AloeDB - NodeJS
Light, Embeddable, NoSQL database ported to NodeJS
⚗️ Ported version
This is a forked version of AloeDB by Kirlovon. Changed to be able to be used in a modern NodeJS environment.
✨ Features
- 🎉 Simple to use API, similar to MongoDB!
- 🚀 Optimized for a large number of operations.
- ⚖ No dependencies, even without std!
- 📁 Stores data in readable JSON file.
📦 Importing
import { Database } from 'aloedb-node'
📖 Example
import { Database } from 'aloedb-node'
interface Film {
title: string;
year: number;
film: boolean;
genres: string[];
authors: { director: string };
}
const db = new Database<Film>('./path/to/the/file.json');
await db.insertOne({
title: 'Drive',
year: 2012,
film: true,
genres: ['crime', 'drama', 'noir'],
authors: { director: 'Nicolas Winding Refn' }
});
const found = await db.findOne({ title: 'Drive', film: true });
await db.updateOne({ title: 'Drive' }, { year: 2011 });
await db.deleteOne({ title: 'Drive' });
P.S. You can find more examples here!
🏃 Benchmarks
This database is not aimed at a heavily loaded backend, but its speed should be good enough for small APIs working with less than a million documents.
To give you an example, here is the speed of a database operations with 1000 documents:
Insertion | Searching | Updating | Deleting |
---|
15k ops/sec | 65k ops/sec | 8k ops/sec | 10k ops/sec |
📚 Guide
Initialization
import { Database } from 'aloedb-node'
interface Schema {
username: string;
password: string;
}
const db = new Database<Schema>({
path: './data.json',
pretty: true,
autoload: true,
autosave: true,
optimize: true,
immutable: true,
validator: (document: any) => {}
});
The following fields are available for configuration:
path
- Path to the database file. If undefined, data will be stored only in-memory. (Default: undefined)pretty
- Save data in easy-to-read format. (Default: true)autoload
- Automatically load the file synchronously when initializing the database. (Default: true)autosave
- Automatically save data to the file after inserting, updating and deleting documents. (Default: true)optimize
- Optimize data writing. If enabled, the data will be written many times faster in case of a large number of operations. (Default: true)immutable
- Automatically deeply clone all returned objects. (Default: true)validator
- Runtime documents validation function. If the document does not pass the validation, just throw the error.
Also, you can initialize the database in the following ways:
const db = new Database();
const db = new Database('./path/to/the/file.json');
Typization
AloeDB allows you to specify the schema of documents.
By doing this, you will get auto-completion and types validation. This is a completely optional feature that can make it easier for you to work with the database.
Just specify an interface that contains only the types supported by the database (strings, numbers, booleans, nulls, array, objects), and everything will works like magic! 🧙
interface User {
username: string;
password: string;
}
const db = new Database<User>();
await db.insertOne({ username: 'bob', password: 'qwerty' });
await db.insertOne({ username: 'greg' });
Inserting
AloeDB is a document-oriented database, so you storing objects in it. The supported types are Strings, Numbers, Booleans, Nulls, Arrays & Objects.
Keep in mind that data types such as Date, Map, Set and other complex types are not supported, and all fields with them will be deleted. Also, any blank documents will not be inserted.
const inserted = await db.insertOne({ text: 'Hey hey, im inserted!' });
console.log(inserted);
Querying
Search query can be an object or a search function. If query is an object, then the search will be done by deeply comparing the fields values in the query with the fields values in the documents.
In search queries you can use Primitives (strings, numbers, booleans, nulls), Arrays, Objects, RegExps and Functions.
await db.insertMany([
{ key: 1, value: 'one' },
{ key: 2, value: 'two' },
{ key: 3, value: 'three' },
]);
const found1 = await db.findOne({ key: 1 });
console.log(found1);
const found2 = await db.findOne((document: any) => document.key === 2);
console.log(found2);
When specifying Arrays or Objects, a deep comparison will be performed.
await db.insertMany([
{ key: 1, values: [1, 2] },
{ key: 2, values: [1, 2, 3] },
{ key: 3, values: [1, 2, 3, 4] },
]);
const found = await db.findOne({ values: [1, 2, 3] });
console.log(found);
Updating
As with search queries, update queries can be either a function or an object. If this is a function, then the function receives the document to update as a parameter, and you must return updated document from the function. (or return null
or {}
to delete it)
By the way, you can pass a function as a parameter value in an object. This can be useful if you want to update a specific field in your document. Also, you can return undefined
, to remove this field.
await db.insertMany([
{ key: 1, value: 'one' },
{ key: 2, value: 'two' },
{ key: 3, value: 'three' },
]);
const updated1 = await db.updateOne({ key: 1 }, { key: 4, value: 'four' });
console.log(updated1);
const updated2 = await db.updateOne({ key: 2 }, (document: any) => {
document.key = 5;
document.value = 'five';
return document;
});
console.log(updated2);
const updated3 = await db.updateOne({ key: 3 }, {
key: (value: any) => value === 6,
value: (value: any) => value === 'six'
});
console.log(updated3);
🔧 Methods
Documents
db.documents;
This property stores all your documents. It is better not to modify these property manually, as database methods do a bunch of checks for security and stability reasons. But, if you do this, be sure to call await db.save()
method after your changes.
InsertOne
await db.insertOne({ foo: 'bar' });
Inserts a document into the database. After insertion, it returns the inserted document.
All fields with undefined
values will be deleted. Empty documents will not be inserted.
By default, the document will be inserted as the last entry in the database. To insert it somewhere else, specify the optional index
parameter:
await db.insertOne({ foo: 'bar' }, 9);
If the provided index
is greater than the number of database entries, it will be inserted at the end.
InsertMany
await db.insertMany([{ foo: 'bar' }, { foo: 'baz' }]);
Inserts multiple documents into the database. After insertion, it returns the array with inserted documents.
This operation is atomic, so if something goes wrong, nothing will be inserted.
FindOne
await db.findOne({ foo: 'bar' });
Returns a document that matches the search query. Returns null
if nothing found.
FindMany
await db.findMany({ foo: 'bar' });
Returns an array of documents matching the search query.
UpdateOne
await db.updateOne({ foo: 'bar' }, { foo: 'baz' });
Modifies an existing document that match search query. Returns the found document with applied modifications. If nothing is found, it will return null
.
The document will be deleted if all of its fields are undefined
, or if you return null
or {}
using a update function.
This operation is atomic, so if something goes wrong, nothing will be updated.
UpdateMany
await db.updateMany({ foo: 'bar' }, { foo: 'baz' });
Modifies all documents that match search query. Returns an array with updated documents.
This operation is atomic, so if something goes wrong, nothing will be updated.
DeleteOne
await db.deleteOne({ foo: 'bar' });
Deletes first found document that matches the search query. After deletion, it will return deleted document.
DeleteMany
await db.deleteMany({ foo: 'bar' });
Deletes all documents that matches the search query. After deletion, it will return all deleted documents.
This operation is atomic, so if something goes wrong, nothing will be deleted.
Count
await db.count({ foo: 'bar' });
Returns the number of documents found by the search query. If the query is not specified or empty, it will return total number of documents in the database.
Drop
await db.drop();
Removes all documents from the database.
Load
await db.load();
Loads, parses and validates documents from the specified database file. If the file is not specified, then nothing will be done.
LoadSync
db.loadSync();
Same as db.load()
method, but synchronous. Will be called automatically if the autoload
parameter is set to true.
Save
await db.save();
Saves documents from memory to a database file. If the optimize
parameter is false, then the method execution will be completed when data writing is completely finished. Otherwise the data record will be added to the queue and executed later.
Helpers
This module contains helper functions that will make it easier to write and read search queries.
import { Database, and, includes, length, not, exists } from 'https://deno.land/x/aloedb@0.9.0/mod.ts';
const db = new Database();
await db.insertOne({ test: [1, 2, 3] });
const found = await db.findOne({
test: and(
length(3),
includes(2)
),
other: not(exists())
});
console.log(found);
List of all available helpers:
- moreThan
- moreThanOrEqual
- lessThan
- lessThanOrEqual
- between
- betweenOrEqual
- exists
- type
- includes
- length
- someElementMatch
- everyElementMatch
- and
- or
- not
💡 Tips & Tricks
Multiple Collections
By default, one database instance has only one collection. However, since the database instances are quite lightweight, you can initialize multiple instances for each collection.
Keep in mind that you cannot specify the same file for multiple instances!
import { Database } from 'https://deno.land/x/aloedb@0.9.0/mod.ts';
const users = new Database({ path: './users.json' });
const posts = new Database({ path: './posts.json' });
const comments = new Database({ path: './comments.json' });
const db = { users, posts, comments };
await db.users.insertOne({ username: 'john', password: 'qwerty123' });
Runtime Validation
You cannot always be sure about the data that comes to your server. TypeScript highlights a lot of errors at compilation time, but it doesn't help at runtime.
Luckily, you can use a library such as SuperStruct, which allows you to check your documents structure:
import { Database } from 'https://deno.land/x/aloedb@0.9.0/mod.ts';
import { assert, object, string, Infer } from 'https://cdn.skypack.dev/superstruct?dts';
const User = object({
username: string(),
password: string()
});
const UserValidator = (document: any) => assert(document, User);
type UserSchema = Infer<typeof User>;
const db = new Database<UserSchema>({ validator: UserValidator });
await db.insertOne({ username: 'bob', password: 'dylan' });
await db.insertOne({ username: 'bob', password: null as any });
Manual Changes
For performance reasons, a copy of the whole storage is kept in memory. Knowing this, you can modify the documents manually by modifying the db.documents
parameter.
Most of the time this is not necessary, as the built-in methods are sufficient, but if you want to have full control, you can do it!
Keep in mind that after your changes, you should always call the await db.save()
method!
import { Database } from 'https://deno.land/x/aloedb@0.9.0/mod.ts';
const db = new Database('./data.json');
try {
db.documents.push({ foo: 'bar' });
} finally {
await db.save();
}
Also, if you set the parameter immutable to false
when initializing the database, you will get back references to in-memory documents instead of their copies. This means that you cannot change the returned documents without calling the await db.save()
method.
import { Database } from 'https://deno.land/x/aloedb@0.9.0/mod.ts';
const db = new Database({ path: './data.json', immutable: false });
await db.insertOne({ field: 'The Days' });
const found = await db.findOne({ field: 'The Days' }) as { field: string };
found.field = 'The Nights';
await db.save();
console.log(db.documents);
Surprisingly, this library was ported to other programming languages without my participation. Much appreciation to this guys for their work! ❤
🔵 AlgoeDB - database for Go, made by billykirk01!
🟠 AlroeDB - database for Rust, also made by billykirk01!
🟢 AloeDB-Node - port to the Node.js, made by Wouter de Bruijn! (With awesome Active Records example)
📃 License
MIT (see LICENSE file)