Research
Security News
Malicious npm Package Targets Solana Developers and Hijacks Funds
A malicious npm package targets Solana developers, rerouting funds in 2% of transactions to a hardcoded address.
@tensorflow/tfjs-backend-webgl
Advanced tools
@tensorflow/tfjs-backend-webgl is a WebGL-accelerated backend for TensorFlow.js, enabling high-performance machine learning computations in the browser. It leverages the power of the GPU to perform operations faster than the CPU backend.
Tensor Operations
This feature allows you to perform tensor operations such as addition, multiplication, etc., using the WebGL backend for accelerated performance.
const tf = require('@tensorflow/tfjs');
require('@tensorflow/tfjs-backend-webgl');
async function run() {
await tf.setBackend('webgl');
const a = tf.tensor([1, 2, 3, 4]);
const b = tf.tensor([5, 6, 7, 8]);
const c = a.add(b);
c.print(); // Output: [6, 8, 10, 12]
}
run();
Model Training
This feature allows you to train machine learning models directly in the browser using the WebGL backend for faster computations.
const tf = require('@tensorflow/tfjs');
require('@tensorflow/tfjs-backend-webgl');
async function run() {
await tf.setBackend('webgl');
const model = tf.sequential();
model.add(tf.layers.dense({units: 100, activation: 'relu', inputShape: [10]}));
model.add(tf.layers.dense({units: 1}));
model.compile({optimizer: 'sgd', loss: 'meanSquaredError'});
const xs = tf.randomNormal([100, 10]);
const ys = tf.randomNormal([100, 1]);
await model.fit(xs, ys, {epochs: 10});
console.log('Model training complete');
}
run();
Model Inference
This feature allows you to perform model inference, i.e., making predictions using a pre-trained model, with the WebGL backend for improved performance.
const tf = require('@tensorflow/tfjs');
require('@tensorflow/tfjs-backend-webgl');
async function run() {
await tf.setBackend('webgl');
const model = await tf.loadLayersModel('https://example.com/model.json');
const input = tf.tensor([1, 2, 3, 4], [1, 4]);
const output = model.predict(input);
output.print();
}
run();
@tensorflow/tfjs-backend-cpu is a CPU-based backend for TensorFlow.js. It is generally slower than the WebGL backend but can be used in environments where WebGL is not available or desired.
@tensorflow/tfjs-node is a Node.js backend for TensorFlow.js, providing high-performance machine learning computations on the server-side. It leverages the TensorFlow C library for accelerated performance.
gpu.js is a JavaScript library for GPU-accelerated computations. While it is not specifically designed for machine learning, it can be used to perform general-purpose computations on the GPU, similar to the WebGL backend of TensorFlow.js.
This package implements a GPU accelerated WebGL backend for TensorFlow.js.
Note: this backend is included by default in @tensorflow/tfjs
.
// Import @tensorflow/tfjs-core
import * as tf from '@tensorflow/tfjs-core';
// Adds the WebGL backend to the global backend registry.
import '@tensorflow/tfjs-backend-webgl';
<!-- Import @tensorflow/tfjs-core -->
<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-core"></script>
<!-- Adds the WebGL backend to the global backend registry -->
<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-webgl"></script>
You can also get ES2017 code using the following links
<!-- Import @tensorflow/tfjs-core -->
<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-core@2.0.0-rc.4/dist/tf-core.es2017.js"></script>
<!-- Adds the WebGL backend to the global backend registry -->
<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-webgl@2.0.0-rc.4/dist/tf-backend-webgl.es2017.js"></script>
FAQs
GPU accelerated WebGL backend for TensorFlow.js
We found that @tensorflow/tfjs-backend-webgl demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 10 open source maintainers collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Research
Security News
A malicious npm package targets Solana developers, rerouting funds in 2% of transactions to a hardcoded address.
Security News
Research
Socket researchers have discovered malicious npm packages targeting crypto developers, stealing credentials and wallet data using spyware delivered through typosquats of popular cryptographic libraries.
Security News
Socket's package search now displays weekly downloads for npm packages, helping developers quickly assess popularity and make more informed decisions.