Research
Security News
Malicious npm Packages Inject SSH Backdoors via Typosquatted Libraries
Socket’s threat research team has detected six malicious npm packages typosquatting popular libraries to insert SSH backdoors.
js-simulator
Advanced tools
General-purpose discrete-event simulator for agent-based modelling and simulation
Inspired by the MASON Multiagent Simulation library in Java, js-simulator is a general-purpose discrete-event multiagent simulator for agent-based modelling and simulation. It was written entirely in Javascript.
Run the following npm command to install
npm install js-simulator
The following HTML demo is available:
More demo and HTML GUI supports will be added in the subsequent releases.
The discrete-event simulator is managed via the Scheduler class, which can be created as shown below:
jssim = require('js-simulator');
var scheduler = new jssim.Scheduler();
The scheduler schedules and fires events based on their time and rank (i.e. the order of the event) spec.
To schedule the an event to fire at a particular time:
var rank = 1; // the higher the rank, the higher the priority assigned and the higher-rank event will be fired first for all events occurring at the same time interval
var evt = new jssim.SimEvent(rank);
evt.id = 20;
evt.update = function(deltaTime) {
console.log('event [' + this.id + '] with rank ' + this.rank + ' is fired at time ' + this.time);
// the code below allows the evt to send message to another agent (i.e., the agent referred by receiver variable)
/*
var receiver_id = receiver.guid()
this.sendMsg(receiver_id, {
content: "Hello"
});
*/
// the code below allows the evt to process messages sent from another agent
/*
var messages = this.readInbox();
for(var i = 0; i < messages.length; ++i){
var msg = messages[i];
var sender_id = msg.sender;
var recipient_id = msg.recipient; // should equal to this.guid()
var time = msg.time;
var rank = msg.rank; // the messages[0] contains the highest ranked message and last messages contains lowest ranked
var content = msg.content; // for example the "Hello" text from the sendMsg code above
}
*/
};
var time_to_fire = 10; // fire this event at time = 10
scheduler.schedule(evt, time_to_fire);
The main logic for an event is defined in its update(deltaTime) method, as shown in the code above. Events with higher ranks and earlier time_to_fire will always be executed first by the scheduler.
An event can also be sheduled to fire at a later time from the current time (e.g., such an event can be fired within another event):
var delta_time_later = 10; // the event will be fired 10 time units from now, where now refers to the current scheduler time
scheduler.scheduleOnceIn(evt, delta_time_later);
In terms of multi-agent system, an event can be thought of as an agent. Such an agent may need to execute repeatedly. In the js-simulator, this is achieved by firing an event repeatedly at a fixed interval:
var interval = 2; // time interval between consecutive firing of the event
var start_time = 12; // time to fire the event for the first time
scheduler.scheduleRepeatingAt(evt, start_time, interval);
If the start_time is at from the start of the simulation, then the above scheduling can also be replaced by:
scheduler.scheduleRepatingIn(evt, interval);
After the events/agents are scheduled, they are not fired immediately but only fired when scheduler.update() method is called, each call to scheduler.update() to move the time forward. At each time forwarded, events with higher rank will be executed (by calling their update(delaTime) method) first. Also events with the same rank will be shuffled before execution.
The scheduler can be executed in the following loop:
while(scheduler.hasEvents()) {
var evts_fired = scheduler.update();
}
The above will run until no more events to fire in the scheduler, to stop the scheduler at a particular instead, use the following loop:
while(scheduler.current_time < 20) { // stop the scheduler when current scheduler time is 20
scheduler.update();
}
The current scheduler time can be obtained by calling (this is useful if we want to know the current time inside the scheduler):
var current_scheduler_time = scheduler.current_time;
The source code below shows how to create a flocking of 15 boids (12 preys and 3 predators) that demonstrate the flocking principles:
Firstly we will declare a Boid class the inherits from the jsssim.SimEvent class, which defines the behavior of a single boid:
var jssim = require('js-simulator');
var Boid = function(id, initial_x, initial_y, space, isPredator) {
var rank = 1;
jssim.SimEvent.call(this, rank);
this.id = id;
this.space = space;
this.space.updateAgent(this, initial_x, initial_y);
this.sight = 75;
this.speed = 12;
this.separation_space = 30;
this.velocity = new jssim.Vector2D(Math.random(), Math.random());
this.isPredator = isPredator;
this.border = 100;
};
Boid.prototype = Object.create(jssim.SimEvent);
Boid.prototype.update = function(deltaTime) {
var boids = this.space.findAllAgents();
var pos = this.space.getLocation(this.id);
if(this.isPredator) {
var prey = null;
var min_distance = 10000000;
for (var boidId in boids)
{
var boid = boids[boidId];
if(!boid.isPredator) {
var boid_pos = this.space.getLocation(boid.id);
var distance = pos.distance(boid_pos);
if(min_distance > distance){
min_distance = distance;
prey = boid;
}
}
}
if(prey != null) {
var prey_position = this.space.getLocation(prey.id);
this.velocity.x += prey_position.x - pos.x;
this.velocity.y += prey_position.y - pos.y;
}
} else {
for (var boidId in boids)
{
var boid = boids[boidId];
var boid_pos = this.space.getLocation(boid.id);
var distance = pos.distance(boid_pos);
if (boid != this && !boid.isPredator)
{
if (distance < this.separation_space)
{
// Separation
this.velocity.x += pos.x - boid_pos.x;
this.velocity.y += pos.y - boid_pos.y;
}
else if (distance < this.sight)
{
// Cohesion
this.velocity.x += (boid_pos.x - pos.x) * 0.05;
this.velocity.y += (boid_pos.y - pos.y) * 0.05;
}
if (distance < this.sight)
{
// Alignment
this.velocity.x += boid.velocity.x * 0.5;
this.velocity.y += boid.velocity.y * 0.5;
}
}
if (boid.isPredator && distance < this.sight)
{
// Avoid predators.
this.velocity.x += pos.x - boid_pos.x;
this.velocity.y += pos.y - boid_pos.y;
}
}
}
// check speed
var speed = this.velocity.length();
if(speed > this.speed) {
this.velocity.resize(this.speed);
}
pos.x += this.velocity.x;
pos.y += this.velocity.y;
// check boundary
var val = this.boundary - this.border;
if (pos.x < this.border) pos.x = this.boundary - this.border;
if (pos.y < this.border) pos.y = this.boundary - this.border;
if (pos.x > val) pos.x = this.border;
if (pos.y > val) pos.y = this.border;
console.log("boid [ " + this.id + "] is at (" + pos.x + ", " + pos.y + ") at time " + this.time);
};
Once the boid is defined we can then create and schedule the flocking event simulator using the code below:
var scheduler = new jssim.Scheduler();
scheduler.reset();
var space = new jssim.Space2D();
for(var i = 0; i < 15; ++i) {
var is_predator = i > 12;
var boid = new Boid(i, 0, 0, space, is_predator);
scheduler.scheduleRepeatingIn(boid, 1);
}
while(scheduler.current_time < 20) {
scheduler.update();
}
The sample code below shows how to create the game of life simulation:
var jssim = require('js-simulator');
var CellularAgent = function(world) {
jssim.SimEvent.call(this);
this.world = world;
};
CellularAgent.prototype = Object.create(jssim.SimEvent.prototype);
CellularAgent.prototype.update = function (deltaTime) {
var width = this.world.width;
var height = this.world.height;
var past_grid = this.world.makeCopy();
for(var i=0; i < width; ++i) {
for(var j = 0; j < height; ++j) {
var count = 0;
for(var dx = -1; dx < 2; ++dx) {
var x = i + dx;
if (x >= width) {
x = 0;
}
if (x < 0) {
x = width - 1;
}
for(var dy = -1; dy < 2; ++dy) {
var y = j + dy;
if(y >= height) {
y = 0;
}
if(y < 0) {
y = height - 1;
}
count += past_grid.getCell(x, y);
}
}
if (count <= 2 || count >= 5) {
this.world.setCell(i, j, 0); // dead
}
if (count == 3) {
this.world.setCell(i, j, 1); // live
}
}
}
};
var scheduler = new jssim.Scheduler();
var grid = new jssim.Grid(640, 640);
scheduler.reset();
grid.reset();
grid.setCell(1, 0, 1);
grid.setCell(2, 0, 1);
grid.setCell(0, 1, 1);
grid.setCell(1, 1, 1);
grid.setCell(1, 2, 1);
grid.setCell(2, 2, 1);
grid.setCell(2, 3, 1);
scheduler.scheduleRepeatingIn(new CellularAgent(grid), 1);
while(scheduler.current_time < 20) { // this assumes that we want to terminate at time 20
scheduler.update();
}
The sample code below shows the school yard demo:
var Student = function(id, yard, network) {
jssim.SimEvent.call(this);
this.id = id;
this.yard = yard;
this.network = network;
this.MAX_FORCES = 3.0;
this.forceToSchoolMultiplier = 0.01;
this.randomMultiplier = 0.1;
};
Student.prototype = Object.create(jssim.SimEvent.prototype);
Student.prototype.update = function(deltaTime) {
var students = this.yard.findAllAgents();
var me = this.yard.getLocation(this.id);
var sumForces = new jssim.Vector2D(0, 0);
var forceVector = new jssim.Vector2D(0, 0);
var edges = this.network.adj(this.id);
var len = edges.length;
for (var buddy = 0; buddy < len; ++buddy)
{
var e = edges[buddy];
var buddiness = e.info;
var him = this.yard.getLocation(e.other(this.id));
if (buddiness >= 0)
{
forceVector.set((him.x - me.x) * buddiness, (him.y - me.y) * buddiness);
if (forceVector.length() > this.MAX_FORCES)
{
forceVector.resize(this.MAX_FORCES);
}
}
else
{
forceVector.set((me.x - him.x) * buddiness, (me.y - him.y) * buddiness);
if (forceVector.length() > this.MAX_FORCES)
{
forceVector.resize(0);
}
else if(forceVector.length() > 0)
{
forceVector.resize(this.MAX_FORCES - forceVector.length());
}
}
sumForces.addIn(forceVector);
}
sumForces.addIn(
new jssim.Vector2D((this.yard.width * 0.5 - me.x) * this.forceToSchoolMultiplier, (this.yard.height * 0.5 - me.y) * this.forceToSchoolMultiplier)
);
sumForces.addIn(
new jssim.Vector2D(this.randomMultiplier * (Math.random() * 1.0 - 0.5), this.randomMultiplier * Math.random() * 1.0 - 0.5));
sumForces.addIn(me);
me.x = sumForces.x;
me.y = sumForces.y;
console.log("Student " + this.id + " is at (" + me.x + ", " + me.y + ") at time " + this.time);
};
var scheduler = new jssim.Scheduler();
var yard = new jssim.Space2D();
var network = new jssim.Network(30);
yard.width = 50;
yard.height = 50;
scheduler.reset();
yard.reset();
network.reset();
for(var i=0; i < 30; ++i) {
var student = new Student(i, yard, network);
yard.updateAgent(student, Math.random() * yard.width, Math.random() * yard.height);
scheduler.scheduleRepeatingIn(student, 1);
}
var buddies = {};
for (var i = 0; i < 30; ++i)
{
var student = i;
var studentB = i;
do
{
studentB = Math.floor(Math.random() * 30);
} while (student == studentB);
var buddiness = Math.random();
if(!network.connected(student, studentB)){
network.addEdge(new jssim.Edge(student, studentB, buddiness));
}
var studentB = i;
do
{
studentB = Math.floor(Math.random() * 30);
} while (student == studentB);
buddiness = Math.random();
if(!network.connected(student, studentB)){
network.addEdge(new jssim.Edge(student, studentB, buddiness));
}
}
while (scheduler.current_time < 2) {
scheduler.update();
}
FAQs
General-purpose discrete-event simulator for agent-based modelling and simulation
We found that js-simulator demonstrated a not healthy version release cadence and project activity because the last version was released a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Research
Security News
Socket’s threat research team has detected six malicious npm packages typosquatting popular libraries to insert SSH backdoors.
Security News
MITRE's 2024 CWE Top 25 highlights critical software vulnerabilities like XSS, SQL Injection, and CSRF, reflecting shifts due to a refined ranking methodology.
Security News
In this segment of the Risky Business podcast, Feross Aboukhadijeh and Patrick Gray discuss the challenges of tracking malware discovered in open source softare.