JSON-stat Javascript Toolkit
The JSON-stat format is a simple lightweight JSON format for data dissemination. It is based in a cube model that arises from the evidence that the most common form of data dissemination is the tabular form. In this cube model, datasets are organized in dimensions. Dimensions are organized in categories.
The JSON-stat Javascript Toolkit (JJT) is part of the JSON-stat Toolkit. JJT's goal is to help dealing with JSON-stat responses in JavaScript.
Resources
Design principles
JSON-stat is based on a data cube information structure. The JSON-stat Javascript Toolkit exposes the data cube as a tree.
The JSON-stat tree
Datasets
Datasets are organized in dimensions and data.
Collections
Collections are sets of items. Items can be collections, datasets and dimensions (currently not supported by JJT).
Generally, items in a collection contain just basic content and a pointer that allow a client to retrieve the full information about the item. But a collection can also contain the full information (embedded items).
Bundles (JSON-stat<2.0)
Bundles were packages of unordered arbitrary datasets.
Even though JSON-stat currently encourages the use of collections of embedded datasets instead of bundles, JJT supports both approaches.
To retrieve information about the first category of the first dimension of the first embedded dataset in a JSON-stat collection (or bundle) j, the JSON-stat Javascript Toolkit allows you to traverse the JSON-stat tree like this:
JSONstat( j ).Dataset( 0 ).Dimension( 0 ).Category( 0 )
The class of the response can be checked using the class property:
if(JSONstat( j ).class==="dataset"){
var cat0=JSONstat( j ).Dimension( 0 ).Category( 0 );
}
General properties
- label: label of the selected element (string)
- length: number of children of the selected element (number).
- id: IDs of the children of the selected element (array).
Reading and traversing methods
These methods (except JSONstat, which is not actually a method) accept a selection argument. If it is not provided, an array is returned with the information for every child of the selected element.
JSONstat
It reads a JSON-stat response and returns an object.
JSONstat( { ... } ).length
JSONstat( "https://json-stat.org/samples/oecd-canada-col.json" ).length
JSONstat( "https://json-stat.org/samples/oecd-canada-col.json",
function(){
console.log( this.length );
}
)
Dataset
It selects an embedded dataset in the JSON-stat collection (or bundle).
JSONstat( j ).Dataset( 0 ).id
Dimension
It selects a particular dimension in a dataset.
JSONstat( j ).Dataset( 0 ).Dimension( "time" ).label
JSONstat( j ).Dataset( 0 ).Dimension( "country" ).role
Category
It selects a particular category in a dimension in a dataset.
JSONstat( j ).Dataset( 0 ).Dimension( "time" ).Category( 0 ).label
Data
When an argument is passed, selects a single cell of the data cube in the JSON-stat response. If no argument is passed, returns all the cells.
The resulting object contains the property "value" (value of a cell) and "status" (its status).
JSONstat( j ).Dataset( 0 ).Data( 0 ).value
JSONstat( j ).Dataset( 0 ).Data( [ 0, 0, 0 ] ).value
JSONstat( j ).Dataset( 0 ).Data( { "metric" : "UNR", "geo" : "GR", "time" : "2014" } ).value
JSONstat( j ).Dataset( 0 ).Data( { "metric" : "UNR", "geo" : "GR", "time" : "2014" } ).status
When the argument is neither an integer nor an array, single category dimensions (“constant dimensions”) can be skipped. If one and only one non-constant dimension is not specified, the result will be an array with as many elements as categories in the unspecified dimension.
Transformation methods
Transformation methods get information in the JSON-stat tree and export it to a different JSON structure for convenience.
toTable
This is a dataset method. It converts the information of a particular dataset into a JSON table. The conversion can be setup using an optional argument.
JSONstat( j ).Dataset( 0 ).toTable()
JSONstat( j ).Dataset( 0 ).toTable( { field : "id" } )
JSONstat( j ).Dataset( 0 ).toTable( { vlabel : "Valor", type : "object" } )
JSONstat( j ).Dataset( 0 ).toTable( { status : true, slabel : "Metadata" } )
JSONstat( j ).Dataset( 0 ).toTable( { type : "arrobj" } )
JSONstat( j ).Dataset( 0 ).toTable( { type: "arrobj", content: "id" } )
JSONstat( j ).Dataset( 1 ).toTable(
{ type : "arrobj", content : "id" },
function( d, i ){
if ( d.sex === "F" && d.concept === "POP" ){
return { age : d.age, population : d.value*1000 };
}
}
)