Socket
Book a DemoInstallSign in
Socket

kysely-helpers

Package Overview
Dependencies
Maintainers
1
Versions
2
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

kysely-helpers

Database helpers and utilities for Kysely query builder

0.1.0
latest
Source
npmnpm
Version published
Weekly downloads
55
-56.35%
Maintainers
1
Weekly downloads
 
Created
Source

Kysely Helpers

Database helpers and utilities for Kysely

Currently focused on PostgreSQL with comprehensive support for arrays, JSONB, vectors (pgvector), and full-text search.

Features

  • Type-safe - Full TypeScript support with perfect autocompletion
  • PostgreSQL-first - Rich support for PostgreSQL's advanced features (arrays, JSONB, vectors)
  • AI-ready - First-class pgvector support for embeddings and similarity search
  • Zero overhead - Generates optimal database-native SQL
  • Beautiful API - Intuitive syntax that makes complex queries simple

Installation

npm install kysely-helpers kysely
# or
bun add kysely-helpers kysely
import { Kysely, PostgresDialect } from "kysely";
import { pg } from "kysely-helpers";

const db = new Kysely<Database>({
  dialect: new PostgresDialect({
    // your config
  }),
});

// PostgreSQL-specific operations
const results = await db
  .selectFrom("documents")
  .select([
    "id",
    "title",
    pg.array("tags").length().as("tag_count"),
    pg.json("metadata").getText("author").as("author"),
  ])
  .where(pg.array("tags").includes("typescript")) // tags @> ARRAY['typescript']
  .where(pg.json("metadata").get("published").equals(true)) // metadata->'published' = true
  .where(pg.vector("embedding").similarTo(searchVector)) // embedding <-> $1 < 0.5
  .orderBy("tag_count", "desc")
  .execute();

API Reference

PostgreSQL Helpers

Array Operations

Work with PostgreSQL arrays like you would with JavaScript arrays, but with database-level performance.

import { pg } from 'kysely-helpers'

// Does tags array contain 'featured'? → tags @> ARRAY['featured']
.where(pg.array('tags').includes('featured'))

// Does tags array contain both 'ai' AND 'ml'? → tags @> ARRAY['ai', 'ml']
.where(pg.array('tags').contains(['ai', 'ml']))

// Do categories share ANY values with ['tech', 'ai']? → categories && ARRAY['tech', 'ai']
.where(pg.array('categories').overlaps(['tech', 'ai']))

// Are all sizes within the allowed list? → sizes <@ ARRAY['S', 'M', 'L']
.where(pg.array('sizes').containedBy(['S', 'M', 'L']))

// Does array have more than 5 items? → array_length(items, 1) > 5
.where(pg.array('items').length(), '>', 5)

// Is status one of the valid options? → status = ANY(valid_statuses)
.where('status', '=', pg.array('valid_statuses').any())

Use cases: Product filtering, tag-based search, permission checking, category management.

JSON/JSONB Operations

Query and filter JSON data stored in your database without parsing it in your application.

import { pg } from 'kysely-helpers'

// Get theme value, keeps JSON type → metadata->'theme' = '"dark"'
.where(pg.json('metadata').get('theme').equals('dark'))

// Get language as plain text → settings->>'language' = 'en'
.where(pg.json('settings').getText('language'), '=', 'en')

// Navigate to nested object → data#>'{user,preferences}' @> '{"notifications":true}'
.where(pg.json('data').path(['user', 'preferences']).contains({notifications: true}))

// Does profile include verified: true? → profile @> '{"verified":true}'
.where(pg.json('profile').contains({verified: true}))

// Does permissions object have 'admin' key? → permissions ? 'admin'
.where(pg.json('permissions').hasKey('admin'))

// Does metadata have both required keys? → metadata ?& array['title','author']
.where(pg.json('metadata').hasAllKeys(['title', 'author']))

Use cases: User preferences, product configurations, dynamic schemas, API responses, settings storage.

Vector Operations (pgvector)

Power AI applications with semantic search and similarity matching directly in your database.

import { pg } from "kysely-helpers";

// Insert embeddings from OpenAI, Anthropic, etc.
const embedding = await openai.embeddings.create({
  model: "text-embedding-3-small",
  input: "Hello world",
});

await db
  .insertInto("documents")
  .values({
    title: "Machine Learning Guide",
    content: "A comprehensive guide...",
    embedding: pg.embedding(embedding.data[0].embedding), // Proper vector format
  })
  .execute()

  // Convert vectors back to JavaScript arrays → string_to_array(...)
  .select(["id", "title", pg.vector("embedding").toArray().as("embedding")])

  // Find vectors with 80%+ similarity → embedding <-> $1 < 0.2
  .where(pg.vector("embedding").similarTo(searchVector, 0.8))

  // Order by most similar first → ORDER BY embedding <-> $1
  .orderBy(pg.vector("embedding").distance(searchVector))

  // Euclidean distance → embedding <-> $1 < 0.5
  .where(pg.vector("embedding").l2Distance(searchVector), "<", 0.5)

  // Cosine similarity → embedding <=> $1 < 0.3
  .where(pg.vector("embedding").cosineDistance(searchVector), "<", 0.3)

  // Dot product → embedding <#> $1 > 0.7
  .where(pg.vector("embedding").innerProduct(searchVector), ">", 0.7)

  // Get vector dimensions → vector_dims(embedding)
  .select([pg.vector("embedding").dimensions().as("dims")])

  // Get vector magnitude → vector_norm(embedding)
  .select([pg.vector("embedding").norm().as("magnitude")]);

Use cases: Semantic search, recommendation engines, document similarity, image recognition, chatbot context matching.

Key features:

  • pg.embedding() - Convert arrays to proper PostgreSQL vector format for insertion
  • pg.vector().toArray() - Convert PostgreSQL vectors back to JavaScript arrays
  • Full compatibility with OpenAI, Anthropic, and other embedding providers

Examples

Product Search with Multiple Filters

const products = await db
  .selectFrom("products")
  .select([
    "id",
    "name",
    "description",
    "price",
    pg.array("tags").length().as("tag_count"),
    pg.json("metadata").getText("difficulty").as("difficulty"),
  ])
  .where(pg.array("categories").includes("electronics"))
  .where(pg.json("specs").path(["display", "size"]).equals(15))
  .where(pg.json("availability").hasKey("in_stock"))
  .where(pg.array("tags").overlaps(["featured", "bestseller"]))
  .orderBy("tag_count", "desc")
  .execute();

Semantic Search with Embeddings

const searchEmbedding = await openai.embeddings.create({
  model: "text-embedding-3-small",
  input: "machine learning tutorials",
});

const results = await db
  .selectFrom("documents")
  .select([
    "id",
    "title",
    "content",
    pg.json("metadata").getText("author").as("author"),
    pg
      .vector("embedding")
      .distance(searchEmbedding.data[0].embedding)
      .as("similarity"),
    pg.array("tags").length().as("tag_count"),
  ])
  .where(pg.array("tags").overlaps(["ai", "machine-learning"]))
  .where(pg.json("metadata").get("published").equals(true))
  .where(
    pg.vector("embedding").similarTo(searchEmbedding.data[0].embedding, 0.8)
  )
  .orderBy("similarity")
  .limit(20)
  .execute();

User Data Management

const userData = await db
  .selectFrom("users")
  .select([
    "id",
    "email",
    pg.json("preferences").getText("theme").as("theme"),
    pg
      .json("preferences")
      .path(["notifications", "email"])
      .as("email_notifications"),
  ])
  .where(pg.array("roles").includes("admin"))
  .where(pg.json("preferences").hasKey("theme"))
  .where(pg.json("profile").contains({ verified: true, active: true }))
  .execute();

Testing

Comprehensive test suite with real PostgreSQL validation:

  • Unit tests for all helper functions
  • Integration tests against live PostgreSQL database
  • Coverage for all PostgreSQL operators and functions
  • SQL injection prevention validation
  • Performance testing with large datasets

Requirements

  • Kysely ^0.27.0 || ^0.28.0
  • TypeScript 4.7+ (for best type inference)

PostgreSQL-specific features

  • PostgreSQL 12+ (for full feature support)
  • pgvector extension (optional, for vector operations)

Development

# Run unit tests
bun run test

# Start PostgreSQL for integration tests
bun run db:up

# Run integration tests
bun run test:integration

# Run all tests
bun run test:all

# Clean up database
bun run db:down

Contributing

Contributions welcome! This package aims to provide the best database utilities for Kysely across different database systems.

Roadmap:

  • Generic Kysely helpers (pagination, transactions, migrations)
  • MySQL-specific helpers
  • SQLite-specific helpers
  • Additional PostgreSQL features

License

MIT

Made for the database and TypeScript community

Keywords

kysely

FAQs

Package last updated on 13 Jul 2025

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

About

Packages

Stay in touch

Get open source security insights delivered straight into your inbox.

  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc

U.S. Patent No. 12,346,443 & 12,314,394. Other pending.