Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

bigint-mod-arith

Package Overview
Dependencies
Maintainers
1
Versions
27
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

bigint-mod-arith - npm Package Compare versions

Comparing version 3.3.0 to 3.3.1

120

dist/index.d.ts

@@ -0,5 +1,30 @@

/**
* Absolute value. abs(a)==a if a>=0. abs(a)==-a if a<0
*
* @param a
*
* @returns The absolute value of a
*/
declare function abs(a: number | bigint): number | bigint;
/**
* Returns the (minimum) length of a number expressed in bits.
*
* @param a
* @returns The bit length
*/
declare function bitLength(a: number | bigint): number;
/**
* Chinese remainder theorem states that if one knows the remainders of the Euclidean division of an integer n by several integers, then one can determine uniquely the remainder of the division of n by the product of these integers, under the condition that the divisors are pairwise coprime (no two divisors share a common factor other than 1). Provided that n_i are pairwise coprime, and a_i any integers, this function returns a solution for the following system of equations:
x ≡ a_1 mod n_1
x ≡ a_2 mod n_2
x ≡ a_k mod n_k
*
* @param remainders the array of remainders a_i. For example [17n, 243n, 344n]
* @param modulos the array of modulos n_i. For example [769n, 2017n, 47701n]
* @param modulo the product of all modulos. Provided here just to save some operations if it is already known
* @returns x
*/
declare function crt(remainders: bigint[], modulos: bigint[], modulo?: bigint): bigint;

@@ -12,16 +37,80 @@

}
/**
* An iterative implementation of the extended euclidean algorithm or extended greatest common divisor algorithm.
* Take positive integers a, b as input, and return a triple (g, x, y), such that ax + by = g = gcd(a, b).
*
* @param a
* @param b
*
* @throws {@link RangeError} if a or b are <= 0
*
* @returns A triple (g, x, y), such that ax + by = g = gcd(a, b).
*/
declare function eGcd(a: number | bigint, b: number | bigint): Egcd;
/**
* Greatest common divisor of two integers based on the iterative binary algorithm.
*
* @param a
* @param b
*
* @returns The greatest common divisor of a and b
*/
declare function gcd(a: number | bigint, b: number | bigint): bigint;
/**
* The least common multiple computed as abs(a*b)/gcd(a,b)
* @param a
* @param b
*
* @returns The least common multiple of a and b
*/
declare function lcm(a: number | bigint, b: number | bigint): bigint;
/**
* Maximum. max(a,b)==a if a>=b. max(a,b)==b if a<b
*
* @param a
* @param b
*
* @returns Maximum of numbers a and b
*/
declare function max(a: number | bigint, b: number | bigint): number | bigint;
/**
* Minimum. min(a,b)==b if a>=b. min(a,b)==a if a<b
*
* @param a
* @param b
*
* @returns Minimum of numbers a and b
*/
declare function min(a: number | bigint, b: number | bigint): number | bigint;
/**
* Modular addition of (a_1 + ... + a_r) mod n
* @param addends an array of the numbers a_i to add. For example [3, 12353251235n, 1243, -12341232545990n]
* @param n the modulo
* @returns The smallest positive integer that is congruent with (a_1 + ... + a_r) mod n
*/
declare function modAdd(addends: Array<number | bigint>, n: number | bigint): bigint;
/**
* Modular inverse.
*
* @param a The number to find an inverse for
* @param n The modulo
*
* @throws {@link RangeError} if a does not have inverse modulo n
*
* @returns The inverse modulo n
*/
declare function modInv(a: number | bigint, n: number | bigint): bigint;
/**
* Modular addition of (a_1 * ... * a_r) mod n
* @param factors an array of the numbers a_i to multiply. For example [3, 12353251235n, 1243, -12341232545990n]
* @param n the modulo
* @returns The smallest positive integer that is congruent with (a_1 * ... * a_r) mod n
*/
declare function modMultiply(factors: Array<number | bigint>, n: number | bigint): bigint;

@@ -31,9 +120,40 @@

type PrimeFactor = number | bigint | PrimePower;
/**
* Modular exponentiation b**e mod n. Currently using the right-to-left binary method if the prime factorization is not provided, or the chinese remainder theorem otherwise.
*
* @param b base
* @param e exponent
* @param n modulo
* @param primeFactorization an array of the prime factors, for example [5n, 5n, 13n, 27n], or prime powers as [p, k], for instance [[5, 2], [13, 1], [27, 1]]. If the prime factorization is provided the chinese remainder theorem is used to greatly speed up the exponentiation.
*
* @throws {@link RangeError} if n <= 0
*
* @returns b**e mod n
*/
declare function modPow(b: number | bigint, e: number | bigint, n: number | bigint, primeFactorization?: PrimeFactor[]): bigint;
type PrimeFactorization = Array<[bigint, bigint]>;
/**
* A function that computes the Euler's totien function of a number n, whose prime power factorization is known
*
* @param primeFactorization an array of arrays containing the prime power factorization of a number n. For example, for n = (p1**k1)*(p2**k2)*...*(pr**kr), one should provide [[p1, k1], [p2, k2], ... , [pr, kr]]
* @returns phi((p1**k1)*(p2**k2)*...*(pr**kr))
*/
declare function phi(primeFactorization: PrimeFactorization): bigint;
/**
* Finds the smallest positive element that is congruent to a in modulo n
*
* @remarks
* a and b must be the same type, either number or bigint
*
* @param a - An integer
* @param n - The modulo
*
* @throws {@link RangeError} if n <= 0
*
* @returns A bigint with the smallest positive representation of a modulo n
*/
declare function toZn(a: number | bigint, n: number | bigint): bigint;
export { Egcd, PrimeFactor, PrimeFactorization, PrimePower, abs, bitLength, crt, eGcd, gcd, lcm, max, min, modAdd, modInv, modMultiply, modPow, phi, toZn };

36

docs/API.md

@@ -1,2 +0,2 @@

# bigint-mod-arith - v3.3.0
# bigint-mod-arith - v3.3.1

@@ -42,3 +42,3 @@ Some common functions for modular arithmetic using native JS implementation of BigInt

[modPow.ts:8](https://github.com/juanelas/bigint-mod-arith/blob/06b32a3/src/ts/modPow.ts#L8)
[modPow.ts:8](https://github.com/juanelas/bigint-mod-arith/blob/b365f49/src/ts/modPow.ts#L8)

@@ -53,3 +53,3 @@ ___

[phi.ts:1](https://github.com/juanelas/bigint-mod-arith/blob/06b32a3/src/ts/phi.ts#L1)
[phi.ts:1](https://github.com/juanelas/bigint-mod-arith/blob/b365f49/src/ts/phi.ts#L1)

@@ -64,3 +64,3 @@ ___

[modPow.ts:7](https://github.com/juanelas/bigint-mod-arith/blob/06b32a3/src/ts/modPow.ts#L7)
[modPow.ts:7](https://github.com/juanelas/bigint-mod-arith/blob/b365f49/src/ts/modPow.ts#L7)

@@ -89,3 +89,3 @@ ## Functions

[abs.ts:8](https://github.com/juanelas/bigint-mod-arith/blob/06b32a3/src/ts/abs.ts#L8)
[abs.ts:8](https://github.com/juanelas/bigint-mod-arith/blob/b365f49/src/ts/abs.ts#L8)

@@ -114,3 +114,3 @@ ___

[bitLength.ts:7](https://github.com/juanelas/bigint-mod-arith/blob/06b32a3/src/ts/bitLength.ts#L7)
[bitLength.ts:7](https://github.com/juanelas/bigint-mod-arith/blob/b365f49/src/ts/bitLength.ts#L7)

@@ -145,3 +145,3 @@ ___

[crt.ts:16](https://github.com/juanelas/bigint-mod-arith/blob/06b32a3/src/ts/crt.ts#L16)
[crt.ts:16](https://github.com/juanelas/bigint-mod-arith/blob/b365f49/src/ts/crt.ts#L16)

@@ -176,3 +176,3 @@ ___

[egcd.ts:17](https://github.com/juanelas/bigint-mod-arith/blob/06b32a3/src/ts/egcd.ts#L17)
[egcd.ts:17](https://github.com/juanelas/bigint-mod-arith/blob/b365f49/src/ts/egcd.ts#L17)

@@ -202,3 +202,3 @@ ___

[gcd.ts:11](https://github.com/juanelas/bigint-mod-arith/blob/06b32a3/src/ts/gcd.ts#L11)
[gcd.ts:11](https://github.com/juanelas/bigint-mod-arith/blob/b365f49/src/ts/gcd.ts#L11)

