Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

ml-regression-exponential

Package Overview
Dependencies
Maintainers
8
Versions
9
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

ml-regression-exponential - npm Package Compare versions

Comparing version 2.0.0 to 2.1.0

regression-exponential.d.ts

7

History.md

@@ -0,1 +1,8 @@

## [2.1.0](https://github.com/mljs/regression-exponential/compare/v2.0.0...v2.1.0) (2021-05-10)
### Features
* update dependencies and add TS definition ([b2d5a84](https://github.com/mljs/regression-exponential/commit/b2d5a84cd4eb127dc2d4dc041d77ef1d2aa747bf))
# [2.0.0](https://github.com/mljs/regression-exponential/compare/v1.0.1...v2.0.0) (2019-06-29)

@@ -2,0 +9,0 @@

49

lib/index.js
'use strict';
function _interopDefault (ex) { return (ex && (typeof ex === 'object') && 'default' in ex) ? ex['default'] : ex; }
var BaseRegression = require('ml-regression-base');
var BaseRegression__default = _interopDefault(BaseRegression);
var SimpleLinearRegression = _interopDefault(require('ml-regression-simple-linear'));
var SimpleLinearRegression = require('ml-regression-simple-linear');
class ExponentialRegression extends BaseRegression__default {
function _interopDefaultLegacy (e) { return e && typeof e === 'object' && 'default' in e ? e : { 'default': e }; }
var BaseRegression__default = /*#__PURE__*/_interopDefaultLegacy(BaseRegression);
var SimpleLinearRegression__default = /*#__PURE__*/_interopDefaultLegacy(SimpleLinearRegression);
class ExponentialRegression extends BaseRegression__default['default'] {
constructor(x, y) {

@@ -29,3 +31,3 @@ super();

A: this.A,
B: this.B
B: this.B,
};

@@ -35,9 +37,6 @@ }

toString(precision) {
return (
`f(x) = ${
BaseRegression.maybeToPrecision(this.B, precision)
} * e^(${
BaseRegression.maybeToPrecision(this.A, precision)
} * x)`
);
return `f(x) = ${BaseRegression.maybeToPrecision(
this.B,
precision,
)} * e^(${BaseRegression.maybeToPrecision(this.A, precision)} * x)`;
}

@@ -47,17 +46,11 @@

if (this.A >= 0) {
return (
`f(x) = ${
BaseRegression.maybeToPrecision(this.B, precision)
}e^{${
BaseRegression.maybeToPrecision(this.A, precision)
}x}`
);
return `f(x) = ${BaseRegression.maybeToPrecision(
this.B,
precision,
)}e^{${BaseRegression.maybeToPrecision(this.A, precision)}x}`;
} else {
return (
`f(x) = \\frac{${
BaseRegression.maybeToPrecision(this.B, precision)
}}{e^{${
BaseRegression.maybeToPrecision(-this.A, precision)
}x}}`
);
return `f(x) = \\frac{${BaseRegression.maybeToPrecision(
this.B,
precision,
)}}{e^{${BaseRegression.maybeToPrecision(-this.A, precision)}x}}`;
}

@@ -81,3 +74,3 @@ }

const linear = new SimpleLinearRegression(x, yl);
const linear = new SimpleLinearRegression__default['default'](x, yl);
er.A = linear.slope;

@@ -84,0 +77,0 @@ er.B = Math.exp(linear.intercept);

{
"name": "ml-regression-exponential",
"version": "2.0.0",
"version": "2.1.0",
"description": "Exponential Regression",
"main": "lib/index.js",
"module": "src/index.js",
"types": "regression-exponential.d.ts",
"files": [
"regression-exponential.d.ts",
"lib",

@@ -15,3 +17,3 @@ "src"

"eslint-fix": "npm run eslint -- --fix",
"prepublishOnly": "npm run compile",
"prepack": "npm run compile",
"test": "npm run test-coverage && npm run eslint",

@@ -36,14 +38,13 @@ "test-only": "jest",

"devDependencies": {
"@babel/plugin-transform-modules-commonjs": "^7.4.4",
"eslint": "^5.16.0",
"eslint-config-cheminfo": "^1.20.1",
"eslint-plugin-import": "^2.17.2",
"eslint-plugin-jest": "^22.5.1",
"jest": "^24.7.1",
"rollup": "^1.10.1"
"@babel/plugin-transform-modules-commonjs": "^7.14.0",
"eslint": "^7.26.0",
"eslint-config-cheminfo": "^5.2.3",
"jest": "^26.6.3",
"prettier": "^2.3.0",
"rollup": "^2.47.0"
},
"dependencies": {
"ml-regression-base": "^2.0.1",
"ml-regression-simple-linear": "^2.0.2"
"ml-regression-base": "^2.1.3",
"ml-regression-simple-linear": "^2.0.3"
}
}
# regression-exponential
[![NPM version][npm-image]][npm-url]
[![build status][travis-image]][travis-url]
[![build status][ci-image]][ci-url]
[![npm download][download-image]][download-url]

@@ -35,7 +35,7 @@

[npm-image]: https://img.shields.io/npm/v/ml-regression-exponential.svg?style=flat-square
[npm-image]: https://img.shields.io/npm/v/ml-regression-exponential.svg
[npm-url]: https://npmjs.org/package/ml-regression-exponential
[travis-image]: https://img.shields.io/travis/mljs/regression-exponential/master.svg?style=flat-square
[travis-url]: https://travis-ci.org/mljs/regression-exponential
[download-image]: https://img.shields.io/npm/dm/ml-regression-exponential.svg?style=flat-square
[ci-image]: https://github.com/mljs/regression-exponential/workflows/Node.js%20CI/badge.svg?branch=master
[ci-url]: https://github.com/mljs/regression-exponential/actions?query=workflow%3A%22Node.js+CI%22
[download-image]: https://img.shields.io/npm/dm/ml-regression-exponential.svg
[download-url]: https://npmjs.org/package/ml-regression-exponential

@@ -23,3 +23,3 @@ import ExponentialRegression from '..';

A: -1,
B: 1
B: 1,
});

@@ -29,3 +29,3 @@

0.36787944117144233,
Number.EPSILON
Number.EPSILON,
);

@@ -37,5 +37,5 @@

A: -1,
B: 1
B: 1,
});
});
});
import BaseRegression, {
checkArrayLength,
maybeToPrecision
maybeToPrecision,
} from 'ml-regression-base';

@@ -27,3 +27,3 @@ import SimpleLinearRegression from 'ml-regression-simple-linear';

A: this.A,
B: this.B
B: this.B,
};

@@ -33,9 +33,6 @@ }

toString(precision) {
return (
`f(x) = ${
maybeToPrecision(this.B, precision)
} * e^(${
maybeToPrecision(this.A, precision)
} * x)`
);
return `f(x) = ${maybeToPrecision(
this.B,
precision,
)} * e^(${maybeToPrecision(this.A, precision)} * x)`;
}

@@ -45,17 +42,11 @@

if (this.A >= 0) {
return (
`f(x) = ${
maybeToPrecision(this.B, precision)
}e^{${
maybeToPrecision(this.A, precision)
}x}`
);
return `f(x) = ${maybeToPrecision(
this.B,
precision,
)}e^{${maybeToPrecision(this.A, precision)}x}`;
} else {
return (
`f(x) = \\frac{${
maybeToPrecision(this.B, precision)
}}{e^{${
maybeToPrecision(-this.A, precision)
}x}}`
);
return `f(x) = \\frac{${maybeToPrecision(
this.B,
precision,
)}}{e^{${maybeToPrecision(-this.A, precision)}x}}`;
}

@@ -62,0 +53,0 @@ }

Sorry, the diff of this file is not supported yet

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc