Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

cubic2quad

Package Overview
Dependencies
Maintainers
1
Versions
5
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

cubic2quad - npm Package Compare versions

Comparing version 1.2.0 to 1.2.1

10

CHANGELOG.md

@@ -1,4 +0,12 @@

1.2.0 / 2021-05-21
1.2.1 / 2021-05-20
------------------
- Restored code coverage to 100%.
- Add floating point error tolerance in quad (1 root case) and cubic
(2 root case) solvers.
1.2.0 / 2021-05-19
------------------
- Fixed wrong approximation for very small cubic curves: when diff between

@@ -5,0 +13,0 @@ start and end of a cubic curve falls within `errorBound`, in earlier

418

index.js

@@ -1,37 +0,43 @@

'use strict';
'use strict'
function Point(x, y) {
this.x = x;
this.y = y;
// Precision used to check determinant in quad and cubic solvers,
// any number lower than this is considered to be zero.
// `8.67e-19` is an example of real error occurring in tests.
var epsilon = 1e-16
function Point (x, y) {
this.x = x
this.y = y
}
Point.prototype.add = function (point) {
return new Point(this.x + point.x, this.y + point.y);
};
return new Point(this.x + point.x, this.y + point.y)
}
Point.prototype.sub = function (point) {
return new Point(this.x - point.x, this.y - point.y);
};
return new Point(this.x - point.x, this.y - point.y)
}
Point.prototype.mul = function (value) {
return new Point(this.x * value, this.y * value);
};
return new Point(this.x * value, this.y * value)
}
Point.prototype.div = function (value) {
return new Point(this.x / value, this.y / value);
};
return new Point(this.x / value, this.y / value)
}
Point.prototype.dist = function () {
return Math.sqrt(this.x*this.x + this.y*this.y);
};
/*Point.prototype.dist = function () {
return Math.sqrt(this.x * this.x + this.y * this.y)
}*/
Point.prototype.sqr = function () {
return this.x*this.x + this.y*this.y;
};
return this.x * this.x + this.y * this.y
}
Point.prototype.dot = function (point) {
return this.x * point.x + this.y * point.y;
};
return this.x * point.x + this.y * point.y
}
function calcPowerCoefficients(p1, c1, c2, p2) {
function calcPowerCoefficients (p1, c1, c2, p2) {
// point(t) = p1*(1-t)^3 + c1*t*(1-t)^2 + c2*t^2*(1-t) + p2*t^3 = a*t^3 + b*t^2 + c*t + d

@@ -43,10 +49,10 @@ // for each t value, so

// d = p1
var a = p2.sub(p1).add(c1.sub(c2).mul(3));
var b = p1.add(c2).mul(3).sub(c1.mul(6));
var c = c1.sub(p1).mul(3);
var d = p1;
return [ a, b, c, d ];
var a = p2.sub(p1).add(c1.sub(c2).mul(3))
var b = p1.add(c2).mul(3).sub(c1.mul(6))
var c = c1.sub(p1).mul(3)
var d = p1
return [a, b, c, d]
}
function calcPowerCoefficientsQuad(p1, c1, p2) {
function calcPowerCoefficientsQuad (p1, c1, p2) {
// point(t) = p1*(1-t)^2 + c1*t*(1-t) + p2*t^2 = a*t^2 + b*t + c