@@ -228,3 +228,3 @@ ___

[lcm.ts:11](https://github.com/juanelas/bigint-mod-arith/blob/06b32a3/src/ts/lcm.ts#L11)
[lcm.ts:11](https://github.com/juanelas/bigint-mod-arith/blob/b365f49/src/ts/lcm.ts#L11)

@@ -254,3 +254,3 @@ ___

[max.ts:9](https://github.com/juanelas/bigint-mod-arith/blob/06b32a3/src/ts/max.ts#L9)
[max.ts:9](https://github.com/juanelas/bigint-mod-arith/blob/b365f49/src/ts/max.ts#L9)

@@ -280,3 +280,3 @@ ___

[min.ts:9](https://github.com/juanelas/bigint-mod-arith/blob/06b32a3/src/ts/min.ts#L9)
[min.ts:9](https://github.com/juanelas/bigint-mod-arith/blob/b365f49/src/ts/min.ts#L9)

@@ -306,3 +306,3 @@ ___

[modAdd.ts:9](https://github.com/juanelas/bigint-mod-arith/blob/06b32a3/src/ts/modAdd.ts#L9)
[modAdd.ts:9](https://github.com/juanelas/bigint-mod-arith/blob/b365f49/src/ts/modAdd.ts#L9)

@@ -336,3 +336,3 @@ ___

[modInv.ts:14](https://github.com/juanelas/bigint-mod-arith/blob/06b32a3/src/ts/modInv.ts#L14)
[modInv.ts:14](https://github.com/juanelas/bigint-mod-arith/blob/b365f49/src/ts/modInv.ts#L14)

@@ -363,3 +363,3 @@ ___

[modMultiply.ts:9](https://github.com/juanelas/bigint-mod-arith/blob/06b32a3/src/ts/modMultiply.ts#L9)
[modMultiply.ts:9](https://github.com/juanelas/bigint-mod-arith/blob/b365f49/src/ts/modMultiply.ts#L9)

@@ -395,3 +395,3 @@ ___

[modPow.ts:22](https://github.com/juanelas/bigint-mod-arith/blob/06b32a3/src/ts/modPow.ts#L22)
[modPow.ts:22](https://github.com/juanelas/bigint-mod-arith/blob/b365f49/src/ts/modPow.ts#L22)

@@ -420,3 +420,3 @@ ___

[phi.ts:9](https://github.com/juanelas/bigint-mod-arith/blob/06b32a3/src/ts/phi.ts#L9)
[phi.ts:9](https://github.com/juanelas/bigint-mod-arith/blob/b365f49/src/ts/phi.ts#L9)

@@ -454,2 +454,2 @@ ___

[toZn.ts:14](https://github.com/juanelas/bigint-mod-arith/blob/06b32a3/src/ts/toZn.ts#L14)
[toZn.ts:14](https://github.com/juanelas/bigint-mod-arith/blob/b365f49/src/ts/toZn.ts#L14)

@@ -19,3 +19,3 @@ # Interface: Egcd

[egcd.ts:2](https://github.com/juanelas/bigint-mod-arith/blob/06b32a3/src/ts/egcd.ts#L2)
[egcd.ts:2](https://github.com/juanelas/bigint-mod-arith/blob/b365f49/src/ts/egcd.ts#L2)

@@ -30,3 +30,3 @@ ___

[egcd.ts:3](https://github.com/juanelas/bigint-mod-arith/blob/06b32a3/src/ts/egcd.ts#L3)
[egcd.ts:3](https://github.com/juanelas/bigint-mod-arith/blob/b365f49/src/ts/egcd.ts#L3)

@@ -41,2 +41,2 @@ ___

[egcd.ts:4](https://github.com/juanelas/bigint-mod-arith/blob/06b32a3/src/ts/egcd.ts#L4)
[egcd.ts:4](https://github.com/juanelas/bigint-mod-arith/blob/b365f49/src/ts/egcd.ts#L4)
{
"name": "bigint-mod-arith",
"version": "3.3.0",
"version": "3.3.1",
"description": "Some common functions for modular arithmetic using native JS implementation of BigInt",

@@ -5,0 +5,0 @@ "keywords": [

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc