Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

bigint-mod-arith

Package Overview
Dependencies
Maintainers
1
Versions
27
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

bigint-mod-arith - npm Package Compare versions

Comparing version 1.3.1 to 2.0.0

INSTRUCTIONS.md

54

package.json
{
"name": "bigint-mod-arith",
"version": "1.3.1",
"version": "2.0.0",
"description": "Some additional common functions for modular arithmetics using native JS (stage 3) implementation of BigInt",

@@ -23,21 +23,49 @@ "keywords": [

"repository": "github:juanelas/bigint-mod-arith",
"main": "./dist/bigint-mod-arith-latest.node.js",
"browser": "./dist/bigint-mod-arith-latest.browser.mod.js",
"main": "./lib/index.node.js",
"browser": "./lib/index.browser.mod.js",
"types": "./types/index.d.ts",
"directories": {
"build": "./build",
"dist": "./dist",
"src": "./src"
"lib": "./lib",
"src": "./src",
"test": "./test",
"types": "./types"
},
"scripts": {
"build": "node build/build.rollup.js",
"build:docs": "jsdoc2md --template=README.hbs --files ./src/main.js > README.md",
"build:all": "npm run build && npm run build:docs",
"prepublishOnly": "npm run build && npm run build:docs"
"test": "mocha",
"build:js": "rollup -c build/rollup.config.js",
"build:standard": "standard --fix",
"build:browserTests": "rollup -c build/rollup.tests.config.js",
"build:docs": "jsdoc2md --template=./src/doc/readme-template.md --files ./lib/index.browser.mod.js -d 3 -g none > README.md",
"build:dts": "node build/build.dts.js",
"build": "run-s build:**",
"prepublishOnly": "npm run build"
},
"standard": {
"env": [
"mocha"
],
"globals": [
"BigInt"
],
"ignore": [
"/test/browser/",
"/lib/index.browser.bundle.js",
"/lib/index.browser.bundle.mod.js"
]
},
"devDependencies": {
"jsdoc-to-markdown": "^4.0.1",
"rollup": "^1.10.1",
"rollup-plugin-babel-minify": "^8.0.0",
"rollup-plugin-commonjs": "^9.3.4"
"@rollup/plugin-commonjs": "^11.0.2",
"@rollup/plugin-multi-entry": "^3.0.0",
"@rollup/plugin-node-resolve": "^7.1.1",
"@rollup/plugin-replace": "^2.3.1",
"chai": "^4.2.0",
"jsdoc-to-markdown": "^5.0.3",
"mocha": "^7.1.1",
"npm-run-all": "^4.1.5",
"rollup": "^2.3.3",
"rollup-plugin-terser": "^5.3.0",
"standard": "^14.3.3",
"typescript": "^3.8.3"
}
}

@@ -0,17 +1,15 @@

[![JavaScript Style Guide](https://img.shields.io/badge/code_style-standard-brightgreen.svg)](https://standardjs.com)
# bigint-mod-arith
**IMPORTANT! This package has been superseded by [bigint-crypto-utils](https://github.com/juanelas/bigint-crypto-utils)**. Please install that package instead.
Some extra functions to work with modular arithmetic using native JS ([ES-2020](https://tc39.es/ecma262/#sec-bigint-objects)) implementation of BigInt. It can be used by any [Web Browser or webview supporting BigInt](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt#Browser_compatibility) and with Node.js (>=10.4.0).
Some extra functions to work with modular arithmetics using native JS (stage 3) implementation of BigInt. It can be used by any [Web Browser or webview supporting BigInt](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt#Browser_compatibility) and with Node.js (>=10.4.0).
> The operations supported on BigInts are not constant time. BigInt can be therefore **[unsuitable for use in cryptography](https://www.chosenplaintext.ca/articles/beginners-guide-constant-time-cryptography.html).** Many platforms provide native support for cryptography, such as [Web Cryptography API](https://w3c.github.io/webcrypto/) or [Node.js Crypto](https://nodejs.org/dist/latest/docs/api/crypto.html).
If you are also looking for a cryptographically-secure random generator and for strong probable primes (generation and testing), you should consider moving to [bigint-crypto-utils](https://github.com/juanelas/bigint-crypto-utils)
## Installation
_The operations supported on BigInts are not constant time. BigInt can be therefore **[unsuitable for use in cryptography](https://www.chosenplaintext.ca/articles/beginners-guide-constant-time-cryptography.html).** Many platforms provide native support for cryptography, such as [Web Cryptography API](https://w3c.github.io/webcrypto/) or [Node.js Crypto](https://nodejs.org/dist/latest/docs/api/crypto.html)._
bigint-mod-arith is distributed for [web browsers and/or webviews supporting BigInt](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt#Browser_compatibility) as an ES6 module or an IIFE file; and for Node.js (>=10.4.0), as a CJS module.
## Installation
bigint-mod-arith is distributed for [web browsers and/or webviews supporting
BigInt](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt#Browser_compatibility)
as an ES6 module or an IIFE file; and for Node.js (>=10.4.0), as a CJS module.
bigint-mod-arith can be imported to your project with `npm`:
bigint-mod-arith can be imported to your project with `npm`:
```bash

@@ -22,10 +20,41 @@ npm install bigint-mod-arith

For web browsers, you can also directly download the minimised version of the [IIFE file](https://raw.githubusercontent.com/juanelas/bigint-mod-arith/master/dist/bigint-mod-arith-latest.browser.min.js) or the [ES6 module](https://raw.githubusercontent.com/juanelas/bigint-mod-arith/master/dist/bigint-mod-arith-latest.browser.mod.min.js) from GitHub.
For web browsers, you can also directly download the [IIFE bundle](https://raw.githubusercontent.com/juanelas/bigint-mod-arith/master/lib/index.browser.bundle.js) or the [ES6 bundle module](https://raw.githubusercontent.com/juanelas/bigint-mod-arith/master/lib/index.browser.bundle.mod.js) from GitHub.
## Usage example
With node js:
Import your module as :
- Node.js
```javascript
const bigintCryptoUtils = require('bigint-mod-arith')
... // your code here
```
- JavaScript native project
```javascript
import * as bigintCryptoUtils from 'bigint-mod-arith'
... // your code here
```
- Javascript native browser ES6 mod
```html
<script type="module">
import * as bigintCryptoUtils from 'lib/index.browser.bundle.mod.js' // Use you actual path to the broser mod bundle
... // your code here
</script>
import as bcu from 'bigint-mod-arith'
... // your code here
```
- JavaScript native browser IIFE
```html
<script src="../../lib/index.browser.bundle.js"></script>
<script>
... // your code here
</script>
- TypeScript
```typescript
import * as bigintCryptoUtils from 'bigint-mod-arith'
... // your code here
```
> BigInt is [ES-2020](https://tc39.es/ecma262/#sec-bigint-objects). In order to use it with TypeScript you should set `lib` (and probably also `target` and `module`) to `esnext` in `tsconfig.json`.
```javascript
const bigintModArith = require('bigint-mod-arith');
/* Stage 3 BigInts with value 666 can be declared as BigInt('666')

@@ -37,74 +66,35 @@ or the shorter new no-so-linter-friendly syntax 666n.

*/
let a = BigInt('5');
let b = BigInt('2');
let n = BigInt('19');
const a = BigInt('5')
const b = BigInt('2')
const n = BigInt('19')
console.log(bigintCryptoUtils.modPow(a, b, n)); // prints 6
console.log(bigintCryptoUtils.modPow(a, b, n)) // prints 6
console.log(bigintCryptoUtils.modInv(BigInt('2'), BigInt('5'))); // prints 3
console.log(bigintCryptoUtils.modInv(BigInt('2'), BigInt('5'))) // prints 3
console.log(bigintCryptoUtils.modInv(BigInt('3'), BigInt('5'))); // prints 2
```
console.log(bigintCryptoUtils.modInv(BigInt('3'), BigInt('5'))) // prints 2
From a browser, you can just load the module in a html page as:
```html
<script type="module">
import * as bigintModArith from 'bigint-mod-arith-latest.browser.mod.min.js';
let a = BigInt('5');
let b = BigInt('2');
let n = BigInt('19');
console.log(bigintModArith.modPow(a, b, n)); // prints 6
console.log(bigintModArith.modInv(BigInt('2'), BigInt('5'))); // prints 3
console.log(bigintModArith.modInv(BigInt('3'), BigInt('5'))); // prints 2
</script>
```
# bigint-mod-arith JS Doc
## JS Doc
## Functions
<a name="abs"></a>
<dl>
<dt><a href="#abs">abs(a)</a> ⇒ <code>bigint</code></dt>
<dd><p>Absolute value. abs(a)==a if a&gt;=0. abs(a)==-a if a&lt;0</p>
</dd>
<dt><a href="#eGcd">eGcd(a, b)</a> ⇒ <code><a href="#egcdReturn">egcdReturn</a></code></dt>
<dd><p>An iterative implementation of the extended euclidean algorithm or extended greatest common divisor algorithm.
Take positive integers a, b as input, and return a triple (g, x, y), such that ax + by = g = gcd(a, b).</p>
</dd>
<dt><a href="#gcd">gcd(a, b)</a> ⇒ <code>bigint</code></dt>
<dd><p>Greatest-common divisor of two integers based on the iterative binary algorithm.</p>
</dd>
<dt><a href="#lcm">lcm(a, b)</a> ⇒ <code>bigint</code></dt>
<dd><p>The least common multiple computed as abs(a*b)/gcd(a,b)</p>
</dd>
<dt><a href="#modInv">modInv(a, n)</a> ⇒ <code>bigint</code></dt>
<dd><p>Modular inverse.</p>
</dd>
<dt><a href="#modPow">modPow(a, b, n)</a> ⇒ <code>bigint</code></dt>
<dd><p>Modular exponentiation a**b mod n</p>
</dd>
<dt><a href="#toZn">toZn(a, n)</a> ⇒ <code>bigint</code></dt>
<dd><p>Finds the smallest positive element that is congruent to a in modulo n</p>
</dd>
</dl>
### abs(a) ⇒ <code>bigint</code>
Absolute value. abs(a)==a if a>=0. abs(a)==-a if a<0
## Typedefs
**Kind**: global function
**Returns**: <code>bigint</code> - the absolute value of a
<dl>
<dt><a href="#egcdReturn">egcdReturn</a> : <code>Object</code></dt>
<dd><p>A triple (g, x, y), such that ax + by = g = gcd(a, b).</p>
</dd>
</dl>
| Param | Type |
| --- | --- |
| a | <code>number</code> \| <code>bigint</code> |
<a name="abs"></a>
<a name="bitLength"></a>
## abs(a) ⇒ <code>bigint</code>
Absolute value. abs(a)==a if a>=0. abs(a)==-a if a<0
### bitLength(a) ⇒ <code>number</code>
Returns the bitlength of a number
**Kind**: global function
**Returns**: <code>bigint</code> - the absolute value of a
**Returns**: <code>number</code> - - the bit length

@@ -117,7 +107,8 @@ | Param | Type |

## eGcd(a, b) ⇒ [<code>egcdReturn</code>](#egcdReturn)
An iterative implementation of the extended euclidean algorithm or extended greatest common divisor algorithm.
### eGcd(a, b) ⇒ [<code>egcdReturn</code>](#egcdReturn)
An iterative implementation of the extended euclidean algorithm or extended greatest common divisor algorithm.
Take positive integers a, b as input, and return a triple (g, x, y), such that ax + by = g = gcd(a, b).
**Kind**: global function
**Returns**: [<code>egcdReturn</code>](#egcdReturn) - A triple (g, x, y), such that ax + by = g = gcd(a, b).

@@ -131,3 +122,3 @@ | Param | Type |

## gcd(a, b) ⇒ <code>bigint</code>
### gcd(a, b) ⇒ <code>bigint</code>
Greatest-common divisor of two integers based on the iterative binary algorithm.

@@ -145,3 +136,3 @@

## lcm(a, b) ⇒ <code>bigint</code>
### lcm(a, b) ⇒ <code>bigint</code>
The least common multiple computed as abs(a*b)/gcd(a,b)

@@ -157,9 +148,35 @@

<a name="max"></a>
### max(a, b) ⇒ <code>bigint</code>
Maximum. max(a,b)==a if a>=b. max(a,b)==b if a<=b
**Kind**: global function
**Returns**: <code>bigint</code> - maximum of numbers a and b
| Param | Type |
| --- | --- |
| a | <code>number</code> \| <code>bigint</code> |
| b | <code>number</code> \| <code>bigint</code> |
<a name="min"></a>
### min(a, b) ⇒ <code>bigint</code>
Minimum. min(a,b)==b if a>=b. min(a,b)==a if a<=b
**Kind**: global function
**Returns**: <code>bigint</code> - minimum of numbers a and b
| Param | Type |
| --- | --- |
| a | <code>number</code> \| <code>bigint</code> |
| b | <code>number</code> \| <code>bigint</code> |
<a name="modInv"></a>
## modInv(a, n) ⇒ <code>bigint</code>
### modInv(a, n) ⇒ <code>bigint</code>
Modular inverse.
**Kind**: global function
**Returns**: <code>bigint</code> - the inverse modulo n
**Returns**: <code>bigint</code> - the inverse modulo n or NaN if it does not exist

@@ -173,12 +190,12 @@ | Param | Type | Description |

## modPow(a, b, n) ⇒ <code>bigint</code>
Modular exponentiation a**b mod n
### modPow(b, e, n) ⇒ <code>bigint</code>
Modular exponentiation b**e mod n. Currently using the right-to-left binary method
**Kind**: global function
**Returns**: <code>bigint</code> - a**b mod n
**Returns**: <code>bigint</code> - b**e mod n
| Param | Type | Description |
| --- | --- | --- |
| a | <code>number</code> \| <code>bigint</code> | base |
| b | <code>number</code> \| <code>bigint</code> | exponent |
| b | <code>number</code> \| <code>bigint</code> | base |
| e | <code>number</code> \| <code>bigint</code> | exponent |
| n | <code>number</code> \| <code>bigint</code> | modulo |

@@ -188,3 +205,3 @@

## toZn(a, n) ⇒ <code>bigint</code>
### toZn(a, n) ⇒ <code>bigint</code>
Finds the smallest positive element that is congruent to a in modulo n

@@ -202,3 +219,3 @@

## egcdReturn : <code>Object</code>
### egcdReturn : <code>Object</code>
A triple (g, x, y), such that ax + by = g = gcd(a, b).

@@ -215,3 +232,1 @@

* * *
SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc