You're Invited:Meet the Socket Team at BlackHat and DEF CON in Las Vegas, Aug 4-6.RSVP
Socket
Book a DemoInstallSign in
Socket

ml-regression

Package Overview
Dependencies
Maintainers
7
Versions
21
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

ml-regression - npm Package Compare versions

Comparing version

to
6.3.0

20

lib/index.js

@@ -25,5 +25,5 @@ 'use strict';

/**
* @constructor
* @param x: Independent variable
* @param y: Dependent variable
* @class
* @param x - Independent variable
* @param y - Dependent variable
* @param M

@@ -154,7 +154,5 @@ */

* Constructor for the 2D polynomial fitting
*
* @param inputs
* @param outputs
* @param options
* @constructor
*/

@@ -188,4 +186,3 @@ constructor(inputs, outputs, options = {}) {

* The third argument is an object with the following options:
* * order: order of the polynomial to fit.
*
* order: order of the polynomial to fit.
* @param {Matrix} X - A matrix with n rows and 2 columns.

@@ -223,5 +220,5 @@ * @param {Matrix} y - A vector of the prediction values.

let scaleX1 = 1.0 / x1.clone().abs().max();
let scaleX2 = 1.0 / x2.clone().abs().max();
let scaleY = 1.0 / y.clone().abs().max();
let scaleX1 = 1 / x1.clone().abs().max();
let scaleX2 = 1 / x2.clone().abs().max();
let scaleY = 1 / y.clone().abs().max();

@@ -319,6 +316,5 @@ x1.mulColumn(0, scaleX1);

* Function that given a column vector return this: vector^power
*
* @param x - Column vector.
* @param power - Pow number.
* @return {Suite|Matrix}
* @returns {Suite|Matrix}
*/

@@ -325,0 +321,0 @@ function powColVector(x, power) {

30

package.json
{
"name": "ml-regression",
"version": "6.2.0",
"version": "6.3.0",
"description": "Regression algorithms",

@@ -12,2 +12,3 @@ "main": "lib/index.js",

"scripts": {
"build": "cheminfo-build --entry src/index.js --root Regression",
"compile": "rollup -c",

@@ -20,4 +21,3 @@ "eslint": "eslint src",

"test": "npm run test-coverage && npm run eslint && npm run prettier",
"test-only": "jest",
"test-coverage": "jest --coverage"
"test-only": "vitest run --coverage"
},

@@ -42,20 +42,18 @@ "repository": {

"homepage": "https://github.com/mljs/regression",
"jest": {
"testEnvironment": "node"
},
"devDependencies": {
"@babel/plugin-transform-modules-commonjs": "^7.25.7",
"@types/jest": "^29.5.13",
"eslint": "^9.12.0",
"eslint-config-cheminfo": "^12.0.1",
"globals": "^15.11.0",
"jest": "^29.7.0",
"prettier": "^3.3.3",
"rollup": "^4.24.0"
"@babel/plugin-transform-modules-commonjs": "^7.27.1",
"@vitest/coverage-v8": "^3.1.3",
"cheminfo-build": "^1.2.1",
"eslint": "^9.26.0",
"eslint-config-cheminfo": "^14.1.1",
"globals": "^16.1.0",
"prettier": "^3.5.3",
"rollup": "^4.40.2",
"vitest": "^3.1.3"
},
"dependencies": {
"ml-kernel": "^3.0.0",
"ml-matrix": "^6.12.0",
"ml-matrix": "^6.12.1",
"ml-regression-base": "^4.0.0",
"ml-regression-exponential": "^3.0.1",
"ml-regression-exponential": "^3.0.2",
"ml-regression-multivariate-linear": "^2.0.4",

@@ -62,0 +60,0 @@ "ml-regression-polynomial": "^3.0.1",

@@ -0,1 +1,3 @@

import { describe, it, expect } from "vitest";
import { PolinomialFitting2D as Polyfit } from "..";

@@ -52,3 +54,3 @@

let X = new Array(len);
let val = 5.0;
let val = 5;
let y = new Array(len);

@@ -55,0 +57,0 @@ for (let i = 0; i < len; ++i, val += 0.5) {

import { Matrix } from "ml-matrix";
import { describe, it, expect } from "vitest";

@@ -3,0 +4,0 @@ import { KernelRidgeRegression } from "..";

@@ -0,1 +1,3 @@

import { describe, it, expect } from "vitest";
import { NLR } from "..";

@@ -6,3 +8,3 @@

it("Potential regression", () => {
let x = [0.2, 0.4, 0.6, 0.8, 1.0];
let x = [0.2, 0.4, 0.6, 0.8, 1];
let y = [0.196, 0.785, 1.7665, 3.1405, 4.9075];

@@ -32,3 +34,3 @@ let result = new NLR.PotentialRegression(x, y, 2, {

expect(regression.M).toBe(-1);
expect(regression.toLaTeX()).toBe("f(x) = \\frac{1}{x^{1}}");
expect(regression.toLaTeX()).toBe(String.raw`f(x) = \frac{1}{x^{1}}`);

@@ -35,0 +37,0 @@ let model = regression.toJSON();

@@ -0,1 +1,3 @@

import { describe, it, expect } from "vitest";
import * as regression from "..";

@@ -2,0 +4,0 @@

@@ -12,7 +12,5 @@ import { Matrix, SVD } from "ml-matrix";

* Constructor for the 2D polynomial fitting
*
* @param inputs
* @param outputs
* @param options
* @constructor
*/

@@ -46,4 +44,3 @@ constructor(inputs, outputs, options = {}) {

* The third argument is an object with the following options:
* * order: order of the polynomial to fit.
*
* order: order of the polynomial to fit.
* @param {Matrix} X - A matrix with n rows and 2 columns.

@@ -81,5 +78,5 @@ * @param {Matrix} y - A vector of the prediction values.

let scaleX1 = 1.0 / x1.clone().abs().max();
let scaleX2 = 1.0 / x2.clone().abs().max();
let scaleY = 1.0 / y.clone().abs().max();
let scaleX1 = 1 / x1.clone().abs().max();
let scaleX2 = 1 / x2.clone().abs().max();
let scaleY = 1 / y.clone().abs().max();

@@ -177,6 +174,5 @@ x1.mulColumn(0, scaleX1);

* Function that given a column vector return this: vector^power
*
* @param x - Column vector.
* @param power - Pow number.
* @return {Suite|Matrix}
* @returns {Suite|Matrix}
*/

@@ -183,0 +179,0 @@ function powColVector(x, power) {

@@ -15,5 +15,5 @@ import { BaseRegression, maybeToPrecision } from "ml-regression-base";

/**
* @constructor
* @param x: Independent variable
* @param y: Dependent variable
* @class
* @param x - Independent variable
* @param y - Dependent variable
* @param M

@@ -20,0 +20,0 @@ */

SocketSocket SOC 2 Logo

Product

About

Packages

Stay in touch

Get open source security insights delivered straight into your inbox.

  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc

U.S. Patent No. 12,346,443 & 12,314,394. Other pending.