You're Invited:Meet the Socket Team at BlackHat and DEF CON in Las Vegas, Aug 4-6.RSVP
Socket
Book a DemoInstallSign in
Socket

ml-regression

Package Overview
Dependencies
Maintainers
7
Versions
21
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

ml-regression

Regression algorithms

6.3.0
latest
Source
npmnpm
Version published
Weekly downloads
35K
12.63%
Maintainers
7
Weekly downloads
 
Created
Source

ml-regression

NPM version build status npm download

Regression algorithms.

Installation

$ npm install ml-regression

Examples

Simple linear regression

const SLR = require("ml-regression").SLR;
let inputs = [80, 60, 10, 20, 30];
let outputs = [20, 40, 30, 50, 60];

let regression = new SLR(inputs, outputs);
regression.toString(3) === "f(x) = - 0.265 * x + 50.6";

Check this cool blog post for a detailed example: https://hackernoon.com/machine-learning-with-javascript-part-1-9b97f3ed4fe5

Polynomial regression

const PolynomialRegression = require("ml-regression").PolynomialRegression;
const x = [50, 50, 50, 70, 70, 70, 80, 80, 80, 90, 90, 90, 100, 100, 100];
const y = [
  3.3, 2.8, 2.9, 2.3, 2.6, 2.1, 2.5, 2.9, 2.4, 3.0, 3.1, 2.8, 3.3, 3.5, 3.0,
];
const degree = 5; // setup the maximum degree of the polynomial
const regression = new PolynomialRegression(x, y, degree);
console.log(regression.predict(80)); // Apply the model to some x value. Prints 2.6.
console.log(regression.coefficients); // Prints the coefficients in increasing order of power (from 0 to degree).
console.log(regression.toString(3)); // Prints a human-readable version of the function.
console.log(regression.toLaTeX());

License

MIT

Keywords

regression

FAQs

Package last updated on 16 May 2025

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts