
Security News
MCP Community Begins Work on Official MCP Metaregistry
The MCP community is launching an official registry to standardize AI tool discovery and let agents dynamically find and install MCP servers.
csv-string
Advanced tools
PARSE and STRINGIFY for CSV strings. It's like JSON object but for CSV. It can also work row by row. And, if can parse strings, it can be use to parse files or streams too.
Parse and Stringify for CSV strings.
CSV.parse
and CSV.stringify
).import * as CSV from 'csv-string';
// with String
const arr = CSV.parse('a,b,c\na,b,c');
const str = CSV.stringify(arr);
// with Stream
const stream = CSV.createStream();
stream.on('data', rows => {
process.stdout.write(CSV.stringify(rows, ','));
});
process.stdin.pipe(stream);
using npm:
npm install csv-string
or yarn
yarn add csv-string
Converts a CSV string input
to array output.
Options :
comma
String to indicate the CSV separator. (optional, default ,
)quote
String to indicate the CSV quote if need. (optional, default "
)output
String choose 'objects' or 'tuples' to change output for Array or Object. (optional, default tuples
)Example 1 :
const CSV = require('csv-string');
const parsedCsv = CSV.parse('a;b;c\nd;e;f', ';');
console.log(parsedCsv);
Output:
[
["a", "b", "c"],
["d", "e", "f"]
]
Example 2 :
const CSV = require('csv-string');
const parsedCsv = CSV.parse('a,b,c\n1,2,3\n4,5,6', { output: 'objects' });
console.log(parsedCsv);
Output:
[
{ a: '1', b: '2', c: '3' },
{ a: '4', b: '5', c: '6' }
]
If separator parameter is not provided, it is automatically detected.
Converts object input
to a CSV string.
import * as CSV from 'csv-string';
console.log(CSV.stringify(['a', 'b', 'c']));
console.log(
CSV.stringify([
['c', 'd', 'e'],
['c', 'd', 'e']
])
);
console.log(CSV.stringify({ a: 'e', b: 'f', c: 'g' }));
Output:
a,b,c
c,d,e
c,d,e
e,f,g
Detects the best separator.
import * as CSV from 'csv-string';
console.log(CSV.detect('a,b,c'));
console.log(CSV.detect('a;b;c'));
console.log(CSV.detect('a|b|c'));
console.log(CSV.detect('a\tb\tc'));
Output:
,
;
|
\t
callback(row: array, index: number): void
Calls callback
for each CSV row/line. The Array passed to callback contains the fields of the current row.
import * as CSV from 'csv-string';
const data = 'a,b,c\nd,e,f';
CSV.forEach(data, ',', function (row, index) {
console.log('#' + index + ' : ', row);
});
Output:
#0 : [ 'a', 'b', 'c' ]
#1 : [ 'd', 'e', 'f' ]
callback(row: array): void
Calls callback
when a CSV row is read. The Array passed to callback contains the fields of the row.
Returns the first offset after the row.
import * as CSV from 'csv-string';
const data = 'a,b,c\nd,e,f';
const index = CSV.read(data, ',', row => {
console.log(row);
});
console.log(data.slice(index));
Output:
[ 'a', 'b', 'c' ]
d,e,f
callback(rows: array): void
Calls callback
when all CSV rows are read. The Array passed to callback contains the rows of the file.
Returns the offset of the end of parsing (generally it's the end of the input string).
import * as CSV from 'csv-string';
const data = 'a,b,c\nd,e,f';
const index = CSV.readAll(data, row => {
console.log(row);
});
console.log('-' + data.slice(index) + '-');
Output:
[ [ 'a', 'b', 'c' ], [ 'd', 'e', 'f' ] ]
--
callback(rows: array): void
Calls callback
when all CSV rows are read. The last row could be ignored, because the remainder could be in another chunk.
The Array passed to callback contains the rows of the file.
Returns the offset of the end of parsing. If the last row is ignored, the offset will point to the beginnning of the row.
import * as CSV from 'csv-string';
const data = 'a,b,c\nd,e';
const index = CSV.readChunk(data, row => {
console.log(row);
});
console.log('-' + data.slice(index) + '-');
Output:
[ [ 'a', 'b', 'c' ] ]
--
Create a writable stream for CSV chunk. Options are :
Example : Read CSV file from the standard input.
const stream = CSV.createStream();
stream.on('data', row => {
console.log(row);
});
process.stdin.resume();
process.stdin.setEncoding('utf8');
process.stdin.pipe(stream);
clone
yarn install
yarn test
(ensure all tests pass)yarn bench
(to check the performance impact)There is a quite basic benchmark to compare this project to other related ones, using file streams as input. See ./bench
for source code.
yarn bench
for a test file with 949,044 rows
Package | Time | Output/Input similarity |
---|---|---|
a-csv | 6.01s | ~99% |
csv-stream | 6.64s | ~73% |
csv-streamer | 7.03s | ~79% |
csv-string | 6.53s | 100% |
fast-csv | 12.33s | 99.99% |
nodecsv | 7.10s | 100% |
FAQs
PARSE and STRINGIFY for CSV strings. It's like JSON object but for CSV. It can also work row by row. And, if can parse strings, it can be use to parse files or streams too.
The npm package csv-string receives a total of 123,098 weekly downloads. As such, csv-string popularity was classified as popular.
We found that csv-string demonstrated a not healthy version release cadence and project activity because the last version was released a year ago. It has 3 open source maintainers collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
The MCP community is launching an official registry to standardize AI tool discovery and let agents dynamically find and install MCP servers.
Research
Security News
Socket uncovers an npm Trojan stealing crypto wallets and BullX credentials via obfuscated code and Telegram exfiltration.
Research
Security News
Malicious npm packages posing as developer tools target macOS Cursor IDE users, stealing credentials and modifying files to gain persistent backdoor access.