Socket
Book a DemoInstallSign in
Socket

genkit

Package Overview
Dependencies
Maintainers
4
Versions
138
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

genkit

Genkit AI framework

latest
Source
npmnpm
Version
1.27.0
Version published
Maintainers
4
Created
Source

Genkit

Genkit is a framework for building AI-powered applications. It provides open source libraries for Node.js and Go, along with tools to help you debug and iterate quickly.

Install Genkit dependencies

Install the following Genkit dependencies to use Genkit in your project:

  • genkit provides Genkit core capabilities.
  • @genkit-ai/googleai provides access to the Google AI Gemini models. Check out other plugins: https://www.npmjs.com/search?q=keywords:genkit-plugin
npm install genkit @genkit-ai/googleai

Make your first request

Get started with Genkit in just a few lines of simple code.

// import the Genkit and Google AI plugin libraries
import { genkit } from 'genkit';
import { googleAI } from '@genkit-ai/google-genai';

const ai = genkit({ plugins: [googleAI()] });

const { text } = await ai.generate({
    model: googleAI.model('gemini-2.5-flash'),
    prompt: 'Why is Genkit awesome?'
});

Genkit also provides middleware to add common functionality to your AI requests. For example, you can use the retry middleware to automatically retry failed requests:

import { retry } from 'genkit/model/middleware';

const { text } = await ai.generate({
    model: googleAI.model('gemini-2.5-flash'),
    prompt: 'Why is Genkit awesome?',
    use: [
      retry({
        maxRetries: 3,
        initialDelayMs: 1000,
        backoffFactor: 2,
      }),
    ],
});

Genkit also lets you build strongly typed, accessible from the client, fully observable AI flows:

import { googleAI } from '@genkit-ai/google-genai';
import { genkit, z } from 'genkit';

// Initialize Genkit with the Google AI plugin
const ai = genkit({
  plugins: [googleAI()],
  model: googleAI.model('gemini-2.5-flash', {
    temperature: 0.8
  }),
});

// Define input schema
const RecipeInputSchema = z.object({
  ingredient: z.string().describe('Main ingredient or cuisine type'),
  dietaryRestrictions: z.string().optional().describe('Any dietary restrictions'),
});

// Define output schema
const RecipeSchema = z.object({
  title: z.string(),
  description: z.string(),
  prepTime: z.string(),
  cookTime: z.string(),
  servings: z.number(),
  ingredients: z.array(z.string()),
  instructions: z.array(z.string()),
  tips: z.array(z.string()).optional(),
});

// Define a recipe generator flow
export const recipeGeneratorFlow = ai.defineFlow(
  {
    name: 'recipeGeneratorFlow',
    inputSchema: RecipeInputSchema,
    outputSchema: RecipeSchema,
  },
  async (input, { sendChunk }) => {
    // Create a prompt based on the input
    const prompt = `Create a recipe with the following requirements:
      Main ingredient: ${input.ingredient}
      Dietary restrictions: ${input.dietaryRestrictions || 'none'}`;

    // Generate structured recipe data using the same schema
    const { output } = await ai.generate({
      prompt,
      output: { schema: RecipeSchema },
      onChunk: sendChunk // stream output
    });

    if (!output) throw new Error('Failed to generate recipe');

    return output;
  }
);

// Run the flow locally
async function main() {
  const recipe = await recipeGeneratorFlow({
    ingredient: 'avocado',
    dietaryRestrictions: 'vegetarian'
  });

  console.log(recipe);
}

main().catch(console.error);

You can easily serve flows as an API:

import { startFlowServer } from '@genkit-ai/express'; // npm i @genkit-ai/express

startFlowServer({
  flows: [recipeGeneratorFlow],
});

And access the flow from the client:

import { runFlow } from 'genkit/beta/client';

const { stream } = streamFlow({
  url: 'http://localhost:3500/recipeGeneratorFlow',
  input: {
    ingredient: 'avocado',
    dietaryRestrictions: 'vegetarian'
  },
});

for await (const chunk of stream) {
  console.log(chunk);
}

For more details see: https://genkit.dev/docs/deploy-node

But you can also deploy to Firebase or Cloud Run, etc.

Next steps

Now that you’re set up to make model requests with Genkit, learn how to use more Genkit capabilities to build your AI-powered apps and workflows. To get started with additional Genkit capabilities, see the following guides:

  • Developer tools: Learn how to set up and use Genkit’s CLI and developer UI to help you locally test and debug your app.
  • Generating content: Learn how to use Genkit’s unified generation API to generate text and structured data from any supported model.
  • Creating flows: Learn how to use special Genkit functions, called flows, that provide end-to-end observability for workflows and rich debugging from Genkit tooling.
  • Managing prompts: Learn how Genkit helps you manage your prompts and configuration together as code.

Learn more at https://genkit.dev

License: Apache 2.0

Keywords

genkit

FAQs

Package last updated on 19 Dec 2025

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts