AI Fallback
Automatically switch between AI model providers when one experiences downtime or errors.
Why?
AI providers can encounter:
- Rate limiting
- Service outages
- API errors
- Capacity issues
- Timeouts
This package ensures reliability by specifying multiple AI models as fallbacks. It automatically switches to the next available model if the primary fails, maintaining application uptime.
Installation
npm install ai-fallback
Models Fallback Reset
Reset to the primary model after a delay (e.g., 1 minute):
const model = createFallback({
models: [
anthropic('claude-3-haiku-20240307'),
openai('gpt-3.5-turbo'),
],
onError: (error, modelId) => {
console.error(`Error with model ${modelId}:`, error)
},
modelResetInterval: 60000,
})
Usage
Create a Fallback Model
import { createFallback } from 'ai-fallback'
import { openai } from '@ai-sdk/openai'
import { anthropic } from '@ai-sdk/anthropic'
const model = createFallback({
models: [anthropic('claude-3-haiku-20240307'), openai('gpt-3.5-turbo')],
})
Retry After Output
The retryAfterOutput
option allows retrying with a different model even if some tokens were already streamed. This is useful when you want to restart the generation from scratch if an error occurs mid-stream:
import { createFallback } from 'ai-fallback'
import { openai } from '@ai-sdk/openai'
import { anthropic } from '@ai-sdk/anthropic'
import { streamText } from 'ai'
let fullText = ''
const model = createFallback({
models: [anthropic('claude-3-haiku-20240307'), openai('gpt-3.5-turbo')],
retryAfterOutput: true,
onError: (err) => {
console.error('Error:', err)
fullText = ''
},
})
const stream = await streamText({
model,
system: 'You are a helpful assistant.',
messages: [{ role: 'user', content: 'Write a long story.' }],
})
for await (const chunk of stream.textStream) {
fullText += chunk
console.log('Current text:', fullText)
}
Text Generation
Generate text with automatic fallback:
const result = await generateText({
model,
system: 'You are a helpful assistant.',
messages: [{ role: 'user', content: 'Count from 1 to 5.' }],
})
Streaming Responses
Stream text responses:
const stream = await streamText({
model,
system: 'You are a helpful assistant.',
messages: [{ role: 'user', content: 'Count from 1 to 5.' }],
})
for await (const chunk of stream.textStream) {
console.log(chunk)
}
Structured Output
Stream typed objects using Zod
schemas:
import { z } from 'zod'
const stream = await streamObject({
model,
system: 'You are a helpful assistant.',
messages: [
{
role: 'user',
content: 'Give me a person object with name and age properties.',
},
],
schema: z.object({
name: z.string(),
age: z.number(),
}),
})
for await (const chunk of stream.partialObjectStream) {
console.log(chunk)
}