You're Invited:Meet the Socket Team at BlackHat and DEF CON in Las Vegas, Aug 4-6.RSVP β†’
Socket
Book a DemoInstallSign in
Socket

excel-to-json.mlai

Package Overview
Dependencies
Maintainers
0
Versions
12
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

excel-to-json.mlai

Transform Excel files into JSON with advanced features including nested objects, Google Sheets support, and multiple sheet handling

0.2.8
latest
Source
npmnpm
Version published
Weekly downloads
5
-97.02%
Maintainers
0
Weekly downloads
Β 
Created
Source

excel-to-json.mlai

npm version Open issues TypeScript

  • πŸ’ͺ Transform Excel & CSV files into JSON with advanced features
  • πŸ“¦ Lightweight library with minimal dependencies
  • 🌐 Support for Google online Excel files (URLs)
  • πŸ“Š Handle multiple sheets with ease
  • πŸ“… Smart date formatting
  • ⚑ Async API with streaming support for large files

Install

npm i excel-to-json.mlai

or

yarn add excel-to-json.mlai

or

pnpm i excel-to-json.mlai

Features

  • βœ… Convert Excel files (.xlsx, .xls) to JSON
  • βœ… Convert CSV files to JSON πŸ†•
  • βœ… Support for multiple sheets
  • βœ… Fetch and convert online Excel files (including Google Sheets)
  • βœ… Customizable date formatting
  • βœ… Header transformation
  • βœ… Value transformation
  • βœ… Skip empty rows/columns
  • βœ… Formula support
  • βœ… Nested objects from dot-notation columns πŸ†•
  • βœ… TypeScript support

Usage

Basic Usage

import { excelToJson } from 'excel-to-json.mlai';

// Convert Excel file
const data = await excelToJson('path/to/file.xlsx');
console.log(data);
// Output: [{name: 'John', age: 30}, {name: 'Jane', age: 25}, ...]

// Convert CSV file (automatically detected)
const csvData = await excelToJson('path/to/file.csv');
console.log(csvData);
// Output: [{name: 'John', age: 30}, {name: 'Jane', age: 25}, ...]

Multiple Sheets

// Get all sheets
const allSheets = await excelToJson('file.xlsx', { sheets: 'all' });
console.log(allSheets);
// Output: { Sheet1: [...], Sheet2: [...], Sheet3: [...] }

// Get specific sheets
const specificSheets = await excelToJson('file.xlsx', { 
  sheets: ['Sales', 'Inventory'] 
});

Online Excel Files

// Convert from URL
const onlineData = await excelToJson('https://example.com/data.xlsx');

// Google Sheets support
const sheetsData = await excelToJson('https://docs.google.com/spreadsheets/d/your-sheet-id/edit');

// Online CSV files
const csvData = await excelToJson('https://example.com/data.csv');

CSV File Support πŸ†•

Automatically detects and parses CSV files with customizable options:

// Basic CSV conversion
const data = await excelToJson('data.csv');

// CSV with custom delimiter and options
const data = await excelToJson('data.csv', {
  csvDelimiter: ';',        // Custom delimiter (auto-detected by default)
  csvQuote: '"',           // Quote character
  csvEscape: '"',          // Escape character
  nestedObj: true,         // Create nested objects
  transformValue: (v, h) => {
    // Transform values
    if (h === 'price') return parseFloat(v);
    return v;
  }
});

Nested Objects from Dot-Notation Columns πŸ†•

Transform flat columns with dot notation into nested objects:

// Excel columns: name, age, hobbies.0, hobbies.1, hobbies.2, address.street, address.city
const data = await excelToJson('file.xlsx', {
  nestedObj: true
});

// Input (flat):
// { name: 'John', 'hobbies.0': 'Reading', 'hobbies.1': 'Gaming', 'address.street': '123 Main St' }

// Output (nested):
// {
//   name: 'John',
//   hobbies: { '0': 'Reading', '1': 'Gaming' },
//   address: { street: '123 Main St' }
// }

Custom Date Formatting

const data = await excelToJson('file.xlsx', {
  dateFormat: 'YYYY-MM-DD' // or 'DD/MM/YYYY', 'MM-DD-YYYY', etc.
});

Transform Headers and Values

const data = await excelToJson('file.xlsx', {
  // Transform headers to lowercase with underscores
  transformHeader: (header) => header.toLowerCase().replace(/\s+/g, '_'),
  
  // Transform values
  transformValue: (value, header) => {
    if (header === 'price') return parseFloat(value);
    if (header === 'active') return value === 'yes';
    return value;
  }
});

Advanced Options

const data = await excelToJson('file.xlsx', {
  sheetSelection: ['Sheet1', 'Sheet2'],   // Specific sheets (or 'all', 'first')
  dateFormatPattern: 'DD/MM/YYYY',       // Date format
  shouldSkipEmptyRows: true,             // Skip empty rows
  shouldSkipEmptyColumns: true,          // Skip empty columns
  hasHeaderRow: true,                    // Use first row as headers
  headerRowIndex: 1,                     // Headers on row 2 (0-based)
  shouldIncludeSheetName: true,          // Add _sheet property to each row
  shouldParseFormulas: true,             // Parse formula results
  shouldCreateNestedObjects: false,      // Create nested objects from dot-notation
  csvParsingOptions: {                   // CSV parsing options
    fieldDelimiter: ',',                 // CSV delimiter (auto-detected)
    quoteCharacter: '"',                 // CSV quote character
    escapeCharacter: '"'                 // CSV escape character
  },
  headerTransformer: (h) => h.trim(),    // Clean headers
  valueTransformer: (v, h) => v          // Process values
});

Modern API

import { excelToJson } from 'excel-to-json.mlai';

// Async processing for all files
const data = await excelToJson('path/to/file.xlsx');

API Reference

excelToJson(input, options?)

Asynchronously converts Excel or CSV file to JSON.

Parameters:

  • input (string | ArrayBuffer | Buffer): File path, URL, or buffer (supports .xlsx, .xls, .csv)
  • options (SpreadsheetConversionConfig): Optional configuration

Returns: Promise<Record<string, any>[] | Record<string, Record<string, any>[]>>

SpreadsheetConversionConfig

interface SpreadsheetConversionConfig {
  sheetSelection?: 'all' | 'first' | string[] | number[];
  dateFormatPattern?: string;
  shouldSkipEmptyRows?: boolean;
  shouldSkipEmptyColumns?: boolean;
  headerTransformer?: (header: string) => string;
  valueTransformer?: (value: any, header: string) => any;
  hasHeaderRow?: boolean;
  headerRowIndex?: number;
  shouldIncludeSheetName?: boolean;
  shouldParseFormulas?: boolean;
  shouldCreateNestedObjects?: boolean;  // πŸ†• Create nested objects from dot-notation
  csvParsingOptions?: CsvParsingConfiguration; // πŸ†• CSV parsing options
}

Examples

Example 1: Sales Report

const salesData = await excelToJson('sales-2024.xlsx', {
  sheets: ['Q1', 'Q2', 'Q3', 'Q4'],
  dateFormat: 'MM/DD/YYYY',
  transformHeader: (h) => h.toLowerCase().replace(/\s+/g, '_'),
  transformValue: (v, h) => {
    if (h === 'revenue' || h === 'cost') {
      return parseFloat(v.replace(/[$,]/g, ''));
    }
    return v;
  }
});

Example 2: Employee Database

const employees = await excelToJson('https://hr.company.com/employees.xlsx', {
  skipEmptyRows: true,
  transformValue: (v, h) => {
    if (h === 'Email') return v.toLowerCase();
    if (h === 'Active') return v === 'Yes';
    if (h === 'Salary') return parseFloat(v);
    return v;
  }
});

Example 3: CSV Data Processing

// CSV file with columns: name, age, hobbies.0, hobbies.1, hobbies.2, skills.programming.0
const csvData = await excelToJson('employees.csv', {
  nestedObj: true,
  transformValue: (v, h) => {
    // Convert boolean strings
    if (v === 'TRUE' || v === 'yes') return true;
    if (v === 'FALSE' || v === 'no') return false;
    // Convert numbers
    if (h === 'salary' && !isNaN(Number(v))) return Number(v);
    return v;
  }
});

// Result:
// {
//   name: 'John',
//   age: 25,
//   hobbies: { '0': 'Reading', '1': 'Gaming' },
//   skills: { programming: { '0': 'JavaScript' } },
//   salary: 60000
// }

Example 4: Survey Data with Nested Objects

// Excel columns: name, age, skills.programming.0, skills.programming.1, hobbies.0, hobbies.1
const surveyData = await excelToJson('survey.xlsx', {
  nestedObj: true,
  transformValue: (v, h) => {
    // Convert boolean-like strings
    if (v === 'TRUE' || v === 'yes') return true;
    if (v === 'FALSE' || v === 'no') return false;
    return v;
  }
});

// Result:
// {
//   name: 'John',
//   age: 25,
//   skills: {
//     programming: { '0': 'JavaScript', '1': 'Python' }
//   },
//   hobbies: { '0': 'Reading', '1': 'Gaming' }
// }

Example 5: Multi-Sheet Analysis

const analysis = await excelToJson('data.xlsx', {
  sheets: 'all',
  includeSheetName: true,
  dateFormat: 'YYYY-MM-DD'
});

// Process each sheet
for (const [sheetName, data] of Object.entries(analysis)) {
  console.log(`Processing ${sheetName}: ${data.length} rows`);
}

What's New in v0.2.6

πŸ†• CSV File Support

Now supports CSV files with automatic detection and parsing:

// Works with both Excel and CSV files
const excelData = await excelToJson('data.xlsx');
const csvData = await excelToJson('data.csv');

// CSV with custom options
const data = await excelToJson('data.csv', {
  csvDelimiter: ';',
  nestedObj: true
});

πŸ†• Nested Objects Feature

Transform flat columns with dot notation into nested object structures:

// Excel with columns: name, hobbies.0, hobbies.1, address.street, address.city
const data = await excelToJson('file.xlsx', { shouldCreateNestedObjects: true });

// Before (flat):
{
  name: 'John',
  'hobbies.0': 'Reading',
  'hobbies.1': 'Gaming',
  'address.street': '123 Main St',
  'address.city': 'New York'
}

// After (nested):
{
  name: 'John',
  hobbies: {
    '0': 'Reading',
    '1': 'Gaming'
  },
  address: {
    street: '123 Main St',
    city: 'New York'
  }
}

Enhanced Features

  • πŸ“„ Full CSV file support with auto-detection
  • 🌐 Improved Google Sheets support
  • πŸ”§ Better TypeScript definitions
  • ⚑ Performance optimizations
  • πŸ› Bug fixes for edge cases

Migration from v0.x

The new version includes breaking changes:

// Old (v0.x)
import { excelToJson } from 'excel-to-json.mlai';
const data = excelToJson('file.xlsx'); // Synchronous, single sheet

// New (v1.0+)
import { excelToJson } from 'excel-to-json.mlai';
const data = await excelToJson('file.xlsx'); // Async by default

Real-World Examples

E-commerce Product Catalog

// Excel columns: name, price, variants.size.0, variants.size.1, variants.color.0, variants.color.1
const products = await excelToJson('products.xlsx', {
  nestedObj: true,
  transformValue: (v, h) => {
    if (h === 'price') return parseFloat(v);
    return v;
  }
});

// Result:
// {
//   name: 'T-Shirt',
//   price: 19.99,
//   variants: {
//     size: { '0': 'S', '1': 'M', '2': 'L' },
//     color: { '0': 'Red', '1': 'Blue' }
//   }
// }

CSV Sales Report

// CSV columns: date, product, revenue, cost, region
const salesData = await excelToJson('sales.csv', {
  transformValue: (v, h) => {
    // Parse currency values
    if (h === 'revenue' || h === 'cost') {
      return parseFloat(v.replace(/[$,]/g, ''));
    }
    // Parse dates
    if (h === 'date') {
      return new Date(v);
    }
    return v;
  }
});

User Preferences Survey

// Excel columns: userId, preferences.notifications.email, preferences.notifications.sms, preferences.theme
const userPrefs = await excelToJson('user-preferences.xlsx', {
  nestedObj: true,
  transformValue: (v, h) => {
    // Convert boolean strings
    if (v === 'yes' || v === 'true') return true;
    if (v === 'no' || v === 'false') return false;
    return v;
  }
});

// Result:
// {
//   userId: 'user123',
//   preferences: {
//     notifications: {
//       email: true,
//       sms: false
//     },
//     theme: 'dark'
//   }
// }

Performance Tips

  • Use specific sheets: Instead of sheetSelection: 'all', specify only needed sheets
  • Skip empty data: Enable shouldSkipEmptyRows and shouldSkipEmptyColumns for faster processing
  • Minimize transformations: Complex transformations can slow down large files
  • Nested objects: Use shouldCreateNestedObjects: true only when needed, as it adds processing overhead
  • Streaming for large files: Enable streaming mode for very large files
  • Batch processing: For very large files, consider processing in chunks

Contributing

All contributions are welcome! Please read our contributing guidelines.

License

excel-to-json.mlai is MIT licensed.

Keywords

excel

FAQs

Package last updated on 29 Jul 2025

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

About

Packages

Stay in touch

Get open source security insights delivered straight into your inbox.

  • Terms
  • Privacy
  • Security

Made with ⚑️ by Socket Inc

U.S. Patent No. 12,346,443 & 12,314,394. Other pending.