🚀 Big News: Socket Acquires Coana to Bring Reachability Analysis to Every Appsec Team.Learn more

kd-tree-javascript

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

kd-tree-javascript

A basic but super fast JavaScript implementation of the k-dimensional tree data structure.

1.0.3
latest
Version published
Weekly downloads
9.6K
14.26%
Maintainers
1
Weekly downloads
 
Created

k-d Tree JavaScript Library

A basic but super fast JavaScript implementation of the k-dimensional tree data structure.

As of version 1.01, the library is defined as an UMD module (based on https://github.com/umdjs/umd/blob/master/commonjsStrict.js).

In computer science, a k-d tree (short for k-dimensional tree) is a space-partitioning data structure for organizing points in a k-dimensional space. k-d trees are a useful data structure for several applications, such as searches involving a multidimensional search key (e.g. range searches and nearest neighbor searches). k-d trees are a special case of binary space partitioning trees.

Demos

  • Spiders - animated multiple nearest neighbour search
  • Google Map - show nearest 20 out of 3000 markers on mouse move
  • Colors - search color names based on color space distance
  • Mutable - dynamically add and remove nodes

Usage

Using global exports

When you include the kd-tree script via HTML, the global variables kdTree and BinaryHeap will be exported.

// Create a new tree from a list of points, a distance function, and a
// list of dimensions.
var tree = new kdTree(points, distance, dimensions);

// Query the nearest *count* neighbours to a point, with an optional
// maximal search distance.
// Result is an array with *count* elements.
// Each element is an array with two components: the searched point and
// the distance to it.
tree.nearest(point, count, [maxDistance]);

// Insert a new point into the tree. Must be consistent with previous
// contents.
tree.insert(point);

// Remove a point from the tree by reference.
tree.remove(point);

// Get an approximation of how unbalanced the tree is.
// The higher this number, the worse query performance will be.
// It indicates how many times worse it is than the optimal tree.
// Minimum is 1. Unreliable for small trees.
tree.balanceFactor();

Using RequireJS

requirejs(['path/to/kdTree.js'], function (ubilabs) {
	// Create a new tree from a list of points, a distance function, and a
	// list of dimensions.
	var tree = new ubilabs.kdTree(points, distance, dimensions);

	// Query the nearest *count* neighbours to a point, with an optional
	// maximal search distance.
	// Result is an array with *count* elements.
	// Each element is an array with two components: the searched point and
	// the distance to it.
	tree.nearest(point, count, [maxDistance]);

	// Insert a new point into the tree. Must be consistent with previous
	// contents.
	tree.insert(point);

	// Remove a point from the tree by reference.
	tree.remove(point);

	// Get an approximation of how unbalanced the tree is.
	// The higher this number, the worse query performance will be.
	// It indicates how many times worse it is than the optimal tree.
	// Minimum is 1. Unreliable for small trees.
	tree.balanceFactor();
});

Example

var points = [
  {x: 1, y: 2},
  {x: 3, y: 4},
  {x: 5, y: 6},
  {x: 7, y: 8}
];

var distance = function(a, b){
  return Math.pow(a.x - b.x, 2) +  Math.pow(a.y - b.y, 2);
}

var tree = new kdTree(points, distance, ["x", "y"]);

var nearest = tree.nearest({ x: 5, y: 5 }, 2);

console.log(nearest);

About

Developed at Ubilabs. Released under the MIT Licence.

Analytics

FAQs

Package last updated on 05 Oct 2017

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts