Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

matrix-inverse

Package Overview
Dependencies
Maintainers
1
Versions
4
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

matrix-inverse - npm Package Compare versions

Comparing version 0.1.0 to 1.0.0

CHANGELOG.md

196

matrix-inverse.js

@@ -1,36 +0,43 @@

var Sylvester = {};
var Sylvester = {}
Sylvester.Matrix = function() {};
Sylvester.Matrix = function() {}
Sylvester.Matrix.create = function(elements) {
var M = new Sylvester.Matrix();
return M.setElements(elements);
};
var M = new Sylvester.Matrix()
return M.setElements(elements)
}
Sylvester.Matrix.I = function(n) {
var els = [], i = n, j;
while (i--) { j = n;
els[i] = [];
var els = [],
i = n,
j
while (i--) {
j = n
els[i] = []
while (j--) {
els[i][j] = (i === j) ? 1 : 0;
els[i][j] = i === j ? 1 : 0
}
}
return Sylvester.Matrix.create(els);
};
return Sylvester.Matrix.create(els)
}
Sylvester.Matrix.prototype = {
dup: function() {
return Sylvester.Matrix.create(this.elements);
return Sylvester.Matrix.create(this.elements)
},
isSquare: function() {
var cols = (this.elements.length === 0) ? 0 : this.elements[0].length;
return (this.elements.length === cols);
var cols = this.elements.length === 0 ? 0 : this.elements[0].length
return this.elements.length === cols
},
toRightTriangular: function() {
if (this.elements.length === 0) return Sylvester.Matrix.create([]);
var M = this.dup(), els;
var n = this.elements.length, i, j, np = this.elements[0].length, p;
if (this.elements.length === 0) return Sylvester.Matrix.create([])
var M = this.dup(),
els
var n = this.elements.length,
i,
j,
np = this.elements[0].length,
p
for (i = 0; i < n; i++) {

@@ -40,6 +47,8 @@ if (M.elements[i][i] === 0) {

if (M.elements[j][i] !== 0) {
els = [];
for (p = 0; p < np; p++) { els.push(M.elements[i][p] + M.elements[j][p]); }
M.elements[i] = els;
break;
els = []
for (p = 0; p < np; p++) {
els.push(M.elements[i][p] + M.elements[j][p])
}
M.elements[i] = els
break
}

@@ -50,4 +59,4 @@ }

for (j = i + 1; j < n; j++) {
var multiplier = M.elements[j][i] / M.elements[i][i];
els = [];
var multiplier = M.elements[j][i] / M.elements[i][i]
els = []
for (p = 0; p < np; p++) {

@@ -58,48 +67,75 @@ // Elements with column numbers up to an including the number of the

// loop over and correct rounding errors later
els.push(p <= i ? 0 : M.elements[j][p] - M.elements[i][p] * multiplier);
els.push(
p <= i ? 0 : M.elements[j][p] - M.elements[i][p] * multiplier
)
}
M.elements[j] = els;
M.elements[j] = els
}
}
}
return M;
return M
},
determinant: function() {
if (this.elements.length === 0) { return 1; }
if (!this.isSquare()) { return null; }
var M = this.toRightTriangular();
var det = M.elements[0][0], n = M.elements.length;
if (this.elements.length === 0) {
return 1
}
if (!this.isSquare()) {
return null
}
var M = this.toRightTriangular()
var det = M.elements[0][0],
n = M.elements.length
for (var i = 1; i < n; i++) {
det = det * M.elements[i][i];
det = det * M.elements[i][i]
}
return det;
return det
},
isSingular: function() {
return (this.isSquare() && this.determinant() === 0);
return this.isSquare() && this.determinant() === 0
},
augment: function(matrix) {
if (this.elements.length === 0) { return this.dup(); }
var M = matrix.elements || matrix;
if (typeof(M[0][0]) === 'undefined') { M = Sylvester.Matrix.create(M).elements; }
var T = this.dup(), cols = T.elements[0].length;
var i = T.elements.length, nj = M[0].length, j;
if (i !== M.length) { return null; }
while (i--) { j = nj;
if (this.elements.length === 0) {
return this.dup()
}
var M = matrix.elements || matrix
if (typeof M[0][0] === 'undefined') {
M = Sylvester.Matrix.create(M).elements
}
var T = this.dup(),
cols = T.elements[0].length
var i = T.elements.length,
nj = M[0].length,
j
if (i !== M.length) {
return null
}
while (i--) {
j = nj
while (j--) {
T.elements[i][cols + j] = M[i][j];
T.elements[i][cols + j] = M[i][j]
}
}
return T;
return T
},
inverse: function() {
if (this.elements.length === 0) { return null; }
if (!this.isSquare() || this.isSingular()) { return null; }
var n = this.elements.length, i= n, j;
var M = this.augment(Sylvester.Matrix.I(n)).toRightTriangular();
var np = M.elements[0].length, p, els, divisor;
var inverse_elements = [], new_element;
if (this.elements.length === 0) {
return null
}
if (!this.isSquare() || this.isSingular()) {
return null
}
var n = this.elements.length,
i = n,
j
var M = this.augment(Sylvester.Matrix.I(n)).toRightTriangular()
var np = M.elements[0].length,
p,
els,
divisor
var inverse_elements = [],
new_element
// Sylvester.Matrix is non-singular so there will be no zeros on the

@@ -109,52 +145,56 @@ // diagonal. Cycle through rows from last to first.

// First, normalise diagonal elements to 1
els = [];
inverse_elements[i] = [];
divisor = M.elements[i][i];
els = []
inverse_elements[i] = []
divisor = M.elements[i][i]
for (p = 0; p < np; p++) {
new_element = M.elements[i][p] / divisor;
els.push(new_element);
new_element = M.elements[i][p] / divisor
els.push(new_element)
// Shuffle off the current row of the right hand side into the results
// array as it will not be modified by later runs through this loop
if (p >= n) { inverse_elements[i].push(new_element); }
if (p >= n) {
inverse_elements[i].push(new_element)
}
}
M.elements[i] = els;
M.elements[i] = els
// Then, subtract this row from those above it to give the identity matrix
// on the left hand side
j = i;
j = i
while (j--) {
els = [];
els = []
for (p = 0; p < np; p++) {
els.push(M.elements[j][p] - M.elements[i][p] * M.elements[j][i]);
els.push(M.elements[j][p] - M.elements[i][p] * M.elements[j][i])
}
M.elements[j] = els;
M.elements[j] = els
}
}
return Sylvester.Matrix.create(inverse_elements);
return Sylvester.Matrix.create(inverse_elements)
},
setElements: function(els) {
var i, j, elements = els.elements || els;
if (elements[0] && typeof(elements[0][0]) !== 'undefined') {
i = elements.length;
this.elements = [];
while (i--) { j = elements[i].length;
this.elements[i] = [];
var i,
j,
elements = els.elements || els
if (elements[0] && typeof elements[0][0] !== 'undefined') {
i = elements.length
this.elements = []
while (i--) {
j = elements[i].length
this.elements[i] = []
while (j--) {
this.elements[i][j] = elements[i][j];
this.elements[i][j] = elements[i][j]
}
}
return this;
return this
}
var n = elements.length;
this.elements = [];
var n = elements.length
this.elements = []
for (i = 0; i < n; i++) {
this.elements.push([elements[i]]);
this.elements.push([elements[i]])
}
return this;
return this
},
}
};
module.exports = function (elements) {
return Sylvester.Matrix.create(elements).inverse().elements;
};
module.exports = function(elements) {
return Sylvester.Matrix.create(elements).inverse().elements
}
{
"name": "matrix-inverse",
"version": "0.1.0",
"description": "Matrix inverse function (from sylvester)",
"version": "1.0.0",
"description": "Matrix inverse (code from sylvester)",
"main": "matrix-inverse.js",
"scripts": {
"test": "node test.js"
"test:js": "node test.js",
"prettier": "prettier --write \"**/*.@(yml|json|js|md)\"",
"prettier:check": "prettier --check \"**/*.@(yml|json|js|md)\"",
"test": "npm run test && npm run prettier:check"
},
"keywords": [
"matrix"
"matrix",
"inverse",
"linear algebra",
"sylvester"
],
"author": "Body Labs",
"license": "MIT",
"repository": "https://github.com/bodylabs/matrix-inverse-js",
"repository": "metabolize/matrix-inverse",
"devDependencies": {
"chai": "~1.10.0",
"chai-stats": "~0.3.0"
}
"chai": "~4.2.0",
"chai-stats": "~0.3.0",
"prettier": "^1.18.2"
},
"files": [
"matrix-inverse.js"
]
}

@@ -1,50 +0,55 @@

matrix-inverse-js
=================
# matrix-inverse
Matrix inverse function packaged for CommonJS. Code is from [sylvester][]
by [James Coglan][], with gratitude.
[![version](https://img.shields.io/npm/v/matrix-inverse?style=flat-square)][npm]
[![license](https://img.shields.io/npm/l/matrix-inverse?style=flat-square)][npm]
[![build](https://img.shields.io/circleci/project/github/metabolize/matrix-inverse?style=flat-square)][build]
[![bundle size](https://img.shields.io/bundlephobia/minzip/matrix-inverse?style=flat-square)][bundlephobia]
[![code style](https://img.shields.io/badge/code_style-prettier-ff69b4?style=flat-square)][prettier]
[npm]: https://npmjs.com/anafanafo
[build]: https://circleci.com/gh/metabolize/anafanafo/tree/master
[bundlephobia]: https://bundlephobia.com/result?p=anafanafo
[prettier]: https://prettier.io/
Installation
------------
Matrix inverse function. Code is from [sylvester][] by [James Coglan][], with
gratitude.
Install matrix-inverse-js by running:
## Installation
Install matrix-inverse by running:
npm install matrix-inverse
## Example
Example
-------
```js
const matrixInverse = require('matrix-inverse')
var matrixInverse = require('./matrix-inverse');
const M = [[3, 3.2], [3.5, 3.6]]
var M = [
[3, 3.2],
[3.5, 3.6],
];
const M_inv = matrixInverse(M)
```
var M_inv = matrixInverse(M);
## Origin
Origin
------
This code was copied and adapted from sylvester at commit
5a2c61681e988d60bf0a4223640c636052946341.
## Contribute
Contribute
----------
- Issue Tracker: https://github.com/metabolize/matrix-inverse/issues
- Source Code: https://github.com/metabolize/matrix-inverse
- Issue Tracker: github.com/bodylabs/matrix-inverse-js/issues
- Source Code: github.com/bodylabs/matrix-inverse-js
## Acknowledgements
This project was packaged by [Paul Melnikow][] while at [Body Labs][]. Thanks
to Body Labs for the repository transfer.
License
-------
## License
The project is licensed under the MIT license.
[sylvester]: https://github.com/jcoglan/sylvester
[James Coglan]: http://jcoglan.com/
[paul melnikow]: https://github.com/paulmelnikow
[body labs]: https://github.com/bodylabs
[james coglan]: http://jcoglan.com/
SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc