
Research
PyPI Package Disguised as Instagram Growth Tool Harvests User Credentials
A deceptive PyPI package posing as an Instagram growth tool collects user credentials and sends them to third-party bot services.
@voltagent/sdk
Advanced tools
Modern, type-safe, and developer-friendly SDK for tracking LLM agent workflows and observability.
npm install @voltagent/sdk
import { VoltAgentObservabilitySDK } from "@voltagent/sdk";
const sdk = new VoltAgentObservabilitySDK({
baseUrl: "https://api.voltagent.dev",
publicKey: "your-public-key",
secretKey: "your-secret-key",
autoFlush: true,
flushInterval: 3000,
});
// Start a trace (conversation/session)
const trace = await sdk.trace({
name: "Customer Support Query",
agentId: "support-agent-v1",
input: { query: "How to reset password?" },
userId: "user-123",
conversationId: "conv-456",
tags: ["support", "password-reset"],
});
// Add an agent
const agent = await trace.addAgent({
name: "Support Agent",
input: { task: "Handle password reset request" },
instructions: "You are a helpful customer support agent.",
metadata: {
modelParameters: { model: "gpt-4" },
},
});
// Use a tool
const searchTool = await agent.addTool({
name: "knowledge-base-search",
input: { query: "password reset procedure" },
});
await searchTool.success({
output: {
results: ["Reset via email", "Reset via SMS"],
relevanceScore: 0.89,
},
});
// Complete the workflow
await agent.success({
output: { response: "Password reset link sent!" },
usage: { promptTokens: 150, completionTokens: 85, totalTokens: 235 },
});
await trace.end({
output: { result: "Query resolved successfully" },
});
β
Trace-based Architecture - Industry standard observability patterns
β
Hierarchical Events - Agent β Tool/Memory/Retriever relationships
β
Type Safety - Full TypeScript support with discriminated unions
β
Fluent API - Intuitive method chaining
β
Multi-Agent Support - Sub-agents and complex workflows
β
Error Handling - Built-in error tracking and reporting
β
Auto-flushing - Automatic event batching and sending
β
Backward Compatible - Existing code continues to work
Trace
βββ Agent 1
β βββ Tool 1 β success/error
β βββ Memory 1 β success/error
β βββ Sub-Agent 1.1
β β βββ Tool 1.1.1 β success/error
β βββ Agent 1 β success/error
βββ Agent 2
βββ Retriever 1 β success/error
import { VoltAgentObservabilitySDK } from "@voltagent/sdk";
const sdk = new VoltAgentObservabilitySDK({
baseUrl: "https://api.voltagent.dev",
publicKey: "your-public-key",
secretKey: "your-secret-key",
autoFlush: true,
flushInterval: 3000,
});
Prerequisites: Create an account at https://console.voltagent.dev/ and set up an organization and project to get your API keys.
A trace represents one complete agent execution session. Every agent operation must happen within a trace.
const trace = await sdk.trace({
name: "Customer Support Query",
agentId: "support-agent-v1",
input: { query: "How to reset password?" },
userId: "user-123",
conversationId: "conv-456",
tags: ["support", "password-reset"],
metadata: {
priority: "high",
source: "web-chat",
},
});
const agent = await trace.addAgent({
name: "Support Agent",
input: { query: "User needs password reset help" },
instructions:
"You are a customer support agent specialized in helping users with account issues.",
metadata: {
modelParameters: {
model: "gpt-4",
temperature: 0.7,
maxTokens: 1000,
},
role: "customer-support",
specialization: "account-issues",
},
});
const searchTool = await agent.addTool({
name: "knowledge-base-search",
input: {
query: "password reset procedure",
maxResults: 5,
},
metadata: {
searchType: "semantic",
database: "support-kb",
},
});
// Tool success
await searchTool.success({
output: {
results: ["Reset via email", "Reset via SMS", "Contact support"],
count: 3,
relevanceScore: 0.89,
},
metadata: {
searchTime: "0.2s",
indexUsed: "support-kb-v2",
},
});
// Tool error (if needed)
await searchTool.error({
statusMessage: new Error("Database connection timeout"),
metadata: {
database: "support-kb",
timeoutMs: 5000,
},
});
const memoryOp = await agent.addMemory({
name: "user-context-storage",
input: {
key: "user_123_context",
value: {
lastLogin: "2024-01-15",
accountType: "premium",
},
ttl: 3600,
},
metadata: {
type: "redis",
region: "us-east-1",
},
});
await memoryOp.success({
output: {
stored: true,
key: "user_123_context",
expiresAt: "2024-01-15T15:00:00Z",
},
metadata: {
cacheHit: false,
storageLatency: "2ms",
},
});
const retriever = await agent.addRetriever({
name: "policy-document-retriever",
input: {
query: "password reset policy for premium users",
maxDocuments: 3,
threshold: 0.8,
},
metadata: {
vectorStore: "pinecone",
embeddingModel: "text-embedding-ada-002",
},
});
await retriever.success({
output: {
documents: [
"Premium users can reset passwords instantly via email",
"Password reset requires 2FA verification for premium accounts",
],
relevanceScores: [0.95, 0.88],
},
metadata: {
searchTime: "0.3s",
documentsScanned: 1500,
},
});
Create hierarchical agent structures for complex workflows:
// Create a sub-agent under the main agent
const policyChecker = await agent.addAgent({
name: "Policy Checker",
input: {
userId: "user-123",
requestType: "password-reset",
},
instructions: "You verify customer requests against company policies.",
metadata: {
role: "policy-verification",
parentAgent: agent.id,
modelParameters: {
model: "gpt-4",
},
},
});
// Add a tool to the sub-agent
const verificationTool = await policyChecker.addTool({
name: "policy-verification",
input: { userId: "user-123", action: "password-reset" },
});
await verificationTool.success({
output: { policyCompliant: true, requiredVerification: "2fa-sms" },
});
// Complete the sub-agent
await policyChecker.success({
output: {
policyCompliant: true,
approvalGranted: true,
},
usage: {
promptTokens: 85,
completionTokens: 45,
totalTokens: 130,
},
metadata: {
policiesChecked: ["password-policy", "premium-user-policy"],
complianceScore: 0.95,
},
});
// Complete the main agent
await agent.success({
output: {
response: "Password reset link sent to user's email",
actionTaken: "email-reset-link",
userSatisfied: true,
},
usage: {
promptTokens: 150,
completionTokens: 85,
totalTokens: 235,
},
metadata: {
responseTime: "2.1s",
confidenceScore: 0.95,
},
});
// Complete the trace
await trace.end({
output: {
result: "Customer support query resolved successfully",
resolution: "password-reset-completed",
},
status: "completed",
usage: {
promptTokens: 150,
completionTokens: 85,
totalTokens: 235,
},
metadata: {
totalAgents: 2,
totalOperations: 4,
successRate: 1.0,
},
});
const sdk = new VoltAgentObservabilitySDK({
baseUrl: string;
publicKey: string;
secretKey: string;
autoFlush?: boolean; // default: true
flushInterval?: number; // default: 5000ms
});
const trace = await sdk.trace({
name: string;
agentId: string; // The main agent identifier
input?: any;
userId?: string;
conversationId?: string;
metadata?: Record<string, unknown>;
tags?: string[];
});
// Update trace metadata
await trace.update({
status?: string;
metadata?: Record<string, unknown>;
// ... other trace fields
});
// End trace - Success
await trace.end({
output?: any;
status?: string;
usage?: { promptTokens: number; completionTokens: number; totalTokens: number };
metadata?: Record<string, unknown>;
});
// End trace - Error
await trace.end({
output?: any;
status: "error";
metadata?: Record<string, unknown>;
});
// Add agents to trace
const agent = await trace.addAgent({
name: string;
input?: any;
instructions?: string;
metadata?: Record<string, unknown>;
});
// Add sub-agents
const subAgent = await agent.addAgent(options);
// Add tools
const tool = await agent.addTool({
name: string;
input?: any;
metadata?: Record<string, unknown>;
});
// Add memory operations
const memory = await agent.addMemory({
name: string;
input?: any;
metadata?: Record<string, unknown>;
});
// Add retrieval operations
const retriever = await agent.addRetriever({
name: string;
input?: any;
metadata?: Record<string, unknown>;
});
// Complete agent - Success
await agent.success({
output?: any;
usage?: { promptTokens: number; completionTokens: number; totalTokens: number };
metadata?: Record<string, unknown>;
});
// Complete agent - Error
await agent.error({
statusMessage: Error | string | object;
stage?: string;
metadata?: Record<string, unknown>;
});
// Success completion
await tool.success({
output?: any;
metadata?: Record<string, unknown>;
});
await memory.success({
output?: any;
metadata?: Record<string, unknown>;
});
await retriever.success({
output?: any;
metadata?: Record<string, unknown>;
});
// Error handling
await tool.error({
statusMessage: Error | string | object;
metadata?: Record<string, unknown>;
});
await memory.error({
statusMessage: Error | string | object;
metadata?: Record<string, unknown>;
});
await retriever.error({
statusMessage: Error | string | object;
metadata?: Record<string, unknown>;
});
const trace = await sdk.trace({
name: "weather_query",
agentId: "weather-agent-v1",
input: { query: "Weather in Istanbul?" },
});
const agent = await trace.addAgent({
name: "Weather Agent",
instructions: "You provide accurate weather information.",
metadata: { modelParameters: { model: "gpt-4" } },
});
// Call weather API
const weatherTool = await agent.addTool({
name: "weather_api",
input: { city: "Istanbul" },
});
await weatherTool.success({
output: {
temperature: 22,
condition: "sunny",
humidity: 65,
},
});
// Save to memory
const memory = await agent.addMemory({
name: "cache_weather",
input: { key: "istanbul_weather", value: { temp: 22, condition: "sunny" } },
});
await memory.success({
output: { cached: true, expiresIn: 3600 },
});
await agent.success({
output: { response: "It's 22Β°C and sunny in Istanbul!" },
usage: { promptTokens: 50, completionTokens: 25, totalTokens: 75 },
});
await trace.end({
output: { result: "Weather query completed" },
status: "completed",
});
const trace = await sdk.trace({
name: "research_workflow",
agentId: "orchestrator",
input: { topic: "AI trends 2024" },
});
// Research agent
const researcher = await trace.addAgent({
name: "Research Agent",
instructions: "You research and gather information on given topics.",
metadata: { modelParameters: { model: "gpt-4" } },
});
const search = await researcher.addRetriever({
name: "web_search",
input: { query: "AI trends 2024", maxResults: 10 },
});
await search.success({
output: {
documents: ["AI trend doc 1", "AI trend doc 2"],
relevanceScores: [0.9, 0.8],
totalResults: 10,
},
});
await researcher.success({
output: { researchComplete: true, documentsFound: 10 },
usage: { promptTokens: 200, completionTokens: 150, totalTokens: 350 },
});
// Summary agent
const summarizer = await trace.addAgent({
name: "Summary Agent",
instructions: "You create comprehensive summaries from research data.",
metadata: { modelParameters: { model: "gpt-4" } },
});
// Translation sub-agent
const translator = await summarizer.addAgent({
name: "Translation Agent",
instructions: "You translate content to different languages.",
metadata: { modelParameters: { model: "gpt-3.5-turbo" } },
});
const translateTool = await translator.addTool({
name: "translate_api",
input: { text: "AI trends summary", targetLanguage: "tr" },
});
await translateTool.success({
output: { translatedText: "AI eΔilimleri ΓΆzeti..." },
});
await translator.success({
output: { translation: "Turkish translation completed" },
usage: { promptTokens: 100, completionTokens: 80, totalTokens: 180 },
});
await summarizer.success({
output: { summary: "Comprehensive AI trends summary with translation" },
usage: { promptTokens: 300, completionTokens: 200, totalTokens: 500 },
});
await trace.end({
output: { result: "Research workflow completed successfully" },
status: "completed",
});
const trace = await sdk.trace({
name: "error_handling_example",
agentId: "test-agent",
});
const agent = await trace.addAgent({
name: "Risky Agent",
instructions: "You handle operations that might fail.",
});
const riskyTool = await agent.addTool({
name: "external_api",
input: { endpoint: "https://unreliable-api.com" },
});
try {
// Simulate API call that might fail
const result = await callExternalAPI();
await riskyTool.success({
output: result,
metadata: { responseTime: "1.2s" },
});
await agent.success({
output: { result: "Operation completed successfully" },
});
} catch (error) {
// Handle tool error
await riskyTool.error({
statusMessage: error,
metadata: {
errorCode: "API_TIMEOUT",
retryAttempts: 3,
},
});
// Handle agent error
await agent.error({
statusMessage: new Error("Agent failed due to tool error"),
stage: "tool_execution",
metadata: {
failedTool: "external_api",
errorType: "TIMEOUT",
},
});
// End trace with error
await trace.end({
output: { error: "Workflow failed" },
status: "error",
metadata: { errorStage: "tool_execution" },
});
}
agent:start
- Agent begins processingagent:success
- Agent completes successfullyagent:error
- Agent encounters an errortool:start
- Tool call beginstool:success
- Tool call succeedstool:error
- Tool call failsmemory:read_start
/ memory:read_success
/ memory:read_error
memory:write_start
/ memory:write_success
/ memory:write_error
retriever:start
- Retrieval beginsretriever:success
- Retrieval succeedsretriever:error
- Retrieval failssdk.flush()
before your application exits to ensure all events are sentusage
field, not metadata, for proper cost trackingnpm test
Run examples:
npm run examples
MIT License - see LICENSE file for details.
FAQs
VoltAgent SDK - Client SDK for interacting with VoltAgent API
The npm package @voltagent/sdk receives a total of 154 weekly downloads. As such, @voltagent/sdk popularity was classified as not popular.
We found that @voltagent/sdk demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago.Β It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Research
A deceptive PyPI package posing as an Instagram growth tool collects user credentials and sends them to third-party bot services.
Product
Socket now supports pylock.toml, enabling secure, reproducible Python builds with advanced scanning and full alignment with PEP 751's new standard.
Security News
Research
Socket uncovered two npm packages that register hidden HTTP endpoints to delete all files on command.