🚀 Big News: Socket Acquires Coana to Bring Reachability Analysis to Every Appsec Team.Learn more
Socket
Book a DemoInstallSign in
Socket

autoevals

Package Overview
Dependencies
Maintainers
0
Versions
121
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

autoevals - npm Package Compare versions

Comparing version

to
0.0.76

69

jsdist/index.d.ts

@@ -1,2 +0,2 @@

import { ScorerArgs, Score, Scorer } from '@braintrust/core';
import { Scorer, ScorerArgs, Score } from '@braintrust/core';
export { Score, Scorer, ScorerArgs } from '@braintrust/core';

@@ -40,2 +40,9 @@ import { ChatCompletion, ChatCompletionMessageParam, ChatCompletionCreateParams } from 'openai/resources';

interface ScorerWithPartial<Output, Extra> extends Scorer<Output, Extra> {
partial: <T extends keyof Extra>(args: {
[K in T]: Extra[K];
}) => Scorer<Output, Omit<Extra, T> & Partial<Pick<Extra, T>>>;
}
declare function makePartial<Output, Extra>(fn: Scorer<Output, Extra>, name?: string): ScorerWithPartial<Output, Extra>;
type LLMArgs = {

@@ -96,3 +103,3 @@ maxTokens?: number;

*/
declare const Battle: Scorer<any, LLMClassifierArgs<{
declare const Battle: ScorerWithPartial<string, LLMClassifierArgs<{
instructions: string;

@@ -104,3 +111,3 @@ }>>;

*/
declare const ClosedQA: Scorer<any, LLMClassifierArgs<{
declare const ClosedQA: ScorerWithPartial<string, LLMClassifierArgs<{
input: string;

@@ -112,10 +119,10 @@ criteria: any;

*/
declare const Humor: Scorer<any, LLMClassifierArgs<{}>>;
declare const Humor: ScorerWithPartial<string, LLMClassifierArgs<{}>>;
/**
* Test whether an output is factual, compared to an original (`expected`) value.
*/
declare const Factuality: Scorer<any, LLMClassifierArgs<{
declare const Factuality: ScorerWithPartial<string, LLMClassifierArgs<{
input: string;
output: string;
expected?: string | undefined;
expected?: string;
}>>;

@@ -125,3 +132,3 @@ /**

*/
declare const Possible: Scorer<any, LLMClassifierArgs<{
declare const Possible: ScorerWithPartial<string, LLMClassifierArgs<{
input: string;

@@ -132,7 +139,7 @@ }>>;

*/
declare const Security: Scorer<any, LLMClassifierArgs<{}>>;
declare const Security: ScorerWithPartial<string, LLMClassifierArgs<{}>>;
/**
* Test whether a SQL query is semantically the same as a reference (output) query.
*/
declare const Sql: Scorer<any, LLMClassifierArgs<{
declare const Sql: ScorerWithPartial<string, LLMClassifierArgs<{
input: string;

@@ -143,3 +150,3 @@ }>>;

*/
declare const Summary: Scorer<any, LLMClassifierArgs<{
declare const Summary: ScorerWithPartial<string, LLMClassifierArgs<{
input: string;

@@ -151,3 +158,3 @@ }>>;

*/
declare const Translation: Scorer<any, LLMClassifierArgs<{
declare const Translation: ScorerWithPartial<string, LLMClassifierArgs<{
language: string;

@@ -160,4 +167,4 @@ input: string;

*/
declare const Levenshtein: Scorer<string, {}>;
declare const LevenshteinScorer: Scorer<string, {}>;
declare const Levenshtein: ScorerWithPartial<string, {}>;
declare const LevenshteinScorer: ScorerWithPartial<string, {}>;
/**

@@ -173,3 +180,3 @@ * A scorer that uses cosine similarity to compare two strings.

*/
declare const EmbeddingSimilarity: Scorer<string, {
declare const EmbeddingSimilarity: ScorerWithPartial<string, {
prefix?: string;

@@ -185,3 +192,3 @@ expectedMin?: number;

*/
declare const ListContains: Scorer<string[], {
declare const ListContains: ScorerWithPartial<string[], {
pairwiseScorer?: Scorer<string, {}>;

@@ -201,3 +208,3 @@ allowExtraEntities?: boolean;

*/
declare const Moderation: Scorer<string, {
declare const Moderation: ScorerWithPartial<string, {
threshold?: number;

@@ -209,3 +216,3 @@ } & OpenAIAuth>;

*/
declare const NumericDiff: Scorer<number, {}>;
declare const NumericDiff: ScorerWithPartial<number, {}>;

@@ -216,3 +223,3 @@ /**

*/
declare const JSONDiff: Scorer<any, {
declare const JSONDiff: ScorerWithPartial<any, {
stringScorer?: Scorer<string, {}>;

@@ -225,3 +232,3 @@ numberScorer?: Scorer<number, {}>;

*/
declare const ValidJSON: Scorer<string, {
declare const ValidJSON: ScorerWithPartial<string, {
schema?: any;

@@ -239,12 +246,12 @@ }>;

*/
declare const ContextEntityRecall: Scorer<string, RagasArgs & {
declare const ContextEntityRecall: ScorerWithPartial<string, RagasArgs & {
pairwiseScorer?: Scorer<string, {}>;
}>;
declare const ContextRelevancy: Scorer<string, RagasArgs>;
declare const ContextRecall: Scorer<string, RagasArgs>;
declare const ContextPrecision: Scorer<string, RagasArgs>;
declare const ContextRelevancy: ScorerWithPartial<string, RagasArgs>;
declare const ContextRecall: ScorerWithPartial<string, RagasArgs>;
declare const ContextPrecision: ScorerWithPartial<string, RagasArgs>;
/**
* Measures factual consistency of the generated answer with the given context.
*/
declare const Faithfulness: Scorer<string, RagasArgs>;
declare const Faithfulness: ScorerWithPartial<string, RagasArgs>;
/**

@@ -254,3 +261,3 @@ * Scores the relevancy of the generated answer to the given question.

*/
declare const AnswerRelevancy: Scorer<string, RagasArgs & {
declare const AnswerRelevancy: ScorerWithPartial<string, RagasArgs & {
strictness?: number;

@@ -261,3 +268,3 @@ }>;

*/
declare const AnswerSimilarity: Scorer<string, RagasArgs>;
declare const AnswerSimilarity: ScorerWithPartial<string, RagasArgs>;
/**

@@ -267,3 +274,3 @@ * Measures answer correctness compared to ground truth using a weighted

*/
declare const AnswerCorrectness: Scorer<string, RagasArgs & {
declare const AnswerCorrectness: ScorerWithPartial<string, RagasArgs & {
factualityWeight?: number;

@@ -274,7 +281,11 @@ answerSimilarityWeight?: number;

interface AutoevalMethod {
method: ScorerWithPartial<any, any>;
description: string;
}
declare const Evaluators: {
label: string;
methods: Scorer<any, any>[];
methods: AutoevalMethod[];
}[];
export { AnswerCorrectness, AnswerRelevancy, AnswerSimilarity, Battle, ClosedQA, ContextEntityRecall, ContextPrecision, ContextRecall, ContextRelevancy, EmbeddingSimilarity, Evaluators, Factuality, Faithfulness, Humor, JSONDiff, type LLMArgs, type LLMClassifierArgs, LLMClassifierFromSpec, LLMClassifierFromSpecFile, LLMClassifierFromTemplate, Levenshtein, LevenshteinScorer, ListContains, type ModelGradedSpec, Moderation, NumericDiff, OpenAIClassifier, type OpenAIClassifierArgs, Possible, Security, Sql, Summary, Translation, ValidJSON, buildClassificationFunctions, templates };
export { AnswerCorrectness, AnswerRelevancy, AnswerSimilarity, Battle, ClosedQA, ContextEntityRecall, ContextPrecision, ContextRecall, ContextRelevancy, EmbeddingSimilarity, Evaluators, Factuality, Faithfulness, Humor, JSONDiff, type LLMArgs, type LLMClassifierArgs, LLMClassifierFromSpec, LLMClassifierFromSpecFile, LLMClassifierFromTemplate, Levenshtein, LevenshteinScorer, ListContains, type ModelGradedSpec, Moderation, NumericDiff, OpenAIClassifier, type OpenAIClassifierArgs, Possible, type ScorerWithPartial, Security, Sql, Summary, Translation, ValidJSON, buildClassificationFunctions, makePartial, templates };
{
"name": "autoevals",
"version": "0.0.75",
"version": "0.0.76",
"description": "Universal library for evaluating AI models",

@@ -46,3 +46,3 @@ "main": "./jsdist/index.js",

"dependencies": {
"@braintrust/core": "0.0.44",
"@braintrust/core": "0.0.45",
"ajv": "^8.13.0",

@@ -49,0 +49,0 @@ "compute-cosine-similarity": "^1.1.0",

@@ -11,3 +11,3 @@ # Autoevals

Autoevals is developed by the team at [BrainTrust](https://braintrustdata.com/).
Autoevals is developed by the team at [Braintrust](https://braintrust.dev/).

@@ -52,3 +52,3 @@ Autoevals uses model-graded evaluation for a variety of subjective tasks including fact checking,

Once you grade an output using Autoevals, it's convenient to use [BrainTrust](https://www.braintrustdata.com/docs/libs/python) to log and compare your evaluation results.
Once you grade an output using Autoevals, it's convenient to use [Braintrust](https://www.braintrust.dev/docs/libs/python) to log and compare your evaluation results.

@@ -94,3 +94,3 @@ Create a file named `example.eval.js` (it must end with `.eval.js` or `.eval.js`):

### RAGAS
### RAG

@@ -203,2 +203,2 @@ - Context precision

The full docs are available [here](https://www.braintrustdata.com/docs/autoevals/overview).
The full docs are available [here](https://www.braintrust.dev/docs/reference/autoevals).

Sorry, the diff of this file is not supported yet

Sorry, the diff of this file is too big to display

Sorry, the diff of this file is not supported yet