The npm package @push.rocks/smartstream receives a total of 308 weekly downloads. As such, @push.rocks/smartstream popularity was classified as not popular.
We found that @push.rocks/smartstream demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 0 open source maintainers collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Research
Security News
Socket’s threat research team has detected six malicious npm packages typosquatting popular libraries to insert SSH backdoors.
Security News
MITRE's 2024 CWE Top 25 highlights critical software vulnerabilities like XSS, SQL Injection, and CSRF, reflecting shifts due to a refined ranking methodology.
Security News
In this segment of the Risky Business podcast, Feross Aboukhadijeh and Patrick Gray discuss the challenges of tracking malware discovered in open source softare.