Socket
Book a DemoInstallSign in
Socket

galorex

Package Overview
Dependencies
Maintainers
1
Versions
2
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

galorex

This repo contains the pre-release version of GaLore algorithm, proposed by [GaLore: Memory-Efficient LLM Training by Gradient Low-Rank Projection](https://arxiv.org/abs/2403.03507).

1.5.7
latest
Source
npmnpm
Version published
Weekly downloads
0
Maintainers
1
Weekly downloads
 
Created
Source

GaLore

This repo contains the pre-release version of GaLore algorithm, proposed by GaLore: Memory-Efficient LLM Training by Gradient Low-Rank Projection.

Gradient Low-Rank Projection (GaLore) is a memory-efficient low-rank training strategy that allows full-parameter learning but is more memory-efficient than common low-rank adaptation methods, such as LoRA. As a gradient projection method, GaLore is independent of the choice of optimizers and can be easily plugged into existing ones with only two lines of code, as shown in Algorithm 1 below.

Image 2

Installation

pip install -e .

Usage

from galore_torch import GaLoreAdamW, GaLoreAdamW8bit, GaLoreAdafactor
# define param groups as galore_params and non_galore_params
param_groups = [{'params': non_galore_params}, 
                {'params': galore_params, 'rank': 128, 'update_proj_gap': 200, 'scale': 0.25, 'proj_type': 'std'}]
optimizer = GaLoreAdamW(param_groups, lr=0.01)

Benchmark 1: Pre-Training LLaMA on C4 dataset

torchrun_main.py is the main script for training LLaMA models on C4 with GaLore. Our benchmark scripts for various sizes of models are in scripts/benchmark_c4 folder. For example, to train a 60m model on C4, do the following:

# LLaMA-60M, GaLore-Adam, 1 A100, 1 Node
torchrun --standalone --nproc_per_node 1 torchrun_main.py \
    --model_config configs/llama_60m.json \
    --lr 0.01 \
    --galore_scale 0.25 \
    --rank 128 \
    --update_proj_gap 200 \
    --batch_size 256 \
    --total_batch_size 512 \
    --num_training_steps 10000 \
    --warmup_steps 1000 \
    --weight_decay 0 \
    --dtype bfloat16 \
    --eval_every 1000 \
    --optimizer galore_adamw 

Train 7B model with a single GPU with 24GB memory

To train a 7B model with a single GPU such as NVIDIA RTX 4090, all you need to do is to specify --optimizer=galore_adamw8bit_per_layer, which enables GaLoreAdamW8bit with per-layer weight updates. With activation checkpointing, you can maintain a batch size of 16 tested on NVIDIA RTX 4090.

# LLaMA-7B, 8-bit GaLore-Adam, single GPU, activation checkpointing
# bsz=16, 22.8G, 
torchrun --standalone --nproc_per_node 1 torchrun_main.py \
    --model_config configs/llama_7b.json \
    --lr 0.005 \
    --galore_scale 0.25 \
    --rank 1024 \
    --update_proj_gap 500 \
    --batch_size 16 \
    --total_batch_size 512 \
    --activation_checkpointing \
    --num_training_steps 150000 \
    --warmup_steps 15000 \
    --weight_decay 0 \
    --grad_clipping 1.0 \
    --dtype bfloat16 \
    --eval_every 1000 \
    --single_gpu \
    --optimizer galore_adamw8bit_per_layer

Currently per-layer weight updates technique is only supported for single GPU training (--single_gpu) without using nn.parallel.DistributedDataParallel. We are working on supporting multi-GPU training with per-layer weight updates.

Benchmark 2: Fine-Tuning RoBERTa on GLUE tasks

run_glue.py is the main script for fine-tuning RoBERTa models on GLUE tasks with GaLore. An example script is shown below:

python run_glue.py \
    --model_name_or_path roberta-base \
    --task_name mrpc \
    --enable_galore \
    --lora_all_modules \
    --max_length 512 \
    --seed=1234 \
    --lora_r 4 \
    --galore_scale 4 \
    --per_device_train_batch_size 16 \
    --update_proj_gap 500 \
    --learning_rate 3e-5 \
    --num_train_epochs 30 \
    --output_dir results/ft/roberta_base/mrpc

Citation

@misc{zhao2024galore,
      title={GaLore: Memory-Efficient LLM Training by Gradient Low-Rank Projection}, 
      author={Jiawei Zhao and Zhenyu Zhang and Beidi Chen and Zhangyang Wang and Anima Anandkumar and Yuandong Tian},
      year={2024},
      eprint={2403.03507},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

FAQs

Package last updated on 03 May 2024

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

About

Packages

Stay in touch

Get open source security insights delivered straight into your inbox.

  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc

U.S. Patent No. 12,346,443 & 12,314,394. Other pending.