Socket
Book a DemoInstallSign in
Socket

@roboflow/tfrecords

Package Overview
Dependencies
Maintainers
11
Versions
5
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

@roboflow/tfrecords

TensorFlow record (.tfrecord) API for Node.JS and Browsers

1.0.5
latest
Source
npmnpm
Version published
Weekly downloads
1.3K
-28.38%
Maintainers
11
Weekly downloads
 
Created
Source

(forked to build on macOS, compile as commonjs, and read from the public npm repository)

TFRecords (.tfrecord) file format Builder and Reader for Browser and Node.js

Build Status

The TFRecords format is briefly documented here, and described as the recommended format for feeding data into TenosorFlow here and here.

This library facilitates producing data in the TFRecord format directly in node.js. The library is not "official" - it is not part of TensorFlow, and it is not maintained by the TensorFlow team.

An existing TFRecord Library and NPM Package (https://www.npmjs.com/package/tfrecord) already provide TFRecord API support for the Node.js platform. This Library provide a TFrecords Javascript API solution that support both Browser and Node.js runtime.

Usage - Build a TFRecords Buffer

The example below covers recommended API usage for generating a TFRecords buffer.

// Generate TFRecord
const builder = new TFRecordsBuilder();

builder.addFeature("image/width", FeatureType.Int64, 1024);
builder.addFeature("image/height", FeatureType.Int64, 800);
builder.addFeature("image/filename", FeatureType.String, "name");
builder.addFeature("image/encoded", FeatureType.Binary, imageBuffer);
builder.addFeature("image/format", FeatureType.String, "jpeg");
builder.addArrayFeature("image/object/bbox/xmin", FeatureType.Float, 0.0);
builder.addArrayFeature("image/object/bbox/ymin", FeatureType.Float, 0.0);
builder.addArrayFeature("image/object/bbox/xmax", FeatureType.Float, 1.0);
builder.addArrayFeature("image/object/bbox/ymax", FeatureType.Float, 1.0);
builder.addArrayFeature("image/object/class/text", FeatureType.String, "tag1");
builder.addArrayFeature("image/object/class/label", FeatureType.Int64, 0);

// Build single TFRecord
const tfrecord = builder.build()

// Get TFRecords buffer
const tfRecords = TFRecordsBuilder.buildTFRecords([tfrecord]);

Usage - Read a TFRecords Buffer

The example below covers recommended API usage for read a TFRecords buffer.

const reader = new TFRecordsReader(tfrecords);

const width = reader.getFeature(0, "image/width", FeatureType.Int64) as number;
const height = reader.getFeature(0, "image/height", FeatureType.Int64) as number;
const xminArray = reader.getArrayFeature(0, "image/object/bbox/xmin", FeatureType.Float) as number[];
const yminArray = reader.getArrayFeature(0, "image/object/bbox/ymin", FeatureType.Float) as number[];
const xmaxArray = reader.getArrayFeature(0, "image/object/bbox/xmax", FeatureType.Float) as number[];
const ymaxArray = reader.getArrayFeature(0, "image/object/bbox/ymax", FeatureType.Float) as number[];
const textArray = reader.getArrayFeature(0, "image/object/class/text", FeatureType.String) as string[];

Keywords

TFRecords

FAQs

Package last updated on 01 May 2024

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

About

Packages

Stay in touch

Get open source security insights delivered straight into your inbox.

  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc

U.S. Patent No. 12,346,443 & 12,314,394. Other pending.