
Security News
libxml2 Maintainer Ends Embargoed Vulnerability Reports, Citing Unsustainable Burden
Libxml2’s solo maintainer drops embargoed security fixes, highlighting the burden on unpaid volunteers who keep critical open source software secure.
dtrace-provider
Advanced tools
The dtrace-provider package is a Node.js module that allows you to create DTrace providers for Node.js applications. DTrace is a comprehensive dynamic tracing framework that is available on some operating systems like Solaris, macOS, and FreeBSD. It enables you to get insights into the behavior of your software, allowing for performance analysis and troubleshooting.
Creating a DTrace provider
This code sample demonstrates how to create a new DTrace provider with a single probe. The probe is named 'probe-name' and expects an integer and a string argument.
var dtrace = require('dtrace-provider');
var dtp = dtrace.createDTraceProvider('nodeapp');
var probe = dtp.addProbe('probe-name', 'int', 'char *');
dtp.enable();
Firing a probe
This code sample shows how to fire a probe with the specified arguments. When the probe is fired, the function provided to 'fire' is called, and the return value is used as the arguments for the probe.
probe.fire(function() {
return [42, 'hello world'];
});
Bunyan is a simple and fast JSON logging library for node.js services. It includes a DTrace integration allowing you to use DTrace to trace log points in your applications. It is similar to dtrace-provider in that it supports DTrace, but it is primarily a logging library rather than a DTrace-specific provider.
Restify is a node.js module built specifically to enable you to build correct REST web services. It has built-in DTrace support for all of its HTTP server events, similar to dtrace-provider, but it is more focused on creating RESTful services and includes DTrace as part of its observability features.
This extension allows you to create native DTrace providers for your Node.js applications. That is, to create providers and probes which expose information specific to your application, rather than information about the node runtime.
You could use this to expose high-level information about the inner workings of your application, or to create a specific context in which to look at information from other runtime or system-level providers.
The provider is not created in the usual way, by declaring it and then changing the build process to include it, but instead dynamically at runtime. This is done entirely in-process, and there is no background compiler or dtrace(1M) invocation. The process creating the provider need not run as root.
$ npm install dtrace-provider
Here's a simple example of creating a provider:
var d = require('dtrace-provider');
var dtp = d.createDTraceProvider("nodeapp");
var p1 = dtp.addProbe("probe1", "int", "int");
var p2 = dtp.addProbe("probe2", "char *");
dtp.enable();
Probes may be fired via the provider object:
dtp.fire("probe1", function() {
return [1, 2];
});
dtp.fire("probe2", function() {
return ["hello, dtrace via provider", "foo"];
});
or via the probe objects themselves:
p1.fire(function() {
return [1, 2, 3, 4, 5, 6];
});
p2.fire(function() {
return ["hello, dtrace via probe", "foo"];
});
Note that .fire()
takes a callback that returns the arguments to be
provided when the DTrace probe actually fires. This allows you to call
.fire()
unconditionally when you want to fire the probe, but the
callback will be invoked only when the DTrace probe is actually
enabled. This allows you to create probes whose arguments might be
expensive to construct, and only do any work when the probe is
actually enabled. (Examples might include converting a large object to
a string representation or gathering large amounts of information.)
In some cases, creating a new closure to pass to .fire()
each time
it's called may introduce unwanted overhead. For extremely
CPU-intensive or memory-conscious workloads, you can avoid this by
lifting the closures for your hot probes into an outer scope. You can
then supply arguments to that function as additional arguments to
.fire()
. As an example, you can convert the following program:
function manipulateObj(largeObj) {
var count = 0;
var name = null;
...
p1.fire(function () {
return [count, keyToValue(name), JSON.stringify(largeObj)];
});
}
Into this one:
function f(a, b, c) {
return [a, keyToValue(b), JSON.stringify(c)];
}
function manipulateObj(largeObj) {
var count = 0;
var name = null;
...
p1.fire(f, count, name, largeObj);
}
Be careful to avoid passing .fire()
additional arguments that are
themselves expensive to construct, as that undermines the design goal
here: minimizing the effect of disabled probes.
This example creates a provider called "nodeapp", and adds two probes. It then enables the provider, at which point the provider becomes visible to DTrace.
The probes are then fired, which produces this output:
$ sudo dtrace -Z -n 'nodeapp*:::probe1{ trace(arg0); trace(arg1) }' \
-n 'nodeapp*:::probe2{ trace(copyinstr(arg0)); }'
dtrace: description 'nodeapp*:::probe1' matched 0 probes
dtrace: description 'nodeapp*:::probe2' matched 0 probes
CPU ID FUNCTION:NAME
1 123562 func:probe1 1 2
1 123563 func:probe2 hello, dtrace
Arguments are captured by a callback only executed when the probe is enabled. This means you can do more expensive work to gather arguments.
The maximum number of arguments supported is 32.
Available argument types are "int", for integer numeric values, "char *" for strings, and "json" for objects rendered into JSON strings.
Arguments typed as "json" will be created as "char *" probes in DTrace, but objects passed to these probe arguments will be automatically serialized to JSON before being passed to DTrace. This feature is best used in conjunction with the json() D subroutine, but is available whether or not the platform supports it.
# create a json probe:
var dtp = d.createDTraceProvider("nodeapp");
var p1 = dtp.addProbe("j1", "json");
dtp.enable();
p1.fire(function() { return { "foo": "bar" }; });
# on a platform supporting json():
$ sudo dtrace -Z -n 'nodeapp*:::j1{ this->j = copyinstr(arg0); \
trace(json(this->j, "foo")) }'
dtrace: description 'nodeapp$target:::j1' matched 0 probes
CPU ID FUNCTION:NAME
0 68712 j1:j1 bar
This libusdt-based Node.JS module supports 64 and 32 bit processes on Mac OS X and Solaris-like systems such as illumos or SmartOS. As more platform support is added to libusdt, those platforms will be supported by this module. See libusdt's status at:
https://github.com/chrisa/libusdt#readme
When using Mac OS X, be aware that as of 10.11 (El Capitan), DTrace use is restricted, and you'll probably want to disable SIP to effectively use DTrace.
FreeBSD 10 and 11 are also supported, but you'll need to make sure that
you have the DTrace headers installed in /usr/src
otherwise libusdt
won't be able to compile. You can
clone them using SVN,
or find the correct src.txz
here and extract that.
Also note that FreeBSD 10 is restricted to only 4 working arguments per
probe.
Platforms not supporting DTrace (notably, Linux and Windows) may install this module without building libusdt, with a stub no-op implementation provided for compatibility. This allows cross-platform npm modules to embed probes and include a dependency on this module.
GNU Make is required to build libusdt; the build scripts will look for
gmake in PATH
first, and then for make.
If compilation fails during installation on platforms with DTrace, then
the library will fall back to the stub implementation that does nothing.
To force an installation failure when compiling fails, set the environment
variable NODE_DTRACE_PROVIDER_REQUIRE
to hard
:
$ NODE_DTRACE_PROVIDER_REQUIRE=hard npm install
This will then show you the output of the build process so you can see at which point it's having an issue. Common issues are:
python
is Python 3 instead of Python 2; run npm config set python python2.7
(or similar) to set the Python binary npm uses.Agreeing to the Xcode/iOS license requires admin privileges, please re-run as root via sudo.
To accept the license, you can run sudo xcodebuild -license
.Once you've found and fixed the issue, you can run npm rebuild
to rerun
the lifecycle scripts.
There is some overhead to probes, even when disabled. Probes are already using the "is-enabled" feature of DTrace to control execution of the arguments-gathering callback, but some work still needs to be done before that's checked. This overhead should not be a problem unless probes are placed in particularly hot code paths.
To clone the project's source code:
$ git clone --recursive https://github.com/chrisa/node-dtrace-provider.git
For issues, please use the GitHub issue tracker linked to the repository. GitHub pull requests are very welcome.
$ npm install
$ sudo ./node_modules/.bin/tap --tap test/*.test.js
This node extension is derived from the ruby-dtrace gem, via the Perl module Devel::DTrace::Provider, both of which provide the same functionality to those languages.
FAQs
Native DTrace providers for node.js applications
The npm package dtrace-provider receives a total of 1,827,418 weekly downloads. As such, dtrace-provider popularity was classified as popular.
We found that dtrace-provider demonstrated a not healthy version release cadence and project activity because the last version was released a year ago. It has 4 open source maintainers collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Libxml2’s solo maintainer drops embargoed security fixes, highlighting the burden on unpaid volunteers who keep critical open source software secure.
Research
Security News
Socket researchers uncover how browser extensions in trusted stores are used to hijack sessions, redirect traffic, and manipulate user behavior.
Research
Security News
An in-depth analysis of credential stealers, crypto drainers, cryptojackers, and clipboard hijackers abusing open source package registries to compromise Web3 development environments.