
Research
Malicious npm Packages Impersonate Flashbots SDKs, Targeting Ethereum Wallet Credentials
Four npm packages disguised as cryptographic tools steal developer credentials and send them to attacker-controlled Telegram infrastructure.
CSet is a JavaScript lazy Set library with support for cartesian product and predicate filtering, that is loosely based on tuple relation calculus and relation algebra.
Currently CSet support most normal set operation, including cartesian product.
npm install cset
Create a set, from Array of values. After set creation all operations on set are chainable, and they are not destructive and a new set is returned.
const {CSetArray} = require("cset");
const A = new CSetArray([1, 2, 3]);
Creates a set with the intersection of two sets.
const A = new CSetArray([1, 2, 3]).intersect(
new CSetArray([1, 2])
);
Both cartesian/cross product must have same headers, headers don't need to be in the same order.
const a = new CSetArray([1, 2]).as("A");
const b = new CSetArray([3, 4]).as("B");
const c = new CSetArray([1, 2]).as("A");
const d = new CSetArray([3, 5]).as("B");
const ab = a.crossProduct(b);
const dc = d.crossProduct(c);
console.log(dc.header); // ["B", "A"];
console.log(ab.header); // ["A", "B"];
const ab_INTERSECT_dc = ab.intersect(dc);
consol.log([...ab_INTERSECT_dc.values()]); // [[1,3],[2,3]]
Creates a set with the union of two sets.
const A = new CSetArray([1, 2, 3]).union(
new CSetArray([1, 2])
);
Both cartesian/cross product must have same headers, headers don't need to be in the same order.
const a = new CSetArray([1, 2]).as("A");
const b = new CSetArray([3, 4]).as("B");
const c = new CSetArray([5, 6]).as("A");
const d = new CSetArray([7, 8]).as("B");
const ab = a.crossProduct(b);
const cd = c.crossProduct(d);
const ab_UNION_cd = ab.union(cd);
console.log([...ab_UNION_cd.values()]); // [[1,3],[1,4],[2,3],[2,4],[5,7],[6,7],[5,8],[6,8]]
Creates a set with the difference of two sets.
const A = new CSetArray([1, 2, 3]).difference(
new CSetArray([1, 2])
);
Both cartesian/cross product must have same headers, headers don't need to be in the same order.
const a = new CSetArray([1, 2]).as("A");
const b = new CSetArray([3, 4]).as("B");
const c = new CSetArray([1, 2]).as("A");
const d = new CSetArray([3, 5]).as("B");
const ab = a.crossProduct(b);
const dc = d.crossProduct(c);
const ab_DIFFERENCE_dc = ab.difference(dc);
console.log([...ab_DIFFERENCE_dc.values()]); // [[1,4],[2,4]]
Creates a set with the symmetric difference of two sets.
const A = new CSetArray([1, 2, 3]).symmetricDifference(
new CSetArray([1, 2])
);
Both cartesian/cross product must have same headers, headers don't need to be in the same order.
const a = new CSetArray([1, 2]).as("A");
const b = new CSetArray([3, 4]).as("B");
const c = new CSetArray([1, 2]).as("A");
const d = new CSetArray([3, 5]).as("B");
const ab = a.crossProduct(b);
const dc = d.crossProduct(c);
const ab_SYMMETRIC_DIFFERENCE_dc = ab.symmetricDifference(dc);
console.log(JSON.stringify([...ab_SYMMETRIC_DIFFERENCE_dc.values()])); // [[1,4],[2,4],[1,5],[2,5]]
Creates a set with the cartesian/cross product of two sets.
const A = new CSetArray([1, 2, 3]).crossProduct(
new CSetArray([1, 2])
);
It checks if an element is in the provided set.
const A = new CSetArray([1, 2, 3]);
A.has(1); // True
A.has(4); // False
Iterates all values of a set.
const A = new CSetArray([1, 2, 3]);
for (let e of A.values()) {
console.log(e); // will print all elements on A.
}
Checks if set is empty.
const empty = new CSetArray([]);
const intersectEmpty = new CSetArray([1, 2]).intersect(new CSetArray([3, 4]));
const notEmpty = new CSetArray([1, 2]).intersect(new CSetArray([2, 3, 4]));
console.log(empty.isEmpty()); // True
console.log(intersectEmpty.isEmpty()); // True
console.log(notEmpty.isEmpty()); // False
Check if set is a subset of other set.
const a = new CSetArray([0, 1, 2]);
const b = new CSetArray([0, 1, 2, 3, 4, 5]);
console.log(a.isSubset(b)); // True
console.log(b.isSubset(b)); // True
console.log(b.isSubset(a)); // False
Check if set is a proper subset of other set.
const a = new CSetArray([0, 1, 2]);
const b = new CSetArray([0, 1, 2, 3, 4, 5]);
console.log(a.isProperSubset(a)); // False, all elements of a are in a, so its not proper subset.
console.log(a.isProperSubset(b)); // True, all lements of a are in b,
Check if set is a superset of other set.
const a = new CSetArray([0, 1, 2]);
const b = new CSetArray([0, 1, 2, 3, 4, 5]);
console.log(a.isSuperset(b)); // False
console.log(b.isSuperset(b)); // True
console.log(b.isSuperset(a)); // True
Check if set is a proper superset of other set.
const a = new CSetArray([0, 1, 2]);
const b = new CSetArray([0, 1, 2, 3, 4, 5]);
console.log(a.isProperSuperset(a)); // False
console.log(a.isProperSuperset(b)); // False
console.log(b.isProperSuperset(a)); // True
Check if two sets are equal.
const a = new CSetArray([0, 1, 2]);
const b = new CSetArray([0, 1, 2, 3, 4, 5]);
console.log(a.intersect(b).isEqual(a)); // True
console.log(a.isEqual(b)); // False
console.log(a.isEqual(a)); // True
console.log(b.isEqual(a)); // False
It binds an alias to a set. The "as" operation is normally useful to use with select.
const A = new CSetArray([1, 2, 3]).as("A");
const B = A.as("B");
// A and B are same sets with different alias.
const C = new CSetArray([4, 5]);
const AC = A.union(C).as("AC"); // add alias to A and C union.
In case of cartesian/cross products an alias work as prefix, or table name, so that each individual element on resulting tuples can still be referenced.
const ab = new CSetArray([1, 2]).as("a").crossProduct(new CSetArray([1, 2, 3]).as("b"));
const AB = ab.as("A").crossProduct(ab.as("B"));
console.log(AB.header); // "A.a", "A.b", "B.a", "B.b";
In case of cartesian/cross product it will return an array of alias (string), for normal sets it will return one alias (string).
const A = new CSetArray([1, 2, 3]).as("A");
const B = new CSetArray([1, 2, 3]).as("A");
console.log(A.header); // ["A"]
const AxB = A.crossProduct(B);
console.log(AxB.header); // ["A", "B"]
A select works as a filter on set elements, like other operators it creates a new set where all set elements must comply with provided constrains.
Select(alias, {name, predicate, partial})
We must define at least a predicate or a partial function.
const a = new CSetArray([1, 3, 2]);
const b = a.union(new CSetArray([5, 3, 4])).as("AB");
expect(a.count()).toBe(3);
expect(b.count()).toBe(5);
const ab = a.crossProduct(b);
expect(ab.count()).toBe(15);
const oddSum = a.as("A").crossProduct(b.as("B")).select(
["A", "B"],
{
name: "odd-sum",
predicate: (A, B) => (A + B) % 2 === 1
}
);
for (let e of oddSum.values()) {
console.log(e);
}
/*
Output:
[ 1, 2 ]
[ 1, 4 ]
[ 3, 2 ]
[ 3, 4 ]
[ 2, 1 ]
[ 2, 3 ]
[ 2, 5 ]
*/
Using a partial and a predicate:
const A = new CSetArray([1, 2, 3, 4, 5, 7, 8, 9, 10]);
const B = A.as("a").crossProduct(A.as("b")).crossProduct(
A.as("c").crossProduct(A.as("d"))
)
.select(["a", "b", "c", "d"], {
name: "<>",
predicate: (a, b, c, d) => b === a + 1 && c === b + 1 && d === c + 1,
// headers the partial header, value is the partial value.
// eg. headers=["a", "b"], values=[1, 2]
partial: (headers, value) => new Set(value).size === args.length
});
console.log([...B.values()]); // [[1,2,3,4],[2,3,4,5],[7,8,9,10]];
Same example with only partial definition:
const A = new CSetArray([1, 2, 3, 4, 5, 7, 8, 9, 10]);
const B = A.as("a").crossProduct(A.as("b")).crossProduct(
A.as("c").crossProduct(A.as("d"))
)
.select(["a", "b", "c", "d"], {
name: "<>",
partial: (headers, values) => {
const p = headers.map(h => ["a", "b", "c", "d"].indexOf(h));
const s = values[0];
for (let i=1; i<values.length; i++) {
if (values[i] !== s + p[i]) {
return false;
}
}
return true;
}
});
console.log([...B.values()]); // [[1,2,3,4],[2,3,4,5],[7,8,9,10]];
It counts the elements on a set.
const a = new CSetArray([1, 3, 2]);
const b = a.union(new CSetArray([5, 3, 4]));
console.log(a.count()); // 3
Creates a subset from original set with a restricted set of attributes.
const a = new CSetArray([1, 2]).as("a");
const b = new CSetArray([3, 4]).as("b");
const c = new CSetArray([5, 6]).as("c");
const d = new CSetArray([7, 8]).as("d");
const s = a.crossProduct(b).crossProduct(c).crossProduct(d);
console.log([...s.projection("d", "b").values()]);
/* Output:
[[7, 3], [8, 3], [7, 4], [8, 4]]
*/
In this section I just want to show a few examples on how CSet can be used, but some of examples may not be the best use case for the lib (See Motivation section).
Solve expression:
S E N D
+ M O R E
M O N E Y
Where each letter on the expression is a digit (0..9) and all letters must have different values. Some people discard M=0 solutions, but in this case I will consider all solutions including M=0.
const digits = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9];
const d = new CSetArray(digits);
const letters = ["S", "E", "N", "D", "M", "O", "R", "Y"];
const s = letters.map(h => d.as(h)).reduce(
(s, e) => s?s.crossProduct(e):e
);
// S E N D M O R Y
const sendMoreMoney = s.select(
["S", "E", "N", "D", "M", "O", "R", "Y"],
{
name: "add",
predicate: (S, E, N, D, M, O, R, Y) =>
S * 1000 + E * 100 + N * 10 + D
+ M * 1000 + O * 100 + R * 10 + E
===
M * 10000 + O * 1000 + N * 100 + E * 10 + Y,
partial: (headers, values) => new Set(values).size === values.length
}
);
for (let [S, E, N, D, M, O, R, Y] of sendMoreMoney.values()) {
const send = S * 1000 + E * 100 + N * 10 + D;
const more = M * 1000 + O * 100 + R * 10 + E;
const money = M * 10000 + O * 1000 + N * 100 + E * 10 + Y;
console.log(`${send} + ${more} = ${money}`);
}
With the use of partial filter, the problem is much more clean and optimized since we are filtering all values that are distinct.
I created CSet to try to find a way to handle domain combinatorial explosion. The main design concept of CSet is to be lazy, do as little as possible and only do it on demand, by delaying evaluation and by failing sooner than later we can save processing time and memory.
While memory and processing time is a concern of CSet design, not all combinatorial problems are suited for CSet, CSet is meant to be used as a domain/set representation library, but not to be used for example as a Constrain Solving Problem library.
I think I would like to grow CSet features, manly set theory stuff, and optimize the engine with a planner, cache and some other database techniques.
FAQs
Combinatorial/Cartesian Lazzy Set
The npm package cset receives a total of 31 weekly downloads. As such, cset popularity was classified as not popular.
We found that cset demonstrated a not healthy version release cadence and project activity because the last version was released a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Research
Four npm packages disguised as cryptographic tools steal developer credentials and send them to attacker-controlled Telegram infrastructure.
Security News
Ruby maintainers from Bundler and rbenv teams are building rv to bring Python uv's speed and unified tooling approach to Ruby development.
Security News
Following last week’s supply chain attack, Nx published findings on the GitHub Actions exploit and moved npm publishing to Trusted Publishers.