@@ -57,64 +63,64 @@ // for each t value, so

// c = p1
var a = c1.mul(-2).add(p1).add(p2);
var b = c1.sub(p1).mul(2);
var c = p1;
return [ a, b, c ];
var a = c1.mul(-2).add(p1).add(p2)
var b = c1.sub(p1).mul(2)
var c = p1
return [a, b, c]
}
function calcPoint(a, b, c, d, t) {
function calcPoint (a, b, c, d, t) {
// a*t^3 + b*t^2 + c*t + d = ((a*t + b)*t + c)*t + d
return a.mul(t).add(b).mul(t).add(c).mul(t).add(d);
return a.mul(t).add(b).mul(t).add(c).mul(t).add(d)
}
function calcPointQuad(a, b, c, t) {
function calcPointQuad (a, b, c, t) {
// a*t^2 + b*t + c = (a*t + b)*t + c
return a.mul(t).add(b).mul(t).add(c);
return a.mul(t).add(b).mul(t).add(c)
}
function calcPointDerivative(a, b, c, d, t) {
function calcPointDerivative (a, b, c, d, t) {
// d/dt[a*t^3 + b*t^2 + c*t + d] = 3*a*t^2 + 2*b*t + c = (3*a*t + 2*b)*t + c
return a.mul(3*t).add(b.mul(2)).mul(t).add(c);
return a.mul(3 * t).add(b.mul(2)).mul(t).add(c)
}
function quadSolve(a, b, c) {
function quadSolve (a, b, c) {
// a*x^2 + b*x + c = 0
if (a === 0) {
return (b === 0) ? [] : [ -c / b ];
return (b === 0) ? [] : [-c / b]
}
var D = b*b - 4*a*c;
if (D < 0) {
return [];
} else if (D === 0) {
return [ -b/(2*a) ];
var D = b * b - 4 * a * c
if (Math.abs(D) < epsilon) {
return [-b / (2 * a)]
} else if (D < 0) {
return []
}
var DSqrt = Math.sqrt(D);
return [ (-b - DSqrt) / (2*a), (-b + DSqrt) / (2*a) ];
var DSqrt = Math.sqrt(D)
return [(-b - DSqrt) / (2 * a), (-b + DSqrt) / (2 * a)]
}
/*function cubicRoot(x) {
return (x < 0) ? -Math.pow(-x, 1/3) : Math.pow(x, 1/3);
}*/
return (x < 0) ? -Math.pow(-x, 1/3) : Math.pow(x, 1/3)
}
/*function cubicSolve(a, b, c, d) {
function cubicSolve(a, b, c, d) {
// a*x^3 + b*x^2 + c*x + d = 0
if (a === 0) {
return quadSolve(b, c, d);
return quadSolve(b, c, d)
}
// solve using Cardan's method, which is described in paper of R.W.D. Nickals
// http://www.nickalls.org/dick/papers/maths/cubic1993.pdf (doi:10.2307/3619777)
var xn = -b / (3*a); // point of symmetry x coordinate
var yn = ((a * xn + b) * xn + c) * xn + d; // point of symmetry y coordinate
var deltaSq = (b*b - 3*a*c) / (9*a*a); // delta^2
var hSq = 4*a*a * Math.pow(deltaSq, 3); // h^2
var D3 = yn*yn - hSq;
if (Math.abs(D3) < 1e-15) { // 2 real roots
var delta1 = cubicRoot(yn/(2*a));
return [ xn - 2 * delta1, xn + delta1 ];
var xn = -b / (3*a) // point of symmetry x coordinate
var yn = ((a * xn + b) * xn + c) * xn + d // point of symmetry y coordinate
var deltaSq = (b*b - 3*a*c) / (9*a*a) // delta^2
var hSq = 4*a*a * Math.pow(deltaSq, 3) // h^2
var D3 = yn*yn - hSq
if (Math.abs(D3) < epsilon) { // 2 real roots
var delta1 = cubicRoot(yn/(2*a))
return [ xn - 2 * delta1, xn + delta1 ]
} else if (D3 > 0) { // 1 real root
var D3Sqrt = Math.sqrt(D3);
return [ xn + cubicRoot((-yn + D3Sqrt)/(2*a)) + cubicRoot((-yn - D3Sqrt)/(2*a)) ];
var D3Sqrt = Math.sqrt(D3)
return [ xn + cubicRoot((-yn + D3Sqrt)/(2*a)) + cubicRoot((-yn - D3Sqrt)/(2*a)) ]
}
// 3 real roots
var theta = Math.acos(-yn / Math.sqrt(hSq)) / 3;
var delta = Math.sqrt(deltaSq);
var theta = Math.acos(-yn / Math.sqrt(hSq)) / 3
var delta = Math.sqrt(deltaSq)
return [

@@ -124,3 +130,3 @@ xn + 2 * delta * Math.cos(theta),

xn + 2 * delta * Math.cos(theta + Math.PI * 4 / 3)
];
]
}*/

@@ -133,17 +139,17 @@

*/
function minDistanceToLineSq(point, p1, p2) {
var p1p2 = p2.sub(p1);
var dot = point.sub(p1).dot(p1p2);
var lenSq = p1p2.sqr();
var param = 0;
var diff;
if (lenSq !== 0) param = dot / lenSq;
function minDistanceToLineSq (point, p1, p2) {
var p1p2 = p2.sub(p1)
var dot = point.sub(p1).dot(p1p2)
var lenSq = p1p2.sqr()
var param = 0
var diff
if (lenSq !== 0) param = dot / lenSq
if (param <= 0) {
diff = point.sub(p1);
diff = point.sub(p1)
} else if (param >= 1) {
diff = point.sub(p2);
diff = point.sub(p2)
} else {
diff = point.sub(p1.add(p1p2.mul(param)));
diff = point.sub(p1.add(p1p2.mul(param)))
}
return diff.sqr();
return diff.sqr()
}

@@ -170,23 +176,23 @@

var a = p1.add(p2).sub(c1.mul(2));
var b = c1.sub(p1).mul(2);
var c = p1;
var e3 = 2 * a.sqr();
var e2 = 3 * a.dot(b);
var e1 = (b.sqr() + 2 * a.dot(c.sub(point)));
var e0 = c.sub(point).dot(b);
var candidates = cubicSolve(e3, e2, e1, e0).filter(function (t) { return t > 0 && t < 1; }).concat([ 0, 1 ]);
var a = p1.add(p2).sub(c1.mul(2))
var b = c1.sub(p1).mul(2)
var c = p1
var e3 = 2 * a.sqr()
var e2 = 3 * a.dot(b)
var e1 = (b.sqr() + 2 * a.dot(c.sub(point)))
var e0 = c.sub(point).dot(b)
var candidates = cubicSolve(e3, e2, e1, e0).filter(function (t) { return t > 0 && t < 1 }).concat([ 0, 1 ])
var minDistance = 1e9;
var minDistance = 1e9
for (var i = 0; i < candidates.length; i++) {
var distance = calcPointQuad(a, b, c, candidates[i]).sub(point).dist();
var distance = calcPointQuad(a, b, c, candidates[i]).sub(point).dist()
if (distance < minDistance) {
minDistance = distance;
minDistance = distance
}
}
return minDistance;
return minDistance
}*/
function processSegment(a, b, c, d, t1, t2) {
function processSegment (a, b, c, d, t1, t2) {
// Find a single control point for given segment of cubic Bezier curve

@@ -211,14 +217,14 @@ // These control point is an interception of tangent lines to the boundary points

var f1 = calcPoint(a, b, c, d, t1);
var f2 = calcPoint(a, b, c, d, t2);
var f1_ = calcPointDerivative(a, b, c, d, t1);
var f2_ = calcPointDerivative(a, b, c, d, t2);
var f1 = calcPoint(a, b, c, d, t1)
var f2 = calcPoint(a, b, c, d, t2)
var f1_ = calcPointDerivative(a, b, c, d, t1)
var f2_ = calcPointDerivative(a, b, c, d, t2)
var D = -f1_.x * f2_.y + f2_.x * f1_.y;
var D = -f1_.x * f2_.y + f2_.x * f1_.y
if (Math.abs(D) < 1e-8) {
return [ f1, f1.add(f2).div(2), f2 ]; // straight line segment
return [f1, f1.add(f2).div(2), f2] // straight line segment
}
var cx = (f1_.x*(f2.y*f2_.x - f2.x*f2_.y) + f2_.x*(f1.x*f1_.y - f1.y*f1_.x)) / D;
var cy = (f1_.y*(f2.y*f2_.x - f2.x*f2_.y) + f2_.y*(f1.x*f1_.y - f1.y*f1_.x)) / D;
return [ f1, new Point(cx, cy), f2 ];
var cx = (f1_.x * (f2.y * f2_.x - f2.x * f2_.y) + f2_.x * (f1.x * f1_.y - f1.y * f1_.x)) / D
var cy = (f1_.y * (f2.y * f2_.x - f2.x * f2_.y) + f2_.y * (f1.x * f1_.y - f1.y * f1_.x)) / D
return [f1, new Point(cx, cy), f2]
}

@@ -243,12 +249,12 @@

var n = 10; // number of points + 1
var dt = (tmax - tmin) / n;
var n = 10 // number of points + 1
var dt = (tmax - tmin) / n
for (var t = tmin + dt; t < tmax - dt; t += dt) { // don't check distance on boundary points
// because they should be the same
var point = calcPoint(a, b, c, d, t);
var point = calcPoint(a, b, c, d, t)
if (minDistanceToQuad(point, p1, c1, p2) > errorBound) {
return false;
return false
}
}
return true;
return true
}*/

@@ -275,60 +281,60 @@

*/
function isSegmentApproximationClose(a, b, c, d, tmin, tmax, p1, c1, p2, errorBound) {
var n = 10; // number of points
var t, dt;
var p = calcPowerCoefficientsQuad(p1, c1, p2);
var qa = p[0], qb = p[1], qc = p[2];
var i, j, distSq;
var errorBoundSq = errorBound * errorBound;
var cubicPoints = [];
var quadPoints = [];
var minDistSq;
function isSegmentApproximationClose (a, b, c, d, tmin, tmax, p1, c1, p2, errorBound) {
var n = 10 // number of points
var t, dt
var p = calcPowerCoefficientsQuad(p1, c1, p2)
var qa = p[0], qb = p[1], qc = p[2]
var i, j, distSq
var errorBoundSq = errorBound * errorBound
var cubicPoints = []
var quadPoints = []
var minDistSq
dt = (tmax - tmin) / n;
dt = (tmax - tmin) / n
for (i = 0, t = tmin; i <= n; i++, t += dt) {
cubicPoints.push(calcPoint(a, b, c, d, t));
cubicPoints.push(calcPoint(a, b, c, d, t))
}
dt = 1 / n;
dt = 1 / n
for (i = 0, t = 0; i <= n; i++, t += dt) {
quadPoints.push(calcPointQuad(qa, qb, qc, t));
quadPoints.push(calcPointQuad(qa, qb, qc, t))
}
for (i = 1; i < cubicPoints.length - 1; i++) {
minDistSq = Infinity;
minDistSq = Infinity
for (j = 0; j < quadPoints.length - 1; j++) {
distSq = minDistanceToLineSq(cubicPoints[i], quadPoints[j], quadPoints[j + 1]);
minDistSq = Math.min(minDistSq, distSq);
distSq = minDistanceToLineSq(cubicPoints[i], quadPoints[j], quadPoints[j + 1])
minDistSq = Math.min(minDistSq, distSq)
}
if (minDistSq > errorBoundSq) return false;
if (minDistSq > errorBoundSq) return false
}
for (i = 1; i < quadPoints.length - 1; i++) {
minDistSq = Infinity;
minDistSq = Infinity
for (j = 0; j < cubicPoints.length - 1; j++) {
distSq = minDistanceToLineSq(quadPoints[i], cubicPoints[j], cubicPoints[j + 1]);
minDistSq = Math.min(minDistSq, distSq);
distSq = minDistanceToLineSq(quadPoints[i], cubicPoints[j], cubicPoints[j + 1])
minDistSq = Math.min(minDistSq, distSq)
}
if (minDistSq > errorBoundSq) return false;
if (minDistSq > errorBoundSq) return false
}
return true;
return true
}
function _isApproximationClose(a, b, c, d, quadCurves, errorBound) {
var dt = 1/quadCurves.length;
function _isApproximationClose (a, b, c, d, quadCurves, errorBound) {
var dt = 1 / quadCurves.length
for (var i = 0; i < quadCurves.length; i++) {
var p1 = quadCurves[i][0];
var c1 = quadCurves[i][1];
var p2 = quadCurves[i][2];
var p1 = quadCurves[i][0]
var c1 = quadCurves[i][1]
var p2 = quadCurves[i][2]
if (!isSegmentApproximationClose(a, b, c, d, i * dt, (i + 1) * dt, p1, c1, p2, errorBound)) {
return false;
return false
}
}
return true;
return true
}
function fromFlatArray(points) {
var result = [];
var segmentsNumber = (points.length - 2) / 4;
function fromFlatArray (points) {
var result = []
var segmentsNumber = (points.length - 2) / 4
for (var i = 0; i < segmentsNumber; i++) {

@@ -339,21 +345,21 @@ result.push([

new Point(points[4 * i + 4], points[4 * i + 5])
]);
])
}
return result;
return result
}
function toFlatArray(quadsList) {
var result = [];
result.push(quadsList[0][0].x);
result.push(quadsList[0][0].y);
function toFlatArray (quadsList) {
var result = []
result.push(quadsList[0][0].x)
result.push(quadsList[0][0].y)
for (var i = 0; i < quadsList.length; i++) {
result.push(quadsList[i][1].x);
result.push(quadsList[i][1].y);
result.push(quadsList[i][2].x);
result.push(quadsList[i][2].y);
result.push(quadsList[i][1].x)
result.push(quadsList[i][1].y)
result.push(quadsList[i][2].x)
result.push(quadsList[i][2].y)
}
return result;
return result
}
function isApproximationClose(p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y, quads, errorBound) {
function isApproximationClose (p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y, quads, errorBound) {
// TODO: rewrite it in C-style and remove _isApproximationClose

@@ -365,4 +371,4 @@ var pc = calcPowerCoefficients(

new Point(p2x, p2y)
);
return _isApproximationClose(pc[0], pc[1], pc[2], pc[3], fromFlatArray(quads), errorBound);
)
return _isApproximationClose(pc[0], pc[1], pc[2], pc[3], fromFlatArray(quads), errorBound)
}

@@ -375,26 +381,27 @@

*/
function subdivideCubic(x1, y1, x2, y2, x3, y3, x4, y4, t) {
var u = 1-t, v = t;
function subdivideCubic (x1, y1, x2, y2, x3, y3, x4, y4, t) {
var u = 1 - t
var v = t
var bx = x1*u + x2*v;
var sx = x2*u + x3*v;
var fx = x3*u + x4*v;
var cx = bx*u + sx*v;
var ex = sx*u + fx*v;
var dx = cx*u + ex*v;
var bx = x1 * u + x2 * v
var sx = x2 * u + x3 * v
var fx = x3 * u + x4 * v
var cx = bx * u + sx * v
var ex = sx * u + fx * v
var dx = cx * u + ex * v
var by = y1*u + y2*v;
var sy = y2*u + y3*v;
var fy = y3*u + y4*v;
var cy = by*u + sy*v;
var ey = sy*u + fy*v;
var dy = cy*u + ey*v;
var by = y1 * u + y2 * v
var sy = y2 * u + y3 * v
var fy = y3 * u + y4 * v
var cy = by * u + sy * v
var ey = sy * u + fy * v
var dy = cy * u + ey * v
return [
[ x1, y1, bx, by, cx, cy, dx, dy ],
[ dx, dy, ex, ey, fx, fy, x4, y4 ]
];
[x1, y1, bx, by, cx, cy, dx, dy],
[dx, dy, ex, ey, fx, fy, x4, y4]
]
}
function byNumber(x, y) { return x - y; }
function byNumber (x, y) { return x - y }

@@ -405,9 +412,9 @@ /*

*/
function solveInflections(x1, y1, x2, y2, x3, y3, x4, y4) {
var p = -(x4 * (y1 - 2 * y2 + y3)) + x3 * (2 * y1 - 3 * y2 + y4)
+ x1 * (y2 - 2 * y3 + y4) - x2 * (y1 - 3 * y3 + 2 * y4);
var q = x4 * (y1 - y2) + 3 * x3 * (-y1 + y2) + x2 * (2 * y1 - 3 * y3 + y4) - x1 * (2 * y2 - 3 * y3 + y4);
var r = x3 * (y1 - y2) + x1 * (y2 - y3) + x2 * (-y1 + y3);
function solveInflections (x1, y1, x2, y2, x3, y3, x4, y4) {
var p = -(x4 * (y1 - 2 * y2 + y3)) + x3 * (2 * y1 - 3 * y2 + y4) +
x1 * (y2 - 2 * y3 + y4) - x2 * (y1 - 3 * y3 + 2 * y4)
var q = x4 * (y1 - y2) + 3 * x3 * (-y1 + y2) + x2 * (2 * y1 - 3 * y3 + y4) - x1 * (2 * y2 - 3 * y3 + y4)
var r = x3 * (y1 - y2) + x1 * (y2 - y3) + x2 * (-y1 + y3)
return quadSolve(p, q, r).filter(function (t) { return t > 1e-8 && t < 1 - 1e-8; }).sort(byNumber);
return quadSolve(p, q, r).filter(function (t) { return t > 1e-8 && t < 1 - 1e-8 }).sort(byNumber)
}

@@ -423,27 +430,27 @@

*/
function _cubicToQuad(p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y, errorBound) {
var p1 = new Point(p1x, p1y);
var c1 = new Point(c1x, c1y);
var c2 = new Point(c2x, c2y);
var p2 = new Point(p2x, p2y);
var pc = calcPowerCoefficients(p1, c1, c2, p2);
var a = pc[0], b = pc[1], c = pc[2], d = pc[3];
function _cubicToQuad (p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y, errorBound) {
var p1 = new Point(p1x, p1y)
var c1 = new Point(c1x, c1y)
var c2 = new Point(c2x, c2y)
var p2 = new Point(p2x, p2y)
var pc = calcPowerCoefficients(p1, c1, c2, p2)
var a = pc[0], b = pc[1], c = pc[2], d = pc[3]
var approximation;
var approximation
for (var segmentsCount = 1; segmentsCount <= 8; segmentsCount++) {
approximation = [];
for (var t = 0; t < 1; t += 1/segmentsCount) {
approximation.push(processSegment(a, b, c, d, t, t + 1/segmentsCount));
approximation = []
for (var t = 0; t < 1; t += (1 / segmentsCount)) {
approximation.push(processSegment(a, b, c, d, t, t + (1 / segmentsCount)))
}
if (segmentsCount === 1 && (
approximation[0][1].sub(p1).dot(c1.sub(p1)) < 0 ||
approximation[0][1].sub(p2).dot(c2.sub(p2)) < 0)) {
if (segmentsCount === 1 &&
(approximation[0][1].sub(p1).dot(c1.sub(p1)) < 0 ||
approximation[0][1].sub(p2).dot(c2.sub(p2)) < 0)) {
// approximation concave, while the curve is convex (or vice versa)
continue;
continue
}
if (_isApproximationClose(a, b, c, d, approximation, errorBound)) {
break;
break
}
}
return toFlatArray(approximation);
return toFlatArray(approximation)
}

@@ -456,13 +463,13 @@

*/
function cubicToQuad(p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y, errorBound) {
var inflections = solveInflections(p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y);
function cubicToQuad (p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y, errorBound) {
var inflections = solveInflections(p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y)
if (!inflections.length) {
return _cubicToQuad(p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y, errorBound);
return _cubicToQuad(p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y, errorBound)
}
var result = [];
var curve = [ p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y ];
var prevPoint = 0;
var quad, split;
var result = []
var curve = [p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y]
var prevPoint = 0
var quad, split

@@ -475,3 +482,3 @@ for (var inflectionIdx = 0; inflectionIdx < inflections.length; inflectionIdx++) {

1 - (1 - inflections[inflectionIdx]) / (1 - prevPoint)
);
)

@@ -482,7 +489,7 @@ quad = _cubicToQuad(

errorBound
);
)
result = result.concat(quad.slice(0, -2));
curve = split[1];
prevPoint = inflections[inflectionIdx];
result = result.concat(quad.slice(0, -2))
curve = split[1]
prevPoint = inflections[inflectionIdx]
}

@@ -494,11 +501,12 @@

errorBound
);
)
return result.concat(quad);
return result.concat(quad)
}
module.exports = cubicToQuad;
module.exports = cubicToQuad
// following exports are for testing purposes
module.exports.isApproximationClose = isApproximationClose;
//module.exports.cubicSolve = cubicSolve;
module.exports.isApproximationClose = isApproximationClose
//module.exports.cubicSolve = cubicSolve
module.exports.quadSolve = quadSolve
{
"name": "cubic2quad",
"version": "1.2.0",
"version": "1.2.1",
"description": "Approximate cubic Bezier curve with a number of quadratic ones",

@@ -13,7 +13,6 @@ "keywords": [

"scripts": {
"lint": "eslint .",
"lint": "standardx -v .",
"benchmark": "npm run lint && ./benchmark/benchmark.js",
"test": "npm run lint && mocha",
"coverage": "rm -rf coverage && istanbul cover _mocha",
"report-coveralls": "istanbul cover _mocha --report lcovonly -- -R spec && cat ./coverage/lcov.info | coveralls && rm -rf ./coverage"
"test": "npm run lint && nyc mocha",
"covreport": "nyc report --reporter html && nyc report --reporter lcov"
},

@@ -25,9 +24,8 @@ "files": [

"devDependencies": {
"ansi": "*",
"benchmark": "*",
"coveralls": "~2.11.2",
"eslint": "^3.8.1",
"istanbul": "^0.4.5",
"mocha": "^3.1.2"
"ansi": "^0.3.1",
"benchmark": "^2.1.4",
"mocha": "^8.4.0",
"nyc": "^15.1.0",
"standardx": "^7.0.0"
}
}
cubic2quad
==========
[![Build Status](https://img.shields.io/travis/fontello/cubic2quad/master.svg?style=flat)](https://travis-ci.org/fontello/cubic2quad)
[![CI](https://github.com/fontello/cubic2quad/actions/workflows/ci.yml/badge.svg)](https://github.com/fontello/cubic2quad/actions/workflows/ci.yml)
[![NPM version](https://img.shields.io/npm/v/cubic2quad.svg?style=flat)](https://www.npmjs.org/package/cubic2quad)

@@ -6,0 +6,0 @@ [![Coverage Status](https://img.shields.io/coveralls/fontello/cubic2quad/master.svg?style=flat)](https://coveralls.io/r/fontello/cubic2quad?branch=master)

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc