Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

ann-js

Package Overview
Dependencies
Maintainers
1
Versions
2
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

ann-js

3-layer Artificial neural network in vanilla js

  • 0.1.1
  • latest
  • Source
  • npm
  • Socket score

Version published
Weekly downloads
2
decreased by-50%
Maintainers
1
Weekly downloads
 
Created
Source

ann-js

Artificial neural network in vanilla JS Build Status

This is a 3-layer neural network that uses sigmoid activation function and stochastic gradient descent as its backpropagation algorithm.

Installation

Install from the npm repository:

npm install ann-js

Small example

Teaching the network logical XOR operation:

// require the network
const NeuralNetwork = require("ann-js");

// instantiate a network with two inputs, 7 hidden neurons and 1 output
// set learning rate to 0.6
const NN = NeuralNetwork(2, 7, 1, 0.6);

// define our training data
const inputs = [
  { input: [1, 1], expected: 0 },
  { input: [1, 0], expected: 1 },
  { input: [0, 1], expected: 1 },
  { input: [1, 1], expected: 0 }
];

// and let it run
for (let i = 0; i < 10000; i++) {
  for (let j = 0; j < inputs.length; j++) {
    NN.train(inputs[j]);
  }
}

// let's check it out..
for(let i = 0; i < inputs.length; i++) {
  console.log("input:", inputs[i].input, "| output:", NN.test(inputs[i].input));
}
// --> input: [ 1, 1 ] | output: 0.007655196970540926
// --> input: [ 1, 0 ] | output: 0.9918757893434477
// --> input: [ 0, 1 ] | output: 0.9925807646447175
// --> input: [ 1, 1 ] | output: 0.007655196970540926

Methods

Constructor: NeuralNetwork(numInputs, numHidden, numOutputs, [ learningRate, [ bias ]])

Learning rate is by default set to 0.5 and bias si set to 1.

const NN = NeuralNetwork(1, 3, 2);
// 1 input neuron, 3 neurons in hidden layer, 2 output neurons

const NN = NeuralNetwork(2, 1, 2, 0.9, 2);
// 2 input neurons, 1 neuron in hidden layer, 2 output neurons, learning rate 0.9, bias set to 2

.train(trainObject)

Trains the network on a single training example

NN.train({ input: [1, 0], expected: 1 });

NN.train({ input: [1, 1, 1], expected: [1, 0] });

The .input property is what the network will be fed with, .expected is the result we're hoping to see.

.test(input)

Performs a single feed forward on the network and returns the result

const NN = NeuralNetwork(1, 2, 1);
NN.test(7);
// --> Number
const NN = NeuralNetwork(1, 2, 2);

NN.test(14);
// --> Array(2)

.load(file, callback) && .save(file, callback)

Asynchronously saves or loads the weights of the network. The saved file is in a json format.

NN.load("saved.json", err => {
  if(err) {
    return console.error(err);
  }
  
  // do something with network
});
NN.save("saved.json", err => {
  if(err) {
    return console.error(err);
  }
  
  // done saving4
});

.loadSync(file) & .saveSync(file)

Synchronous versions of .load & .sync

// loading multiple networks
NN1.loadSync("saved1.json");
NN2.loadSync("saved2.json");

FAQs

Package last updated on 08 Aug 2016

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc