Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

ml-curve-fitting

Package Overview
Dependencies
Maintainers
1
Versions
3
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

ml-curve-fitting - npm Package Compare versions

Comparing version 0.0.5 to 0.0.6

Documentation.md

2

bower.json
{
"name": "ml-curve-fitting",
"version": "0.0.5",
"version": "0.0.6",
"description": "Levenberg Marquardt curve-fitting: minimize sum of weighted squared residuals",

@@ -5,0 +5,0 @@ "keywords": [

{
"name": "ml-curve-fitting",
"version": "0.0.5",
"version": "0.0.6",
"description": "Levenberg Marquardt curve-fitting: minimize sum of weighted squared residuals",

@@ -5,0 +5,0 @@ "main": "src/index.js",

@@ -1,93 +0,26 @@

# Levenberg Marquardt curve-fitting
# ml-curve-fitting
[![NPM version][npm-image]][npm-url]
[![build status][travis-image]][travis-url]
[![npm download][download-image]][download-url]
Levenberg Marquardt curve-fitting
minimize sum of weighted squared residuals. Javascript version of matlab library from Henri Gavin.
See example for usage
## Installation
## --------- INPUT VARIABLES -----------
func = function of n independent variables, 't', and m parameters, 'p',
returning the simulated model: y_hat = func(t,p,c)
p = n-vector of initial guess of parameter values
t = m-vectors or matrix of independent variables (used as arg to func)
y_dat = m-vectors or matrix of data to be fit by func(t,p)
weight = weighting vector for least squares fit ( weight >= 0 ) ...
inverse of the standard measurement errors
Default: sqrt(d.o.f. / ( y_dat' * y_dat ))
dp = fractional increment of 'p' for numerical derivatives
dp(j)>0 central differences calculated
dp(j)<0 one sided 'backwards' differences calculated
dp(j)=0 sets corresponding partials to zero; i.e. holds p(j) fixed
Default: 0.001;
p_min = n-vector of lower bounds for parameter values
p_max = n-vector of upper bounds for parameter values
c = an optional matrix of values passed to func(t,p,c)
opts = vector of algorithmic parameters
parameter defaults meaning
opts(1) = prnt 3 >1 intermediate results; >2 plots
opts(2) = MaxIter 10*Npar maximum number of iterations
opts(3) = epsilon_1 1e-3 convergence tolerance for gradient
opts(4) = epsilon_2 1e-3 convergence tolerance for parameters
opts(5) = epsilon_3 1e-3 convergence tolerance for Chi-square
opts(6) = epsilon_4 1e-2 determines acceptance of a L-M step
opts(7) = lambda_0 1e-2 initial value of L-M paramter
opts(8) = lambda_UP_fac 11 factor for increasing lambda
opts(9) = lambda_DN_fac 9 factor for decreasing lambda
opts(10) = Update_Type 1 1: Levenberg-Marquardt lambda update
2: Quadratic update
3: Nielsen's lambda update equations
`$ npm install ml-curve-fitting`
##---------- OUTPUT VARIABLES -----------
## [Documentation](./Documentation.md)
p = least-squares optimal estimate of the parameter values
X2 = Chi squared criteria
## License
Henri Gavin, Dept. Civil & Environ. Engineering, Duke Univ. 22 Sep 2013
modified from: [http://octave.sourceforge.net/optim/function/leasqr.html]
using references by
Press, et al., Numerical Recipes, Cambridge Univ. Press, 1992, Chapter 15.
Sam Roweis [http://www.cs.toronto.edu/~roweis/notes/lm.pdf]
Manolis Lourakis [http://www.ics.forth.gr/~lourakis/levmar/levmar.pdf]
Hans Nielson [http://www2.imm.dtu.dk/~hbn/publ/TR9905.ps]
Mathworks optimization toolbox reference manual
K. Madsen, H.B., Nielsen, and O. Tingleff
[http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/3215/pdf/imm3215.pdf]
[MIT](./LICENSE)
[npm-image]: https://img.shields.io/npm/v/ml-curve-fitting.svg?style=flat-square
[npm-url]: https://npmjs.org/package/ml-curve-fitting
[travis-image]: https://img.shields.io/travis/mljs/curve-fitting/master.svg?style=flat-square
[travis-url]: https://travis-ci.org/mljs/curve-fitting
[download-image]: https://img.shields.io/npm/dm/ml-curve-fitting.svg?style=flat-square
[download-url]: https://npmjs.org/package/ml-curve-fitting

@@ -86,7 +86,4 @@ /**

var J = Matrix.zeros(Npnt,Npar);
/*var J = new Array(Npnt);//zeros(Npnt,Npar); // Jacobian matrix
for(var i=0;i<Npnt;i++){
J[i] = new Array(Npar);
}*/
if (t.length != y_dat.length) {

@@ -127,6 +124,3 @@ console.log('lm.m error: the length of t must equal the length of y_dat');

//plotcmd='figure(11); plot(t(:,1),y_dat,''og'',t(:,1),y_hat,''-b''); axis tight; drawnow ';
//p_min=p_min(:); p_max=p_max(:); // make column vectors
if(!dp.length || dp.length == 1){

@@ -133,0 +127,0 @@ var dp_array = new Array(Npar);

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc