Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

integrate

Package Overview
Dependencies
Maintainers
1
Versions
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

integrate

Numerical integrators for ordinary differential equations in asm.js

  • 0.0.1
  • latest
  • npm
  • Socket score

Version published
Maintainers
1
Created
Source

Integrate

Some numerical integrators for ordinary differential equations:

  • Euler's Method
  • Fourth-order Runge-Kutta methods

Want one that's not there? Open an issue, or better yet, a pull request adding it.

Fast

All of the methods are hand-written in asm.js, so they should be fast. Not that your integration method would ever be your bottleneck anyway, but hey... why not.

Example

There are two steps: constructing your integrator, and then calling it.

var Integrate = require('integrate');

function myODE(t, y) {
  // ordinary differential function to integrate.
  return y;  // for an initial value y=0, this function is also known as 'e^x'
}

// step 1: get the integrators for your function
var integrate = Integrate.Integrator(myODE);

var y = 1,
    t = 0,
    step = 0.25;

while (true) {
  // step 2: integrate!
  console.log('t = ' + t + '   \t', y);
  if ((t += step) && t > 2) break;
  y = integrate.euler(y, t, step);
}

Should log this:

```
t = 0        1
t = 0.25     1.25
t = 0.5      1.5625
t = 0.75     1.953125
t = 1        2.44140625
t = 1.25     3.0517578125
t = 1.5      3.814697265625
t = 1.7      4.76837158203125
t = 2        5.9604644775390625
```

How bad is euler?

Well for starters, that 5.960... at the end of the example logs should actually be 7.389....

How far do we have to shrink our step size to get within 0.0001 of the exact solution? How much better is Runge-Kutta? The fourth-order Runge-Kutta integrator will evaulate your ODE four times for each step, so it has to converge at least 4x faster to be worthwhile...

Here's a quick and dirty test, computing how far we have to shrink the step size for the Euler method and for fourth-order Runge-Kutta, to get within 0.0001 of the exact solution for t = 2.

Our ODE, y' = y at y(0) = 1 is actually just e^x, so we should be converging to e^2.

var Integrate = require('./index');

var integrate = Integrate.Integrator(function(_, y) { return y; });

var stopAt = 2,
    stopError = 0.0001;  // we are done when our error is <= this


function acceptableStep(f, stopAt, stopError) {
  var target = Math.pow(Math.E, stopAt),
      step = stopAt;

  while (true) {
    for (var t=0, y=1; t < stopAt; t+= step)
      y = f(y, t, step);
    if (Math.abs(target - y) <= stopError) break;
    step /= 2;
  }

  return step;
}

var acceptableEuler = acceptableStep(integrate.euler, stopAt, stopError);
var acceptableRk4 = acceptableStep(integrate.rk4, stopAt, stopError);
console.log('euler step with error < '+stopError+' at '+stopAt+': ', acceptableEuler);
console.log('rk4 step with error < '+stopError+' at t='+stopAt+': ', acceptableRk4);

Should log

```
euler step with error < 0.0001 at t=2:  0.00000762939453125
rk4 step with error < 0.0001 at t=2:  0.125
```

So, for a cost of 4x more evaluations per step, we get to run with a step size about 16,000x bigger with Runge-Kutta than with the Euler Method for similar accuracy. After our 4x evaluations per step penalty, we are still winning by about 4,000x the number of evaluations required in this example.

So, use rk4.

API

Create an integrator from an ODE function

The nice way:

var integrator = Integrate.Integrate(myODEFunction);

Shave off one wrapping function call:

var integrator = Integrate.ASMIntegrators(null, {f: myODEFunction});

Both forms will return an identical object.

myODEFunction should accept two parameters: t, and y.

Integrate with one of the numerical integration methods

var yNext = integrator.euler(yLast, tNow, tStepSize);

var yNext = integrator.rk4(yLast, tNow, tStepSize);

var yNext = integrator.rk4general(yLast, tNow, 3);

Keywords

FAQs

Package last updated on 08 Oct 2014

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc