Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

ml-optimize-lorentzian

Package Overview
Dependencies
Maintainers
7
Versions
9
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

ml-optimize-lorentzian - npm Package Compare versions

Comparing version 0.1.5 to 0.2.0

4

History.md

@@ -0,1 +1,5 @@

# [0.2.0](https://github.com/mljs/optimize-lorentzian/compare/v0.1.5...v0.2.0) (2020-05-19)
## [0.1.5](https://github.com/mljs/optimize-lorentzian/compare/v0.1.4...v0.1.5) (2020-05-06)

@@ -2,0 +6,0 @@

22

lib/index.js

@@ -89,3 +89,3 @@ 'use strict';

maxValues: pMax,
gradientDifference: 10e-2,
gradientDifference: dt / 10000,
maxIterations: 100,

@@ -161,8 +161,8 @@ errorTolerance: 10e-5,

pMin[i] = group[i].x - dt;
pMin[i + nL] = (group[i].y * 0.8) / maxY;
pMin[i + 2 * nL] = group[i].width / 2;
pMin[i + nL] = 0;
pMin[i + 2 * nL] = group[i].width / 4;
pMax[i] = group[i].x + dt;
pMax[i + nL] = (group[i].y * 1.2) / maxY;
pMax[i + 2 * nL] = group[i].width * 2;
pMax[i + 2 * nL] = group[i].width * 4;
}

@@ -181,3 +181,3 @@

maxValues: pMax,
gradientDifference: 10e-2,
gradientDifference: dt / 10000,
maxIterations: 100,

@@ -195,3 +195,3 @@ errorTolerance: 10e-5,

pFit.parameterValues[i + nL] * maxY,
pFit.parameterValues[i + nL + 2],
pFit.parameterValues[i + nL * 2],
],

@@ -237,3 +237,3 @@ error: pFit.parameterError,

let pInit = new Float64Array([peak.x, 1, peak.width]);
let pMin = new Float64Array([peak.x - dt, 0.75, peak.width / 4]);
let pMin = new Float64Array([peak.x - dt, 0, peak.width / 4]);
let pMax = new Float64Array([peak.x + dt, 1.25, peak.width * 4]);

@@ -251,3 +251,3 @@

maxValues: pMax,
gradientDifference: 10e-2,
gradientDifference: dt / 10000,
maxIterations: 100,

@@ -388,3 +388,3 @@ errorTolerance: 10e-5,

maxValues: pMax,
gradientDifference: 10e-2,
gradientDifference: dt / 10000,
maxIterations: 100,

@@ -402,3 +402,3 @@ errorTolerance: 10e-5,

pFit.parameterValues[i + nL] * maxY,
pFit.parameterValues[i + nL + 2],
pFit.parameterValues[i + nL * 2],
],

@@ -457,3 +457,3 @@ error: pFit.parameterError,

maxValues: pMax,
gradientDifference: 10e-2,
gradientDifference: dt / 10000,
maxIterations: 100,

@@ -460,0 +460,0 @@ errorTolerance: 10e-5,

{
"name": "ml-optimize-lorentzian",
"version": "0.1.5",
"version": "0.2.0",
"description": "Optimize Lorentzian",

@@ -5,0 +5,0 @@ "main": "lib/index.js",

@@ -45,3 +45,3 @@ import LM from 'ml-levenberg-marquardt';

maxValues: pMax,
gradientDifference: 10e-2,
gradientDifference: dt / 10000,
maxIterations: 100,

@@ -48,0 +48,0 @@ errorTolerance: 10e-5,

@@ -28,8 +28,8 @@ import LM from 'ml-levenberg-marquardt';

pMin[i] = group[i].x - dt;
pMin[i + nL] = (group[i].y * 0.8) / maxY;
pMin[i + 2 * nL] = group[i].width / 2;
pMin[i + nL] = 0;
pMin[i + 2 * nL] = group[i].width / 4;
pMax[i] = group[i].x + dt;
pMax[i + nL] = (group[i].y * 1.2) / maxY;
pMax[i + 2 * nL] = group[i].width * 2;
pMax[i + 2 * nL] = group[i].width * 4;
}

@@ -48,3 +48,3 @@

maxValues: pMax,
gradientDifference: 10e-2,
gradientDifference: dt / 10000,
maxIterations: 100,

@@ -62,3 +62,3 @@ errorTolerance: 10e-5,

pFit.parameterValues[i + nL] * maxY,
pFit.parameterValues[i + nL + 2],
pFit.parameterValues[i + nL * 2],
],

@@ -65,0 +65,0 @@ error: pFit.parameterError,

@@ -49,3 +49,3 @@ import LM from 'ml-levenberg-marquardt';

maxValues: pMax,
gradientDifference: 10e-2,
gradientDifference: dt / 10000,
maxIterations: 100,

@@ -63,3 +63,3 @@ errorTolerance: 10e-5,

pFit.parameterValues[i + nL] * maxY,
pFit.parameterValues[i + nL + 2],
pFit.parameterValues[i + nL * 2],
],

@@ -66,0 +66,0 @@ error: pFit.parameterError,

@@ -17,3 +17,3 @@ import LM from 'ml-levenberg-marquardt';

let pInit = new Float64Array([peak.x, 1, peak.width]);
let pMin = new Float64Array([peak.x - dt, 0.75, peak.width / 4]);
let pMin = new Float64Array([peak.x - dt, 0, peak.width / 4]);
let pMax = new Float64Array([peak.x + dt, 1.25, peak.width * 4]);

@@ -31,3 +31,3 @@

maxValues: pMax,
gradientDifference: 10e-2,
gradientDifference: dt / 10000,
maxIterations: 100,

@@ -34,0 +34,0 @@ errorTolerance: 10e-5,

@@ -30,3 +30,3 @@ import LM from 'ml-levenberg-marquardt';

maxValues: pMax,
gradientDifference: 10e-2,
gradientDifference: dt / 10000,
maxIterations: 100,

@@ -33,0 +33,0 @@ errorTolerance: 10e-5,

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc